PARALLEL SEARCH TREES

Yihan Sun
CMU 15-853

Why trees?

Very important data structure in almost all

areas in computer science

Maintain ordering on the keys — search tree
Build index for databases or search engines

Support ordered sets and maps, priority
queues, ..., useful as a subroutine in many
algorithms

Range searching: useful in database systems
and computational geometry algorithms

Balance Search Trees (BSTs)

Many algorithms on trees have cost proportional to tree
height
Need balancing schemes to keep tree nearly balanced
Balancing scheme: a set of invariants on trees
AVL trees, weight-balanced trees, splay trees, treaps, B trees,

In this lecture we use balanced binary search trees

Not limited to any specific balancing schemes. The
algorithms/bounds hold at least for:

AVL trees, red-black trees, weight-balance trees and treaps

What we want to do with trees

Searching
The first or last entry, the entry of certain rank, ...
Insertion and deletion

Cost is order of the tree height, O(logn) for balance trees

Construction

Filter, map-reduce, ...

Bulk insertion and deletion

Merging two trees (or getting the common elements)
Can be highly-parallelized

Goal: work-efficient (optimal) and polylogarithmic depth

In this lecture

Parallel algorithms on trees

Applications that can be solved using assorted tree
structures

Next: Preliminaries

Preliminaries

o T =join(T}, e, Tg): connects two trees T; and Tg
with e, but get the result balanced

T =

l ---------- ‘

In-order(T)=[in-order(T,), e, in-order(Tg)]

Preliminaries

T = join(T;, e, Tr): connects two trees T; and Ty
with e, but get the result balanced
T = join2(T;, Tg): similar as join but without the
middle entry
Both can finish in O(logn), where n is the larger tree size
(for join a tighter bound is O(|log|T; | — log|Tk|]))
(Ty, b, Tg)=split(T, k)
T, contains all keys in T smaller than k
Ty contains all keys in T greater than k
A bit b indicating whether k € T
costs O(logn), where n is the size of T

Next: simple parallel algorithms on trees

Parallel Search trees

It is very easy to design parallel algorithms on trees
using divide-and-conguer scheme

Recursively deal with two subtrees in parallel
Combine results of recursive calls and the root
Usually gives polylogarithmic bounds on depth

func(T, ...){
If (T is empty)
return base_case;
M = do_something(T.root);
in parallel:
L=func(T.left, ...);
R=func(T.right, ...);
return combine_results(L, R, M, ...)

}

Map and reduce

Maps each entry on the tree to a certain value
using function map, then reduce all the mapped

values using reduce (with identity identity).
Assume map and reduce both have constant cost.

map_reduce(Tree T, function map, function reduce,
value_type identity) {
If (T Is empty) return identity;
M=map(t.root);
in parallel:
L=map_reduce(T.left, map, reduce, identity);

R=map_reduce(T.right, map, reduce, identity);
return reduce(reduce(L, M, R));

0(n) work and O(logn) depth

Filter

Select all entries in the tree that satisfy function f
Return a tree of all these entries

filter(Tree T, function f) {
if (T is empty) return an empty tree;
in parallel:
L=filter(T.left, f);
R=filter(T.right, f);
iIf (f(T.root)) return join(L, T.root, R);
else return join2(L, R);

0(n) work and 0(log? n) depth

Construction

T=build(Array A, int size) {
A'=parallel_sort(A, size):
return build_sorted(4’, s);

}

T=Dbuild_sorted(Arrary A, int start, int end) {

If (start == end) return an empty tree;

If (start == end-1) return singleton(A[start]);

mid = (start+end)/2;

in parallel: 0 (n) work and
L = build_sorted(A, start, mid); O(logn) depth
R = build_sorted(A, mid+1, end);

return join(L, A[mid], R);

O(nlogn) work and 0(logn) depth,
bounded by the sorting algorithm

Output to array

Output the entries in a tree T to an array in its in-
order

Assume each tree node stores its subtree size (an
empty tree has size 0)

to_array(Tree T, array A, int offset) {
if (T is empty) return;

