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...has focused on settings in which
reads & writes to memory have equal cost

But what if they have very DIFFERENT costs?
How would that impact Algorithm Design?
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Emerging Memory Technologies

Motivation:
« DRAM is volatile
« DRAM energy cost is significant (~35% energy on data centers)
« DRAM density (bits/area) is limited

Promising candidates:
e Phase-Change Memory (PCM)

3D XPoint

Key properties:
» Persistent, significantly lower energy, can be higher density (10x+)
» Read latencies approaching DRAM, random-access



Another Key Property:
Writes More Costly than Reads

In these emerging memory technologies, bits are stored
as “states” of the given material

No energy to retain state =~ Sososseass

Small energy to read state ~ Glleleeen

..........

Low current for short duration

Large energy to change state

Writes incur higher energy costs, higher
latency, and lower per-DIMM bandwidth
(power envelope constraints)



Why does it matter?

Consider the energy issue and assume a read
costs 0.1 nJ and a write costs 10 nJ

Sorting algorithm 1 Sorting algorithm 2:

100n reads and 100n 200n reads and 2n writes
writes on n elements on n elements

We can sort <1 million We can sort 25 million
entries per joule entries per joule

M read cost write cost M read cost write cost



Why does it matter?

Writes are significantly more costly than reads
due to the cost to change the phases of materials

higher latency, lower per-chip bandwidth, higher
energy costs

Higher latency - Longer time for a write -
Decrease per-chip (memory) bandwidth

Let the parameter w > 1 be the cost for
writes relative to reads

Expected to be between 5 to 30



Evolution on the memory hierarchy

CPU
| L3
e
1.5ns  5ns 20ns Read latency ~100 ns

64KB  256KB  32MB  from 128GB to TB level

Common latency / size for a current computer (server)



Impacts on Real-World Computation

Databases: the data that is kept in the external
memory can now be on the main memory

Graph processing: large social networks
nowadays contain ~billion vertices and
>100 billion edges

Geometry applications: can handle more
precise meshes that support better effects



Summary

The new non-volatile memory raises the
challenge to design write-efficient algorithms

What we need:
Modified cost models
New algorithms

New techniques to support efficient
computation (cache policy, scheduling, etc.)

Experiment



New Cost Models



Random-Access Machine (RAM)

Unit cost for:
Any instruction on 0(log n)-bit words

Read/write a single memory location from an infinite
memory

Memory




Read/write asymmetry in RAM?

o A single write cost w instead of 1

But every instruction writes something...

Memory

write cost w




(M, w)-Asymmetric RAM (ARAM)

o Comprise of:
» a symmetric small-memory (cache) of size M, and

» an asymmetric large-memory (main memory) of unbounded
size, and an integer write cost w

o 1/O cost Q: instructions on cache are free

Asymmetric
Large-Memory

Small-Memory 1

0

M words write cost w




(M, w)-Asymmetric RAM (ARAM)

Comprise of;
a symmetric small-memory (cache) of size M, and

an asymmetric large-memory (main memory) of unbounded
size, and an integer write cost w

I/O cost Q: instructions on cache are free

time T: instructions on cache take 1 unit of time
Asymmetric
Large-Memory

Small-Memory 1

0
1

M words write cost w




Lower and Upper Bounds



Warm up: Asymmetric sorting

Comparison sort on n elements
Read and comparison (without writes): Q(nlogn)
Write complexity: Q(n)

Question: how to sort n elements using O(nlogn)
Instructions (reads) and 0 (n) writes?

Swap-based sorting (i.e. quicksort, heap sort) does
not seem to work

Mergesort requires strictly n writes for logn rounds

Selection sort uses linear write, but not work (read)
efficiency



Warm up: Asymmetric sorting

Comparison sort on n elements
Read complexity: Q(nlogn)
Write complexity: Q(n)

The algorithm: inserting each key in
random order into a binary search
tree. In-order traversing the tree gives
the sorted array. (O(logn) tree depth
w.h.p.)

