
Write-efficient algorithms

15-853: Algorithms in the Real World

Yan Gu, May 2, 2018

Classic Algorithms Research

…has focused on settings in which
reads & writes to memory have equal cost

But what if they have very DIFFERENT costs?
How would that impact Algorithm Design?

Emerging Memory Technologies

Motivation:

 DRAM is volatile

 DRAM energy cost is significant (~35% energy on data centers)

 DRAM density (bits/area) is limited

Promising candidates:

 Phase-Change Memory (PCM)

 Spin-Torque Transfer Magnetic RAM (STT-RAM)

 Memristor-based Resistive RAM (ReRAM)

 Conductive-bridging RAM (CBRAM)

Key properties:

 Persistent, significantly lower energy, can be higher density (10x+)

 Read latencies approaching DRAM, random-access

3D XPoint

Another Key Property:

Writes More Costly than Reads

In these emerging memory technologies, bits are stored

as “states” of the given material

 No energy to retain state

 Small energy to read state

- Low current for short duration

 Large energy to change state

- High current for long duration
PCMWrites incur higher energy costs, higher

latency, and lower per-DIMM bandwidth
(power envelope constraints)

Sorting algorithm 1:

100𝑛 reads and 100𝑛
writes on 𝑛 elements

We can sort <1 million

entries per joule

Consider the energy issue and assume a read

costs 0.1 nJ and a write costs 10 nJ

Why does it matter?

read cost write cost

Sorting algorithm 2:

200𝑛 reads and 2𝑛 writes

on 𝑛 elements

We can sort 25 million

entries per joule

read cost write cost

Writes are significantly more costly than reads

due to the cost to change the phases of materials

 higher latency, lower per-chip bandwidth, higher

energy costs

Higher latency → Longer time for a write →

Decrease per-chip (memory) bandwidth

Let the parameter 𝝎 > 𝟏 be the cost for

writes relative to reads

 Expected to be between 5 to 30

Why does it matter?

Evolution on the memory hierarchy

CPU

L1 L2 L3

Main

memory

(DRAM)

External

Memory

(SSD,

HDD)

1.5ns 5ns 20ns 100ns 4ms

64KB 256KB 32MB 64GB huge

Common latency / size for a current computer (server)

Read latency ~100 ns

from 128GB to TB level

New non-volatile

memory

(Storage class

memory)

Databases: the data that is kept in the external

memory can now be on the main memory

Graph processing: large social networks

nowadays contain ~billion vertices and

>100 billion edges

Geometry applications: can handle more

precise meshes that support better effects

Impacts on Real-World Computation

The new non-volatile memory raises the

challenge to design write-efficient algorithms

What we need:

 Modified cost models

 New algorithms

 New techniques to support efficient

computation (cache policy, scheduling, etc.)

 Experiment

Summary

New Cost Models

 Unit cost for:

 Any instruction on Θ(log 𝑛)-bit words

 Read/write a single memory location from an infinite

memory

Random-Access Machine (RAM)

CPU

Memory

1

1

A single write cost 𝜔 instead of 1

But every instruction writes something…

Read/write asymmetry in RAM?

CPU
write cost 𝜔

Memory

1

1 𝝎

 Comprise of:

 a symmetric small-memory (cache) of size 𝑀, and

 an asymmetric large-memory (main memory) of unbounded

size, and an integer write cost 𝜔

 I/O cost 𝑄: instructions on cache are free

(𝑴,𝝎)-Asymmetric RAM (ARAM)

CPU
write cost 𝜔

Asymmetric

Large-Memory

Small-Memory

𝑀 words
0

1

𝝎

 Comprise of:

 a symmetric small-memory (cache) of size 𝑀, and

 an asymmetric large-memory (main memory) of unbounded

size, and an integer write cost 𝜔

 I/O cost 𝑄: instructions on cache are free

 time 𝑇: instructions on cache take 𝟏 unit of time

(𝑴,𝝎)-Asymmetric RAM (ARAM)

CPU
write cost 𝜔

Asymmetric

Large-Memory

Small-Memory

𝑀 words

1

𝝎
1
0

Lower and Upper Bounds

 Comparison sort on 𝑛 elements

 Read and comparison (without writes): Ω(𝑛 log 𝑛)

 Write complexity: Ω(𝑛)

 Question: how to sort 𝑛 elements using 𝑂(𝑛 log 𝑛)
instructions (reads) and 𝑂(𝑛) writes?