. T.l T.right
Aloffset+T.left.size] = get_entry(T.root); et _
in parallel:

to_array(T.left, A, offset); e
to_array(T.right, A, offset+T.left.size()+1);

The size of

the left

subtree

O(n) work and O(logn) depth

Brief Summary

Parallel algorithms on trees

Polylogarithmic depth
Takeaway: design parallel divide-and-conquer algorithms
on trees

Next: tree-tree operations: union, intersection, difference
Combine two indexes in database
Subroutine in some applications, e.g., the range tree

In this lecture: lower bound, a divide-and-conguer algorithm, the
cost analysis

Merging Two Trees of Size n and m
(n=m)

o Solution 1: flatten trees into arrays, merge with moving pointers:

0 4 7 8
B Cost: O(m+n)
W What if n >> m?
t 0(n)?

01 2 3 45 6 7 8 9

o Solution 2: insert the entries in the smaller tree into the larger tree

Cost: O(mlogn)
What if n = m?

O(nlogn)?

o What is the minimum cost?

The Lower Bound of Merging Two
Ordered Sets

o Choose n slots for the elements in the first set

among all m + n available slots in the final result.
Set 1 (size m): Set 2 (size n = m):

(m+n)_(m+n)
R 0 1 2 3 4 5 6 7 8 9 m /) \ n
cases

o Lower bound: log,(™'™) = © (mlog (% + 1))

The Lower Bound of Merging Two
Ordered Sets

The lower bound

o (m log (% + 1))
Whenm =n, itis O(n)

When n > m, itis about O(mlogn) (e.g., when m =
1, itis O(logn))

Can we give an algorithm achieving this bound?

The Union Function

union(71,71h) =

if 7Y = Leaf then Th
else if 7 = Leaf then T4
else | (Lo, ko, Ry) = expose(Ty);
Ll,b,Rl) — Split(Tl,kQ);
Tr, = union(l1,L9) || TR = union(Ri, R2);

Base case

The Union Function

union(71,71h) =
if 7Y = Leaf then Th
else if 7h = Leaf then T}
else (Lo, ko, Ry) = expose(Th);
Ll,b,Rl) — Spllt(Tl,kg)_EI
Tr, = union(l1,L9) || TR = union(Ri, R2);
jOiI‘l(TL,kQ,TR)

P % ofo o

The Union Function

union(71,71h) =

if 7Y = Leaf then Th

else if 7h = Leaf then T}

else (Lo, ko, Ro) = expose(Ty);
(L1,b, R1) = split(Ty,ko);
Ty, = union(Li,L2) || Tr = union(R1, Ra);
jOiI‘l(TL,kQ,TR)

(5

¢® % | | o°

Union Union

The Union Function

union(71,71h) =
if 7Y = Leaf then Th
else if 7h = Leaf then T}
else (Lo, ko, Ro) = expose(Ty);
(L1,b, R1) = split(Ty,ko);

Ty, = union(Li,L2) || Tr = union(R1, Ra);

jOiI‘l(TL , ko, TR)

The Union Function

union(71,71h) =
if 7Y = Leaf then Th
else if 7h = Leaf then T}
else (Lo, ko, Ro) = expose(Ty);
(Ll,b,Rl) — Split(Tl,kQ);
Tr = union(ly,L9) || TR = union(Ri, R2);

join(Ty,, ko, Tr)
© © O 0O
0 O O

Similarly we can implement intersection and difference.

The Cost

union(7T1,Th) =
if 7Y = Leaf then 75
else if 79 = Leaf then T}
else (Lo, ko, Ro) = expose(Ty);
(Ll,b,Rl) — Split(Tl,kg);
Ty, = union(ly,L2) || Tr = union(R1, Ra);
jOiI‘l(TL,kQ,TR)

Theorem 1. For AVL trees, red-black trees, weight-balance
trees and treaps, the above algorithm of merging two balanced

BSTs of sizes m and n (m < n) have 0 (m log (% + 1)) work and
O(logmlogn) depth (in expectation for treaps).

