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Why trees?

Very important data structure in almost all 

areas in computer science

Maintain ordering on the keys – search tree

 Build index for databases or search engines

 Support ordered sets and maps, priority 

queues, …, useful as a subroutine in many 

algorithms

 Range searching: useful in database systems 

and computational geometry algorithms

 ……



Balance Search Trees (BSTs)

 Many algorithms on trees have cost proportional to tree 

height

 Need balancing schemes to keep tree nearly balanced

 Balancing scheme: a set of invariants on trees

 AVL trees, weight-balanced trees, splay trees, treaps, B trees, 

……

 In this lecture we use balanced binary search trees

 Not limited to any specific balancing schemes. The 

algorithms/bounds hold at least for:

 AVL trees, red-black trees, weight-balance trees and treaps



What we want to do with trees

 Searching

 The first or last entry, the entry of certain rank, …

 Insertion and deletion

Cost is order of the tree height, 𝑂(log 𝑛) for balance trees

 Construction

 Filter, map-reduce, …

 Bulk insertion and deletion

 Merging two trees (or getting the common elements)

Can be highly-parallelized

Goal: work-efficient (optimal) and polylogarithmic depth



In this lecture

 Parallel algorithms on trees

 Applications that can be solved using assorted tree 

structures

 Next: Preliminaries



Preliminaries

 𝑇 = join(𝑇𝐿, 𝑒, 𝑇𝑅): connects two trees 𝑇𝐿 and 𝑇𝑅
with 𝑒, but get the result balanced 

𝑒

𝑇𝐿
𝑇𝑅

𝑇 = in-order(𝑇)=[in-order(𝑇𝐿), 𝑒, in-order(𝑇𝑅)]



Preliminaries

 𝑇 = join(𝑇𝐿, 𝑒, 𝑇𝑅): connects two trees 𝑇𝐿 and 𝑇𝑅
with 𝑒, but get the result balanced 

 𝑇 = join2(𝑇𝐿, 𝑇𝑅): similar as join but without the 
middle entry

 ⟨𝑇𝐿, 𝑏, 𝑇𝑅⟩= split(𝑇, 𝑘)
 𝑇𝐿 contains all keys in 𝑇 smaller than 𝑘

 𝑇𝑅 contains all keys in 𝑇 greater than 𝑘

 A bit 𝑏 indicating whether 𝑘 ∈ 𝑇

 Next: simple parallel algorithms on trees

costs O(log 𝑛), where 𝑛 is the size of 𝑇

Both can finish in O(log 𝑛), where 𝑛 is the larger tree size

(for join a tighter bound is 𝑂( log 𝑇𝐿 − log 𝑇𝑅 ))



Parallel Search trees

 It is very easy to design parallel algorithms on trees 

using divide-and-conquer scheme

 Recursively deal with two subtrees in parallel

 Combine results of recursive calls and the root

 Usually gives polylogarithmic bounds on depth

func(T, …) {

if (T is empty) 

return base_case;

M = do_something(T.root);

in parallel:

L=func(T.left, …);

R=func(T.right, …);

return combine_results(L, R, M, …)

}



Map and reduce

 Maps each entry on the tree to a certain value 
using function map, then reduce all the mapped 

values using reduce (with identity identity). 

 Assume map and reduce both have constant cost. 

map_reduce(Tree T, function map, function reduce, 

value_type identity) {

if (T is empty) return identity;

M=map(t.root);

in parallel:

L=map_reduce(T.left, map, reduce, identity);

R=map_reduce(T.right, map, reduce, identity);

return reduce(reduce(L, M, R));

𝑂(𝑛) work and 𝑂(log 𝑛) depth



Filter

 Select all entries in the tree that satisfy function 𝑓

 Return a tree of all these entries

filter(Tree T, function f) {

if (T is empty) return an empty tree;

in parallel:

L=filter(T.left, f);