 Swap-based sorting (i.e. quicksort, heap sort) does

not seem to work

 Mergesort requires strictly 𝑛 writes for log 𝑛 rounds

 Selection sort uses linear write, but not work (read)

efficiency

Warm up: Asymmetric sorting

 Comparison sort on 𝑛 elements

 Read complexity: Ω(𝑛 log 𝑛)

 Write complexity: Ω(𝑛)

 The algorithm: inserting each key in

random order into a binary search

tree. In-order traversing the tree gives

the sorted array. (𝑂 log 𝑛 tree depth

w.h.p.)

 Using balanced BSTs (e.g. AVL trees)

gives a deterministic algorithm, but

more careful analysis is required

Warm up: Asymmetric sorting

7

3 9

5

4

1

Trivial upper bounds

Problem
I/O cost 𝑄(𝑛) and

time 𝑇(𝑛)
Reduction

ratio

Comparison sort Θ(𝑛 log 𝑛 + 𝜔𝑛) 𝑂(log 𝑛)

Search tree, priority

queue
Θ(log 𝑛 + 𝜔) 𝑂(log 𝑛)

2D convex hull,

triangulation
𝑂(𝑛 log 𝑛 + 𝜔𝑛) 𝑂(log 𝑛)

BFS, DFS, SCC,

topological sort,

block, bipartiteness,

floodfill, biconnected

components

Θ(𝑚 + 𝑛𝜔) 𝑂(𝑚/𝑛)

𝑀 = 𝑂(1)

Lower bounds

Problem

I/O cost

Classic

Algorithm
Lower bound

Sorting network Θ 𝜔𝑛
log 𝑛

log𝑀
Θ 𝜔𝑛

log 𝑛

log𝜔𝑀

Fast Fourier Transform Θ 𝜔𝑛
log 𝑛

log𝑀
Θ 𝜔𝑛

log 𝑛

log𝜔𝑀

Diamond DAG (LCS,

edit distance)
Θ

𝑛2𝜔

𝑀
Θ

𝑛2𝜔

𝑀

An example of a diamond DAG:

Longest common sequence (LCS)

A C G T A T

A

T

C

G

A

T

An example of Diamond DAG:

Longest common sequence (LCS)

1 1 1 1 1 1

1 1 1 2 2 2

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 3 4 4

1 2 3 4 4 5

A C G T A T

A

T

C

G

A

T

Computation DAG Rule

DAG Rule / pebbling game:

 To compute the value of a node, must have the values

at all incoming nodes

 To show that for the computational DAG, there exists a

partitioning of the DAG that I/O cost is lower bounded

 However, since read and write has different cost,

previous techniques (e.g. [HK81]) cannot directly

apply

High-level proof idea

Standard Observations on DAG

A C G T A T

A

T

C

G

A

T

DAG (or DP table) has size 𝑛2

 (Input size is only 2𝑛)

 Building table explicitly ⇒ 𝑛2 writes,

 but problem only inherently requires

writing last value

 Compute some nodes in cache but

don’t write them out

Storage lower bound of subcomputation

(diamond DAG rule, Cook and Sethi 1976):

Solving an 𝑘 × 𝑘 sub-DAG requires 𝑘 space to

store intermediate value

For 𝑘 > 𝑀, some values need to be written out

Storage lower bound of subcomputation

(diamond DAG rule, Cook and Sethi 1976):

Solving an 𝑘 × 𝑘 sub-DAG requires 𝑘 space to

store intermediate value

𝑘

For 𝑘 > 𝑀, some values need to be written out

 Computing any 2𝑀 × 2𝑀 diamond requires 𝑀 writes to

the large-memory

 2𝑀 storage space, 𝑀 from small-memory

 To finish computation, every 2𝑀 × 2𝑀 sub-DAG needs to

be computed, which leads to Ω
𝑛2

𝑀
writes

Proof sketch of lower bound

2𝑀

Θ
𝑛2

𝑀2 ⋅ Ω(𝑀) = Ω
𝑛2

𝑀

#sub-problem #write

 Lower bound: Θ
𝑛2

𝑀
writes

 This lower bound is tight when breaking down into
𝑀

2
×

𝑀

2

sub-DAGs, and read & write-out the boundary only

A matching algorithm for the lower bound

𝑀/2

2 ⋅
𝑛

𝑀/2
⋅ 𝑛 = 𝑂

𝑛2

𝑀

#row/column #read/write

Upper bounds on graph algorithms

Problem
I/O cost 𝑄(𝑛,𝑚)