The Cost

union(7T1,Th) =
if 7Y = Leaf then 75
else if 79 = Leaf then T}
else (Lo, ko, Ro) = expose(Ty);
(L1,b, R) = split(Ti,ko);
v/ 17 = union(l1, L2) || TR = union(Ri, R2);
join(1r, ko, Tr)

The work can be asymptotically bounded by
its corresponding

a tree T of size n costs time O(logn).

The depth is O(logmlogn)

h, steps to reach the base case, O(h;) cost for each split

The Split Work union(Ti, Ty) —

I UNION else if 79 = Leaf then T}
else (La, ko, Ro) = expose(Th);

Li,b, By) = solit(Ty,ks);
T = union(lq, Lo Tr = union(Ry, R2);

: UNION |

[
split .. ol
I .

Concavity:
The Split Work

"'..’Q\Qlog T4 + 107% |T22|
< 2log—
< 2log-

log [T31| + log |T3,|

19g 1951 s+ -+ J0Rdd 7|

T3, © T32 4] T35 @ T, S %Aqgg_
h
l\ogn + 2 log > + 410g4 .+ 2 log 2" clog —+ 1)) T?le_hglght of T,
Y = O(logm)

c log, m terms (If T, is perfectly balanced)

N
Lemma 3. Ina tree of size N, there are at most Ti/7] nhodes in

level —i.

(Details omitted)

logn + 2 log + 4log + 2R log mlog (— + 1 The height of T,
\—2Y4—;2h (()) h = 0(logm)
c log, m terms (If T, is perfectly balanced)

Brief Summary

Takeaways:
The lower bound of merging two ordered structures

A work-optimal and polylog-depth parallel algorithms to
merge two trees

A useful trick in analysis: layering bottom-up

Next: augmentations on trees and range gueries

Range query (1D)

Report all entries in key range [k;, kg].
Get a tree of them: O(logn) work and depth

Flatten them in an array: O (k + logn) work,
O (logn) depth

A ™~
: O(logn)
_esplit related
ARV AN “nodes /
/A G T S NN subtrees
2 MY, 4 ,

Augmentations

In practice, most problems can be solved with a
“textbook™ data structure with some augmentations

Augmented trees: in each of the tree node, store
some additional information about the whole
subtree rooted at it.
The size, sum of values, the maximum value,
Another search tree, a heap,

Efficiently maintain this augmented value in your
algorithms.

Augmentations for range search

If we want to fast report the “range sum” of any
associative operations, augmentations can help

The sum of all values in a key range, the maximum
value in the key range,

Augment each tree node with the partial sum in its
Subtree

A ™~
: O(logn)
_esplit N related
/N NN “nodes /
SOA R kRN subtrees
d '_‘ f I'.I I,-'II h ! '._U ",
& \ i B Y —

Applications

1D stabbing query

1D stabbing query: Interval tree

2D range query: range tree

2D 3-sided query: priority search trees

1D stabbing query

Given a set of intervals [[;, ;] on the number line, and a
specific point p, determine whether p is covered by any

interval Stabbing query atp =5
1 2 3 4 6 7 8 9

(3,5) (number line)

(1,7)
@5 &

6.7 (7,9)

Is there an interval that satisfies [; < p < r;?

One possible application: for a website, given the login
interval of all users, query at any given time if anyone is
online

1D stabbing query

Given a set of intervals [[;, ;] on the number line, and a
specific point p, determine whether p is covered by any
interval

Is there an interval that satisfies [; < p < r;?