R=filter(T.right, f);

if (f(T.root)) return join(L, T.root, R);

else return join2(L, R);

𝑂(𝑛) work and 𝑂(log2 𝑛) depth



Construction

T=build(Array A, int size) {

𝐴′=parallel_sort(A, size);

return build_sorted(𝐴′, 𝑠);
}

T=build_sorted(Arrary A, int start, int end) {

if (start == end) return an empty tree;

if (start == end-1) return singleton(A[start]);

mid = (start+end)/2;

in parallel:

L = build_sorted(A, start, mid);

R = build_sorted(A, mid+1, end);

return join(L, A[mid], R);

𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth, 

bounded by the sorting algorithm

𝑂(𝑛) work and 

𝑂(log 𝑛) depth



Output to array

 Output the entries in a tree 𝑇 to an array in its in-

order

 Assume each tree node stores its subtree size (an 

empty tree has size 0)

to_array(Tree T, array A, int offset) {

if (T is empty) return;

A[offset+T.left.size] = get_entry(T.root);

in parallel:

to_array(T.left, A, offset);

to_array(T.right, A, offset+T.left.size()+1);

𝒆

𝑇. 𝑙𝑒𝑓𝑡 𝑇. 𝑟𝑖𝑔ℎ𝑡

The size of 
the left 
subtree

𝒆

𝑂(𝑛) work and 𝑂(log 𝑛) depth



Brief Summary

 Parallel algorithms on trees

 Polylogarithmic depth

 Takeaway: design parallel divide-and-conquer algorithms 

on trees 

 Next: tree-tree operations: union, intersection, difference

 Combine two indexes in database

 Subroutine in some applications, e.g., the range tree

 ……

In this lecture: lower bound, a divide-and-conquer algorithm, the 

cost analysis



Merging Two Trees of Size n and m 

(n≥m)

 Solution 1: flatten trees into arrays, merge with moving pointers:

 Solution 2: insert the entries in the smaller tree into the larger tree

 What is the minimum cost?
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The Lower Bound of Merging Two 

Ordered Sets

 Choose 𝑛 slots for the elements in the first set 

among all 𝑚 + 𝑛 available slots in the final result.

 Lower bound: 𝐥𝐨𝐠𝟐
𝒎+𝒏
𝒎

= 𝚯 𝒎𝐥𝐨𝐠
𝒏

𝒎
+ 𝟏
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Result:
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𝒎
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𝒏

cases



The Lower Bound of Merging Two 

Ordered Sets

 The lower bound

𝑶 𝒎𝐥𝐨𝐠
𝒏

𝒎
+ 𝟏

 When 𝑚 = 𝑛, it is 𝑂(𝑛)

 When n ≫ 𝑚, it is about 𝑂 𝑚 log 𝑛 (e.g., when 𝑚 =
1, it is 𝑂 log 𝑛 )

 Can we give an algorithm achieving this bound?



The Union Function
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The Union Function
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The Union Function
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The Union Function
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The Union Function
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Similarly we can implement intersection and difference.



The Cost

Theorem 1. For AVL trees, red-black trees, weight-balance 
trees and treaps, the above algorithm of merging two balanced 

BSTs of sizes 𝑚 and 𝑛 (𝑚 ≤ 𝑛) have 𝑂 𝑚 log
𝑛

𝑚
+ 1 work and 

𝑂(log𝑚 log𝑛) depth (in expectation for treaps).



The Cost

Lemma 1. The Join work can be asymptotically bounded by 
its corresponding Split.

Lemma 2. Split a tree 𝑻 of size 𝒏 costs time 𝑶(𝐥𝐨𝐠𝒏).