Classic algorithms New algorithms

Single-source

shortest-path
𝑂 𝜔 𝑚 + 𝑛 log 𝑛

𝑂(

)

min(

)

𝑛 𝜔 +𝑚/𝑀 ,
𝜔 𝑚 + 𝑛 log 𝑛 ,
𝑚(𝜔 + log 𝑛)

Minimum

spanning tree
𝑂 𝑚𝜔

𝑂(min(𝑚𝜔,
𝑚 min(log 𝑛 , 𝑛/𝑀) + 𝜔𝑛))

 Compute an SSSP requires 𝑂 𝑚 DECREASE-KEYs and

𝑂 𝑛 EXTRACT-MINs in Dijkstra’s algorithm

 Classic Fibonacci heap: 𝑂 𝜔 𝑚 + 𝑛 log 𝑛

 Balanced BST: 𝑂 𝑚 𝜔 + log 𝑛

 Restrict the Fibonacci heap into the small-memory with size

𝑀: no writes to the large-memory to maintain the heap,

𝑂 𝑛/𝑀 rounds to finish, 𝑂 𝑛 𝜔 +𝑚/𝑀 I/O cost in total

Fibonacci Heap

I/O cost of Dijkstra’s algorithm

small-memory

large-memory

Parallel Computational Model

and

Parallel Write-efficient Algorithms

A = 1 2 3 4 5 6 7 8

Sum(A): 36

Cut the input array into smaller segments,

sum each up individually, and finally sum up

the sums

Picking the appropriate number of segments

can be annoying

 Machine parameter, runtime environment,

algorithmic details

6 + 15 + 15 = 36

A = 1 2 3 4 5 6 7 8

Sum(A):

3 7 11 15

10 26

36

+

Function SUM(A)

If |A| = 1 then return A(1)

In Parallel

a = SUM(first half of A)

b = SUM(second half of A)

return a + b

+ + +

+ +

+

A = 1 2 3 4 5 6 7 8

Sum(A):

3 7 11 15

10 26

36

+

A work-stealing scheduler can

run a computation on 𝑝 cores

using time:

𝑂
𝑛

𝑝
+ log 𝑛

+ + +

+ +

+

The work-stealing scheduler

is used in OpenMP, CilkPlus,

Intel TBB, MS PPL, etc.

A = 1 2 3 4 5 6 7 8

Sum(A):

3 7 11 15

10 26

36

+

A work-stealing scheduler can

run a computation on 𝑝 cores

using time:
𝑊

𝑝
+ 𝑂 𝐷

𝑊: total

computation

𝐷: longest

chain of

all paths

+ + +

+ +

+

A = 1 2 3 4 5 6 7 8

Sum(A):

3 7 11 15

10 26

36

+

A work-stealing scheduler can

run a computation on 𝑝 cores

using time:

𝑂 𝜔
𝑊

𝑃
+ 𝐷

𝑊: 𝑂(𝑛)

𝐷: 𝑂(log 𝑛)

+ + +

+ +

+

 Assumptions:

 Each processor has its symmetric private cache

 Each processor can request to access data in other

processor’s cache, but cannot write anything

 All communications are via asymmetric main memory

 Any non-leaf task uses constant stack space

Our new results on scheduler

 Assumptions:

 Each processor has its symmetric private cache

 Each processor can request to access data in other

processor’s cache, but cannot write anything

 All communications are via asymmetric main memory

 Any non-leaf task uses constant stack space

With non-trivial but simple modifications to the work-

stealing scheduler, a computation on 𝑝 cores use time:
𝑊

𝑝
+ 𝑂 𝜔𝐷

with memory size 𝑀 = 𝑂 𝐷 +𝑀𝐿 (memory for base case)

Our new results on scheduler

Results of parallel algorithms

Problem Work (𝑊) Depth (𝐷) Reduction of writes

Reduce Θ 𝑛 + 𝜔 Θ log𝑛 + 𝜔 Θ(log𝑛)

Ordered filter Θ 𝑛 + 𝜔𝑘 ↟ 𝑂 𝜔 log𝑛 ↟ Θ(log𝑛)

Comparison sort Θ 𝑛 log𝑛 + 𝑛𝜔 ↟ 𝑂 𝜔 log𝑛 ↟ Θ(log𝑛)

List and tree

contraction
Θ 𝑛 𝑂 𝜔 log𝑛 ↟ Θ(𝜔)