Using balanced BSTs (e.g. AVL trees)
gives a deterministic algorithm, but
more careful analysis is required



Trivial upper bounds

M = 0(1)

/O cost Q(n) and Reduction
Problem time T (n) ratio

Comparison sort O(nlogn + wn) O(logn)
Search tree, priority
queue O(logn + w) O(logn)
2D convex hull,
triangulation O(nlogn + wn) O(logn)
BFS, DFS, SCC,
topological sort,
block, bipartiteness, O(m + nw) O(m/n)

floodfill, biconnected
components




Lower bounds

Diamond DAG (LCS,
edit distance)




An example of a diamond DAG:
Longest common sequence (LCS)
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An example of Diamond DAG:

Longest common sequence (LCS)




Computation DAG Rule

DAG Rule / pebbling game:

To compute the value of a node, must have the values
at all incoming nodes

S OO OO
05050505
05050505
05050505
O-OO0O©



High-level proof idea

To show that for the computational DAG, there exists a
partitioning of the DAG that I/O cost is lower bounded

However, since read and write has different cost,
previous techniques (e.g. [HK81]) cannot directly

apply



Standard Observations on DAG

DAG (or DP table) has size n*

SO QOO o
A A (Input size is only 2n)
Building table explicitly = n* writes

Q\g
- V¥ 7 b bl ly Inh I o
¢ O O Q Q u_t .pI‘O em only In erenty reguires

writing last value

<>\Q Q
A 2 in cache b
: -0~ Q Comput_e some nodes in cache but

don’t write them out



Storage lower bound of subcomputation
(diamond DAG rule, Cook and Sethi 1976):

Solving an k x k sub-DAG requires k space to
store intermediate value

OO OO O

O OO OO

&

For k > M, some values need to be written out



Storage lower bound of subcomputation
(diamond DAG rule, Cook and Sethi 1976):

Solving an k x k sub-DAG requires k space to
store intermediate value

OO OO O

O OO OO

O—0O-OfO-0O-0 -~

For k > M, some values need to be written out



Proof sketch of lower bound

Computing any 2M x 2M diamond requires M writes to
the large-memory

2M storage space, M from small-memory

To finish computation, every 2M X 2M sub-DAG needs to

n2

be computed, which leads to ) (M) writes

Law
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#sub-problem  #write

O O O



A matching algorithm for the lower bound

nZ

Lower bound: 0 (M) writes

This lower bound is tight when breaking down into % x%
sub-DAGSs, and read & write-out the boundary only

} M/2

O O O n <n2>

@ o 0 1;/2 _\M

#row/column #read/write

@ @ @



Upper bounds on graph algorithms

/O cost Q(n,m)

Problem
Classic algorithms New algorithms

O (min(n(w + m/M),
O(a)(m + nlog n)) w(m + nlogn),
m(w + logn)))

Single-source
shortest-path

O (min(muwo,
m min(logn,n/M) + wn))

Minimum

spanning tree 0(maw)




I/O cost of Dijkstra’s algorithm

Compute an SSSP requires 0(m) DECREASE-KEYs and
0(n) EXTRACT-MINS in Dijkstra’s algorithm

Classic Fibonacci heap: 0(w(m + nlogn))
Balanced BST: 0(m(w + logn))

Restrict the Fibonacci heap into the small-memory with size
M no writes to the large-memory to maintain the heap,
0(n/M) rounds to finish, 0(n(w + m/M)) 1/O cost in total

(o “

\ large-memory J




Parallel Computational Model
and
Parallel Write-efficient Algorithms



Sum(A):. 36

Cut the input array into smaller segments,
sum each up individually, and finally sum up
the sums

Picking the appropriate number of segments
can be annoying

Machine parameter, runtime environment,
algorithmic details



A= 1 2 3 4 5 6 7 8
N N A< A<
3 7 11 15
\4/ \_V
10 26
—
Sum(A): 36

Function SUM(A)
If |[A| =1 thenreturn A(1)
In Parallel
a = SUM(first half of A)
b = SUM(second half of A)
returna + b




A= 1 2 3 4 5 6 7 8
AN N AN AN
3 7 11 15
\4/ \V
10 26
—
Sum(A): 36

A work-stealing scheduler can

run a computation on p cores
using time:

n
Ol—+ 10g n The work-stealing scheduler
p Is used in OpenMP, CilkPlus,
Intel TBB, MS PPL, etc.