The depth is 𝑶 𝐥𝐨𝐠𝒎 𝐥𝐨𝐠𝒏

ℎ1 steps to reach the base case, O(ℎ2) cost for each split
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𝑇34
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Lemma 3. In a tree of size 𝑁, there are at most 
𝑁
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nodes in 

level −𝑖. 
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(Details omitted)



Brief Summary

 Takeaways: 

 The lower bound of merging two ordered structures

 A work-optimal and polylog-depth parallel algorithms to 

merge two trees

 A useful trick in analysis: layering bottom-up

 Next: augmentations on trees and range queries



Range query (1D)

 Report all entries in key range [𝑘𝐿, 𝑘𝑅].

 Get a tree of them: 𝑂(log 𝑛) work and depth

 Flatten them in an array: 𝑂(𝑘 + log 𝑛) work, 

𝑂(log 𝑛) depth

𝑘𝐿 𝑘𝑅

𝑂(log 𝑛)
related 
nodes / 
subtrees



Augmentations

 In practice, most problems can be solved with a 

“textbook” data structure with some augmentations

 Augmented trees: in each of the tree node, store 

some additional information about the whole 

subtree rooted at it. 

 The size, sum of values, the maximum value, ……

 Another search tree, a heap, ……

 Efficiently maintain this augmented value in your 

algorithms.



Augmentations for range search

 If we want to fast report the “range sum” of any 

associative operations, augmentations can help

 The sum of all values in a key range, the maximum 

value in the key range, ……

 Augment each tree node with the partial sum in its 

subtree

𝑘𝐿 𝑘𝑅

𝑂(log 𝑛)
related 
nodes / 
subtrees



Applications

 1D stabbing query

 1D stabbing query: Interval tree

 2D range query: range tree

 2D 3-sided query: priority search trees



1D stabbing query 

 Given a set of intervals [𝑙𝑖 , 𝑟𝑖] on the number line, and a 

specific point 𝑝, determine whether 𝑝 is covered by any 

interval

 Is there an interval that satisfies 𝑙𝑖 ≤ 𝑝 ≤ 𝑟𝑖?

 One possible application: for a website, given the login 

interval of all users, query at any given time if anyone is 

online
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1D stabbing query 

 Given a set of intervals [𝑙𝑖 , 𝑟𝑖] on the number line, and a 

specific point 𝑝, determine whether 𝑝 is covered by any 

interval

 Is there an interval that satisfies 𝑙𝑖 ≤ 𝑝 ≤ 𝑟𝑖?

 Possible solution:

 Find all intervals that 𝑙𝑖 ≤ 𝑝

 Return the maximum right endpoint 𝑟𝑚 among them

 If 𝑝 ≤ 𝑟𝑚 then return true, else return false

 If we sort all intervals by their left endpoint, and view “max” 

as an abstract “sum” function, then it just requires to fast 

answer a range sum query



Interval tree

 All intervals in the tree are sorted by the left 

endpoint. Each node is augmented by the 

maximum right endpoint in its subtree
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Interval tree

 Parallel construction: use the divide-and-conquer 

algorithm

 Maintain the augmented values in the join function

 Query: return max_right(T.root, p)>p;

 max_right(node* t, p) {

 if (!t) return −∞;

 if (p<t.left_endpoint) return max_right(t.left_child, p)

 l_max = r.left_child.aug_val;

 r_max = max_right(t.right_child, p);

 return max(l_max, r_max, t.right_endpoint);

 }



2D range query

 Given a set of points on 2D planar, answer some 
information of all points in a query window 𝑥𝐿 , 𝑥𝑅 ×
[𝑦𝐿, 𝑦𝑅]

 Possible solution: find all points in [𝑥𝐿, 𝑥𝑅], find 
those in [𝑦𝐿, 𝑦𝑅]
 If the result points in the first search are sorted by their 

y-coordinate ……

Application: In a database, report all 
people (or the number of people) in 
age range [𝑎1, 𝑎2] and salary range 
[𝑠1, 𝑠2]



2D Range Tree

 2D Range tree: a two-level tree structure

 The augmented value of the each outer tree node is also a 

search tree structure

 Outer level: all points sorted by x-coordinate

 Inner level (in each tree node): all points in its subtree sorted 

by y-coordinate



2D Range Tree
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2D Range Tree

 A range query can be done by two nested range query on 
outer and inner level respectively