Minimum

spanning tree

𝑂(
)

𝛼 𝑛 𝑚
+ 𝜔𝑛 log(min(𝑚/𝑛, 𝜔))

𝑂 𝜔 polylog 𝑛 ↟ 𝑚/(𝑛 ⋅
log(min(𝑚/𝑛, 𝜔)))

2D convex hull 𝑂 𝑛 log 𝑘 + ω𝑛 log log 𝑘 § 𝑂 𝜔 log2 𝑛 ↟ output-sensitive

BFS tree Θ 𝜔𝑛 +𝑚 § Θ 𝜔𝛿 log𝑛 ↟ 𝑂 𝑚/𝑛

𝑘 = output size

𝛿 = graph diameter

↟ = with high probability

§ = expected

 Partition the graph into Θ 𝑛/𝑘 connected clusters,

each with size no more than 𝑘

 Only store the connectivity information for the “center”

of each cluster (Θ 𝑛/𝑘 size in total)

 Require 𝑂 𝑘2 cost to retrieve a cluster

 The preprocessing uses 𝑂 𝑘2 ⋅ 𝑛/𝑘 = 𝑂(𝑛𝑘) cost

 Each query needs 𝑂 𝑘2 cost (check two clusters)

Graph Connectivity (Biconnectivity)

1
2

22

Graph Biconnectivity

 Our claim: answering a biconnectivity query only

requires the information on the clusters graph and

within at most 3 clusters

Check whether there is any articulation

point that disconnects them

Can precompute and store results

of all intermediate clusters

Need to specially check

3 clusters

Graph Connectivity / Biconnectivity

Problem Work (𝑊) Depth (𝐷) Query

Undirected

Connectivity,

Biconnectivity

Θ(
)

min(
)
𝑚 + 𝜔𝑛,

𝜔𝑚
Θ poly 𝜔, log 𝑛 Θ(𝜔)

Our new approach (the implicit decomposition) can reduce

the space utilization (and writes) by a factor of 𝜔

We show a graph decomposition that uses sublinear space

to represent, which can be a useful tool

Sequential upper bounds

Problem
I/O cost 𝑄(𝑛) and

work 𝑊(𝑛)
Reduction

ratio

Comparison sort Θ(𝑛 log 𝑛 + 𝜔𝑛) 𝑂(log 𝑛)

Search tree, priority

queue
Θ(log 𝑛 + 𝜔) 𝑂(log 𝑛)

2D convex hull,

triangulation
𝑂(𝑛 log 𝑛 + 𝜔𝑛) 𝑂(log 𝑛)

BFS, DFS, SCC,

topological sort,

block, bipartiteness,

floodfill, biconnected

components

Θ(𝑚 + 𝑛𝜔) 𝑂(𝑚/𝑛)

𝑀 = 𝑂(1)

 A random permutation provides each “element” a

unique random priority

 Incrementally inserting each element into the current

configuration

Randomized Incremental Algorithms

 A random permutation provides each “element” a

unique random priority

 Incrementally inserting each element into the current

configuration

Randomized Incremental Algorithms

1

2

4

3

11
7

5

9

10

8

6

 A random permutation provides each “element” a

unique random priority

 Incrementally inserting each element into the current

configuration

Randomized Incremental Algorithms

 Unfortunately, good parallel incremental algorithms for

some geometry problems were unknown

 We describe a framework that can analyze the

parallelism of many incremental algorithms

 Then we design a uniform approach to get the write-

efficient versions of these algorithms

Randomized Incremental Algorithms

Problem Work

Comparison sort, convex hull,

Delaunay triangulation, 𝑘-d tree,

interval tree, priority search tree

Θ 𝑛 log 𝑛 + 𝜔𝑛

𝑘-d linear programming,

minimum enclosing disk
Θ 𝑛 + 𝜔𝑛𝜖

Cache Policy

Least recent used (LRU) policy is the most

practical implementation

Cache policy: decide the block to evict

when a cache miss occurs

Cache Main Memory

1

0/1

Least recent used (LRU) policy is the most

practical implementation

Cache policy: decide the block to evict

when a cache miss occurs

Cache Main Memory

1

𝝎

Consider the sequence of repeated instructions:

W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

A clever cache policy costs 𝑘 + 2 for this

sequence with cache size 𝑘

Challenge: LRU does not work well

under the asymmetric setting

1 2 3 4 5 ⋯ k-1 k+1kk+2

W: write R: read

Consider the sequence of repeated instructions:

W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

A clever cache policy costs 𝑘 + 2 for this

sequence with cache size 𝑘

The LRU policy costs 𝑘 − 1 ⋅ 𝜔 + 𝑘 + 2 with

cache size 2𝑘

Challenge: LRU does not work well

under the asymmetric setting

1 2 3 4 5 ⋯ 2k-1 2k2k+1 1 2

Consider the sequence of repeated instructions:

W(1), W(2), … , W(k-1), R(k), R(k+1), …, R(2k+1)

A clever cache policy costs 𝑘 + 2 for this

sequence with cache size 𝑘

The LRU policy costs 𝑘 − 1 ⋅ 𝜔 + 𝑘 + 2 with

cache size 2𝑘

Classic LRU policy has an 𝜔-time cost

comparing to the clever policy!

Challenge: LRU does not work well

under the asymmetric setting

 The cache is separated into two equal-sized pools: a

read pool and a write pool

Solution: The Asymmetric LRU policy

Read Pool

CPU

Write Pool

Asymmetric

Slow Memory

 When reading a location, if the block is:

 in the read pool, the read is free

 in the write pool, the block will be copied to read pool

 in neither, the block is loaded from main memory

 The rules for write pool are symmetric, but cost 𝜔 + 1
since the blocks are all dirty and need to be written back

Solution: The Asymmetric LRU policy

Read Pool

CPU

Write Pool

Asymmetric

Slow Memory

0 1

1
The new Asymmetric LRU policy is 3-competitive

to the optimal policy

In practice,

The cache does not need to be explicitly
separated into two pools physically

Use the dirty bit to identify and check, and
change the eviction rule accordingly

Read Pool

Write Pool

dirty bit, either 0 or 1

Summary

The new emerging memories are upcoming,

which rise the challenge of read/write

asymmetry in algorithm design

New cost models to capture this asymmetry

New upper and lower bounds on a number of

fundamental problems

This area is still new — there are many other

problems worth investigating

Thank you!

Summary

 An abstract function that solves many problems in

parallel, with linear work and logarithm depth

 Example: expression evaluation

 Input: a binary rooted tree

 Output: the final answer

 The rake operation:

Remove (evaluate) a child

and its parent

Tree contraction

×

+

1 ×

22

+

3 2

5

 An abstract function that solves many problems in

parallel, with linear work and logarithm depth

 Example: expression evaluation

 Input: a binary rooted tree

 Output: the final answer

 The rake operation:

Remove (evaluate) a child

and its parent

Tree contraction

×

+

1 ×

22

5

 An abstract function that solves many problems in

parallel, with linear work and logarithm depth

 Example: expression evaluation

 Input: a binary rooted tree

 Output: the final answer

 The rake operation:

Remove (evaluate) a child

and its parent

Tree contraction

×

×

2 2

+15

 An abstract function that solves many problems in

parallel, with linear work and logarithm depth

 Example: expression evaluation

 Input: a binary rooted tree

 Output: the final answer

 The rake operation:

Remove (evaluate) a child

and its parent

Tree contraction

×

4 +15

 An abstract function that solves many problems in

parallel, with linear work and logarithm depth

 Example: expression evaluation

 Input: a binary rooted tree

 Output: the final answer

 The rake operation:

Remove (evaluate) a child

and its parent

Tree nodes decrease by

a constant fraction

𝑂(log 𝑛) round to finish, linear work

Tree contraction

×

5 5

Each rake operation corresponds to a write!

 The output of most of the applications (expression

evaluation, subtree size, LCA queries) has sublinear

size

 Partition the tree into sufficiently smaller components,

solve each one sequentially and independently?

How to partition the tree evenly without using writes?

How to solve each subproblem without using writes?

Challenges of tree contraction

Bottom-up? Top-down?

 Goal: pick O 𝑠 nodes to partition a tree of size 𝑛, each

component with size 𝑛/𝑠

 Take 𝑠 random nodes won’t work: each will only

expect to remove a small number of nodes, leaving

the top part with expected size of 𝑛 − 𝑂 𝑠 log 𝑛

 Partition based on sub-tree sizes is also hard since

the sizes cannot be stored

How to partition the tree evenly without

using many writes?

 Euler tour of a tree: the Euler circuit to traverse a tree

(similar in a depth-first search)

How to partition the tree evenly without

using many writes?

 Euler tour of a tree: the Euler circuit to traverse a tree

(similar in a depth-first search)

 Can be finished with constant space

How to partition the tree evenly without

using many writes?