A= 1 2 3 4 5 o6 [ 8
~+t ~+ - ~t - ~t -
3 ! 11 15
\_V \_V
10 20
—
Sum(A): 36
A work-stealing scheduler can  W: total
run a computation on p cores computation
using time:

W D: Iongest
—+ 0(D) chain of
P all paths



A= 1 2 3 4 5 6 7 8
N N A< A<
3 7 11 15
\4/ \V
10 26
—
Sum(A): 36

A work-stealing schedulercan W: 0(n)
run a computation on p cores
using time:

( " ) D: O(logn)
O| w (F + D)



Our new results on scheduler

Assumptions:
Each processor has its symmetric private cache

Each processor can request to access data in other
processor’s cache, but cannot write anything

All communications are via asymmetric main memory
Any non-leaf task uses constant stack space

<

\ —



Our new results on scheduler

Assumptions:
Each processor has its symmetric private cache

Each processor can request to access data in other
processor’s cache, but cannot write anything

All communications are via asymmetric main memory
Any non-leaf task uses constant stack space

With non-trivial but simple modifications to the work-
stealing scheduler, a computation on p cores use time:
w
—+ O(wD)
p
with memory size M = O(D) + M; (memory for base case)




Results of parallel algorithms

Problem Work (W) Depth (D) Reduction of writes
Reduce O(n + w) O(logn + w) O(logn)
Ordered filter O(n+ wk) * O(wlogn) * O(logn)
Comparison sort O(nlogn + nw) * O(wlogn) * O(logn)

List and tree 3

contraction o(n) O(wlogn) 0(w)
Minimum O(a(n)m N m/(n -
spanning tree + wnlog(min(m/n, w))) 0(w polylogn) log(min(m/n, w)))

2D convex hull  |0(nlogk + wnloglogk)$ | 0(wlog?n) * output-sensitive

BFS tree O(wn +m) 3 O(wslogn) * O(m/n)

k = output size

& = graph diameter

} = with high probability
§ = expected



Graph Connectivity (Biconnectivity)

1
2

Partition the graph into ®(n/k) connected clusters,
each with size no more than k

Only store the connectivity information for the “center”
of each cluster (0(n/k) size in total)

Require 0(k?) cost to retrieve a cluster
The preprocessing uses 0(k? - n/k) = 0(nk) cost
Each query needs 0(k#) cost (check two clusters)



Graph Biconnectivity

Our claim: answering a biconnectivity query only
requires the information on the clusters graph and
within at most 3 clusters

Check whether there is any articulation
point that disconnects them

Can precompute and store results
of all intermediate clusters

Need to specially check
3 clusters



Graph Connectivity / Biconnectivity

Problem Work (W) Depth (D) Query

C%%?}I;ec(t:itvei? O(min(m +wn, | g 10w 0
Y, \/Em)) (pO Y((U» 08 n)) (w)

Biconnectivity

Our new approach (the implicit decomposition) can reduce
the space utilization (and writes) by a factor of /o

We show a graph decomposition that uses sublinear space
to represent, which can be a useful tool



Sequential upper bounds

M = 0(1)

/O cost Q(n) and Reduction
Problem work W (n) ratio

Comparison sort O(nlogn + wn) O(logn)
Search tree, priority
queue O(logn + w) O(logn)
2D convex hull,
triangulation O(nlogn + wn) O(logn)
BFS, DFS, SCC,
topological sort,
block, bipartiteness, O(m + nw) O(m/n)

floodfill, biconnected
components




Randomized Incremental Algorithms

A random permutation provides each “element” a
unique random priority

Incrementally inserting each element into the current
configuration



Randomized Incremental Algorithms

A random permutation provides each “element” a
unique random priority

Incrementally inserting each element into the current
configuration




Randomized Incremental Algorithms

A random permutation provides each “element” a
unique random priority

Incrementally inserting each element into the current
configuration




Randomized Incremental Algorithms

Unfortunately, good parallel incremental algorithms for
some geometry problems were unknown