 Report all points in the search range 𝑂(log2 𝑛 + 𝑘), 
where 𝑘 is the output size

 Report the count in the search range: 𝑂(log2 𝑛)

𝑥𝐿 𝑥𝑅

𝑦𝐿 𝑦𝑅

𝑦𝐿 𝑦𝑅

𝑦𝐿 𝑦𝑅

𝑦𝐿 𝑦𝑅

𝑦𝐿 𝑦𝑅

𝑦𝐿 𝑦𝑅



2D Range Tree

 If the tree is static (i.e., no insertions or deletions), 

the inner tree can also be maintained by arrays

 Construction: the parallel divide-and-conquer 

algorithm (𝑂(𝑛 log 𝑛) work and polylog depth)

 Maintain the augmented value (the inner tree) in the join 

function

 When the join function is called, the inner trees of the 

two children have already been settled, so in this step 

we only need to merge two ordered structures into one

 The union function we mentioned above, or the array merging 

algorithm (since the two ordered sets are of the same size)



3-sided query

 Given a set of points on 2D planar, report all points 

in query window 𝑥𝐿, 𝑥𝑅 × [𝑦𝐿, +∞)

 Using a range tree, this can be done in time 

𝑂(log2 𝑛 + 𝑘)

 When 𝑘 is small, log2 𝑛 dominates

 Can we do better?

The y coordinate is often 

called the priority of the point.



3-sided query

 Given a set of points on 2D planar, report all points 

in query window 𝑥𝐿, 𝑥𝑅 × [𝑦𝐿, +∞)

 Using a range tree, this can be done in time 

𝑂(log2 𝑛 + 𝑘)

 When 𝑘 is small, log2 𝑛 dominates

 Can we do better?

 When we do the secondary search, if we can first 

access the points with higher priority…

 Instead of a tree, can we use a heap?



Priority search tree

 Heap on y (priority)

 (Almost) search tree on x

 The root is the point with highest priority

 All the other points are evenly split by the median of 

their x-coordinate, forming the left and right 

subtrees respectively

 Recursively build the two subtrees



Priority search tree

 Search 𝑥𝐿, 𝑥𝑅 × [𝑦𝐿, ∞):

 Search [𝑥𝐿, 𝑥𝑅] in the tree, finding at most O(log 𝑛)
related nodes and subtrees - 𝑂(log 𝑛)

 For each node, check if it is in the query range -

𝑂(log 𝑛)

 For each subtree, pop all points with priority higher than 

𝑦𝐿 - 𝑂(𝑘)

In total 𝑂(𝑘 + log𝑛)



Priority search tree

 Construct a priority search tree in parallel:

 Presort all points based on  their x-coordinates. Store 

the sorted list in an array 𝐴

𝑂 𝑛 log 𝑛 work and 𝑂 log 𝑛 depth

 Recursively do the follows:

 In parallel find the point 𝑝 with the highest priority

𝑂(𝑛) work and 𝑂(log𝑛) depth

 Remove 𝑝 from the input, find the median 𝑚 of the rest points

 Copy the left half of the points in 𝐴𝐿 (exclude 𝑝) recursively 

build the left subtree 𝐿

 Copy the right half of the points in 𝐴𝑅 (exclude 𝑝) recursively 

build the right subtree 𝑅

 Store 𝑝 in the root, set its left child to 𝐿, right child to 𝑅, the 

splitter key to 𝑚

𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth



Summary

 Parallel divide-and-conquer algorithms on trees

 Merging two trees in parallel

 Lower bound

 A divide-and-conquer algorithm

 Cost analysis

 Applications:

 1d range query and augmentations

 Solve 1d stabbing query using interval trees

 Solve 2d range query using range trees

 Solve 3-sided query using priority search trees