Selecting partition nodes

 Step 1: each node is marked with probability 𝑠/𝑛 (yellow)

 Step 2: for each yellow node, starting from all out-edges,

traverse until next yellow nodes, and mark every (𝑛/𝑠)-
th node (red)

Selecting partition nodes

 Step 1: each node is marked with probability 𝑠/𝑛 (yellow)

 Step 2: marked 𝑂(𝑠) red nodes

 Step 3: for each marked node, starting from the edge to

its parent, traverse based on the Euler tour until reaching

the next colored node, and mark the highest node on the

path (green)

Selecting partition nodes

 Step 1: each node is marked with probability 𝑠/𝑛 (yellow)

 Step 2: marked 𝑂(𝑠) red nodes

 Step 3: for each marked node, starting from the edge to

its parent, traverse based on the Euler tour until reaching

the next colored node, and mark the highest node on the

path (green)

Selecting partition nodes

 Step 1: each node is marked with probability 𝑠/𝑛 (yellow)

 Step 2: marked 𝑂(𝑠) red nodes

 Step 3: for each marked node, starting from the edge to

its parent, traverse based on the Euler tour until reaching

the next colored node, and mark the highest node on the

path (green)

Selecting partition nodes

 Step 1: each node is marked with probability 𝑠/𝑛 (yellow)

 Step 2: marked 𝑂(𝑠) red nodes

 Step 3: for each marked node, starting from the edge to

its parent, traverse based on the Euler tour until reaching

the next colored node, and mark the highest node on the

path (green)

Selecting partition nodes

 Step 1: each node is marked with probability 𝑠/𝑛 (yellow)

 Step 2: marked 𝑂(𝑠) red nodes

 Step 3: for each marked node, starting from the edge to

its parent, traverse based on the Euler tour until reaching

the next colored node, and mark the highest node on the

path (green)

In total, we expect to mark no more than 𝑂 𝑠 nodes

(writes), and linear work

What is the depth? (work of step 2)

How good this partition is?

 The probability 𝑝 that neither of the next 𝑘 tree nodes

are yellow is 1 −
𝑠

𝑛

𝑘

 When 𝑘 =
𝑐𝑛 log 𝑛

𝑠
, 𝑝 = 𝑛−𝑐 (high probability bound)

 For example, when 𝑠 = 𝑛/𝜔, then 𝑘 = 𝑂(𝜔 log 𝑛)

The gap between two yellow nodes

Θ(𝑛/𝑠) (optimal)

 Each component contains at most three segments

between two yellow and red node, each with size ≤ 𝑛/𝑠

The average size of the component

after partitioning

Θ(𝑛/𝑠) (optimal)

 Each component contains at most three segments

between two yellow and red node, each with size ≤ 𝑛/𝑠

The average size of the component

after partitioning

Requires linear work, O 𝑛 log 𝑛 /𝑠 depth, 𝑂(𝑠)
writes, and partitions the tree with component

size 𝑂(𝑛/𝑠)

 In particular, when 𝑠 = 𝑛/𝜔, the algorithm has

𝑂 𝜔 log 𝑛 depth, 𝑂 𝑛/𝜔 writes, and

generates components with size 𝑂 𝜔

The tree-partitioning algorithm

With 𝑂(𝜔) fast-memory, we can sequentially

contract each component with linear work and

depth in term of the component size

Contracting each component

With 𝑂(𝜔) fast-memory, we can sequentially

contract each component with linear work and

depth in term of the component size

Contracting each component

The tree will contains 𝑂(𝑛/𝜔) nodes

Final contraction

Use any classic tree-contraction algorithm with

linear work and writes, and logarithm of depth

The tree will contains 𝑂(𝑛/𝜔) nodes

 Given a tree with 𝑛 nodes, the algorithm requires:

 𝑂(𝑛) work and reads

 𝑂(𝑛/𝜔) writes

 𝑂 𝜔 log 𝑛 depth

 Comparing to the classic tree-contraction algorithm,

the number of writes can be reduced by 𝑂(𝜔)

Tree applications: LCA, subtree size, tree distances, tree isomorphism,

maximal subtree isomorphism, and any associative operation on trees

Graph applications: graph isomorphism, computing the 3-connected

components, and finding an explicit planar embedding

Other applications: expression evaluation, common subexpression

elimination, line breaking, etc.

Write-efficient tree-contraction

algorithm