We describe a framework that can analyze the
parallelism of many incremental algorithms

Then we design a uniform approach to get the write-
efficient versions of these algorithms

Problem Work
Comparison sort, convex hull,
Delaunay triangulation, k-d tree, O(nlogn + wn)

Interval tree, priority search tree

k-d linear programming,

€
minimum enclosing disk O(n + wn®)




Cache Policy




Cache policy: decide the block to evict
when a cache miss occurs

o Least recent used (LRU) policy is the most
practical implementation

Cache Main Memory
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Cache policy: decide the block to evict
when a cache miss occurs

o Least recent used (LRU) policy is the most
practical implementation

Cache Main Memory




Challenge: LRU does not work well
under the asymmetric setting

Consider the sequence of repeated Instructions:
W(1), W(2), ..., W(k-1), R(k), R(k+1), ..., R(2k+1)

A clever cadMewlecy costgead 2 for this
sequence with cache size k

11234 |5 K-1 |kk2




Cha

llenge: LRU does not work well

under the asymmetric setting

Consider the sequence of repeated Instructions:

W(1
AcC

), W(2), ..., W(k-1), R(k), R(k+1), ..., R(2k+1)
ever cache policy costs k + 2 for this

SeC

uence with cache size k

The LRU policy costs (k — 1) - w + k + 2 with
cache size 2k

2kt 11 214 |5 2k-1 | 2k




Challenge: LRU does not work well
under the asymmetric setting

Consider the sequence of repeated Instructions:
W(1), W(2), ..., W(k-1), R(k), R(k+1), ..., R(2k+1)

A clever cache policy costs k + 2 for this
seguence with cache size k

The LRU policy costs (k — 1) - w + k + 2 with
cache size 2k

Classic LRU policy has an w-time cost
comparing to the clever policy!



Solution: The Asymmetric LRU policy

The cache is separated into two equal-sized pools: a
read pool and a write pool

Asymmetric
Read Pool Slow Memory

Write Pool




Solution: The Asymmetric LRU policy

When reading a location, if the block is:
In the read pool, the read is free
In the write pool, the block will be copied to read pool
In neither, the block is loaded from main memory

The rules for write pool are symmetric, but cost w + 1
since the blocks are all dirty and need to be written back

The new Asymmetric LRU policy is 3-competitive
to the optimal policy



In practice,

The cache does not need to be explicitly
separated into two pools physically

Use the dirty bit to identify and check, and
change the eviction rule accordingly

Read Pool

Write Pool

dirty bit, either O or 1



Summary




Summary

The new emerging memories are upcoming,
which rise the challenge of read/write
asymmetry in algorithm design

New cost models to capture this asymmetry

New upper and lower bounds on a number of
fundamental problems

This area is still new — there are many other
problems worth investigating



Tree contraction

An abstract function that solves many problems in
parallel, with linear work and logarithm depth

Example: expression evaluation
Input: a binary rooted tree
Output: the final answer

The rake operation: @
Remove (evaluate) a child

and its parent @) +)

3)/(2) (V) (x;
2) (@



Tree contraction

An abstract function that solves many problems in
parallel, with linear work and logarithm depth

Example: expression evaluation
Input: a binary rooted tree
Output: the final answer

The rake operation:

Remove (evaluate) a child
and its parent




Tree contraction

An abstract function that solves many problems in
parallel, with linear work and logarithm depth

Example: expression evaluation
Input: a binary rooted tree
Output: the final answer

The rake operation: Q
Remove (evaluate) a child

and its parent e Q 1
2) (2



Tree contraction

An abstract function that solves many problems in
parallel, with linear work and logarithm depth

Example: expression evaluation
Input: a binary rooted tree
Output: the final answer

The rake operation: Q
Remove (evaluate) a child

and its parent e @ 1



Tree contraction

An abstract function that solves many problems in
parallel, with linear work and logarithm depth

Example: expression evaluation
Input: a binary rooted tree
Output: the final answer

The rake operation:

Remove (evaluate) a child
and its parent

Tree nodes decrease by
a constant fraction

O (logn) round to finish, linear work



Challenges of tree contraction

Each rake operation corresponds to a write!

The output of most of the applications (expression
evaluation, subtree size, LCA queries) has sublinear

size
Bottom-up? Top-down?

Partition the tree into sufficiently smaller components,
solve each one sequentially and independently?

How to partition the tree evenly without using writes?
How to solve each subproblem without using writes?



How to partition the tree evenly without
using many writes?

Goal: pick O(s) nodes to partition a tree of size n, each
component with size n/s

Take s random nodes won’t work: each will only
expect to remove a small number of nodes, leaving
the top part with expected size of n — O(slogn)

Partition based on sub—tr 1zes IS also hard since
the sizes cannot be siored



How to partition the tree evenly without
using many writes?

Euler tour of a tree: the Euler circuit to traverse a tree
(similar in a depth-first search)



How to partition the tree evenly without
using many writes?

Euler tour of a tree: the Euler circuit to traverse a tree
(similar in a depth-first search)

Can be finished with constant space

=

/, Q
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Selecting partition nodes

Step 1: each node is marked with probability s/n (yellow)

Step 2: for each yellow node, starting from all out-edges,
traverse until next yellow nodes, and mark every (n/s)-
th node (red)



Selecting partition nodes

Step 1: each node is marked with probability s/n (yellow)
Step 2: marked O(s) red nodes

Step 3: for each marked node, starting from the edge to
its parent, traverse based on the Euler tour until reaching
the next colored node, and mark the highest node on the
path (green)
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Selecting partition nodes

Step 1: each node is marked with probability s/n (yellow)
Step 2: marked O(s) red nodes

Step 3: for each marked node, starting from the edge to
its parent, traverse based on the Euler tour until reaching
the next colored node, and mark the highest node on the
path (green)



Selecting partition nodes

Step 1: each node is marked with probability s/n (yellow)
Step 2: marked O(s) red nodes

Step 3: for each marked node, starting from the edge to
its parent, traverse based on the Euler tour until reaching
the next colored node, and mark the highest node on the
path (green)

In total, we expect to mark no more than 0(s) nodes
(writes), and linear work

What is the depth? (work of step 2)

How good this partition IS?



The gap between two yellow nodes

The probability p that neither of the next k tree nodes
k
are yellow is (1 — 5)

n

When k = Z°8™ 1, — ¢ (high probability bound)

S
For example, when s = n/w, then k = O(w logn)
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The average size of the component
after partitioning

®(n/s) (optimal)

Each component contains at most three segments
between two yellow and red node, each with size < n/s
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The average size of the component
after partitioning

®(n/s) (optimal)

Each component contains at most three segments
between two yellow and red node, each with size < n/s

/‘

/.\o @ - ®
//\\0/0/ o oo e
PG 3N

¢ ®



The tree-partitioning algorithm

Requires linear work, O(nlogn /s) depth, O(s)
writes, and partitions the tree with component
size 0(n/s)

In particular, when s = n/w, the algorithm has
O(wlogn) depth, O(n/w) writes, and
generates components with size 0(w)



Contracting each component

With O0(w) fast-memory, we can sequentially
contract each component with linear work and
depth in term of the component size



Contracting each component

With O0(w) fast-memory, we can sequentially
contract each component with linear work and
depth in term of the component size

The tree will contains O(n/w) nodes



Final contraction

The tree will contains O(n/w) nodes

Use any classic tree-contraction algorithm with
linear work and writes, and logarithm of depth



Write-efficient tree-contraction
algorithm

Given a tree with n nodes, the algorithm requires:
O(n) work and reads
O(n/w) writes
O(w logn) depth

Comparing to the classic tree-contraction algorithm,
the number of writes can be reduced by O0(w)

Tree applications: LCA, subtree size, tree distances, tree isomorphism,
maximal subtree isomorphism, and any associative operation on trees

Graph applications: graph isomorphism, computing the 3-connected
components, and finding an explicit planar embedding

Other applications: expression evaluation, common subexpression
elimination, line breaking, etc.