Possible solution:
Find all intervals that [; < p
Return the maximum right endpoint r,,, among them
If p < r,,, then return true, else return false

If we sort all intervals by their left endpoint, and view “max’

as an abstract “sum” function, then it just requires to fast
answer a range sum query

)

Interval tree

All intervals in the tree are sorted by the left
endpoint. Each node is augmented by the
maximum right endpoint in its subtree

1 2 3 4 5 6 7 8 9
(3,5) - (numl:er line)
* 1,7 .
@5 (5o :
(6,7) (7.9
(4,5) 9
(2,6) 7 (6,7) 9

(left,right) Max right
(1,7) 7 (3,5) 5 (5,6) 6 (7,9) 9

Interval tree

Parallel construction: use the divide-and-conquer
algorithm

Maintain the augmented values in the join function
Query: return max_right(T.root, p)>p;

max_right(node* t, p) {
If (It) return —oo;
If (p<t.left_endpoint) return max_right(t.left_child, p)
|_max =r.left_child.aug_val,
r_max = max_right(t.right_child, p);
return max(l_max, r_max, t.right_endpoint);

2D range query

Given a set of points on 2D planar, answer some
information of all points in a query window [x;, xz] X
Ve, Vr]

PY [® Application: In a database, report all
Py people (or the number of people) in
® ° age range [a4, a,| and salary range
® ® [51, 52]
® o

Possible solution: find all points in [x;, xg], find
those in [y, yg]

If the result points in the first search are sorted by their
y-coordinate

2D Range Tree

2D Range tree: a two-level tree structure

The augmented value of the each outer tree node is also a
search tree structure

Outer level: all points sorted by x-coordinate

Inner level (in each tree node): all points in its subtree sorted
by y-coordinate

2D Range Tree
Y
7 o
clan 45) o)
3 o
2 (511) o
3,3
' 2.3) (7.2)
key aug_val 45 —
(x,y) (inner tree)
/
2,6
_\)
A -

1,7 3,3

yL yR : .

A range query can be done by two nested range query on
outer and inner level respectively

Report all points in the search range 0(log? n + k),
where k is the output size

Report the count in the search range: 0(log? n)

2D Range Tree

If the tree is static (i.e., no insertions or deletions),
the inner tree can also be maintained by arrays

Construction: the parallel divide-and-conquer
algorithm (O (nlogn) work and polylog depth)
Maintain the augmented value (the inner tree) in the join
function
When the join function is called, the inner trees of the

two children have already been settled, so in this step
we only need to merge two ordered structures into one

The union function we mentioned above, or the array merging
algorithm (since the two ordered sets are of the same size)

3-sided query

Given a set of points on 2D planar, report all points

In query window [x;, xp] X

:yL' -|—OO)

The y coordinate is often
called the priority of the point.

Using a range tree, this can be done in time

O(log®n + k)

When k is small, log? n dominates
Can we do better?

3-sided query

Given a set of points on 2D planar, report all points
In query window [x;, xp] X [y, +0)
Using a range tree, this can be done in time
O(log®n + k)

When k is small, log? n dominates

Can we do better?
When we do the secondary search, if we can first
access the points with higher priority...

Instead of a tree, can we use a heap?

Priority search tree

Heap on y (priority)

(Almost) search tree on X
o

The root is the point with highest priority

All the other points are evenly split by the median of
their x-coordinate, forming the left and right
subtrees respectively

Recursively build the two subtrees

Priority search tree

I\

Search [x;, xg] X [y,):

Search [x;, xp] in the tree, finding at most O(logn)
related nodes and subtrees - O(logn)

For each node, check if it is in the query range -
O (logn)

For each subtree, pop all points with priority higher than
v - 0(k)
In total O(k + logn)

Priority search tree

Construct a priority search tree in parallel:

Presort all points based on their x-coordinates. Store
the sorted list in an array A

O(nlogn) work and O(logn) depth
Recursively do the follows:
In parallel find the point p with the highest priority
0(n) work and O(logn) depth
Remove p from the input, find the median m of the rest points

Copy the left half of the points in A; (exclude p) recursively
build the left subtree L

Copy the right half of the points in Az (exclude p) recursively
build the right subtree R

Store p in the root, set its left child to L, right child to R, the
splitter key to m

0(nlogn) work and 0(log? n) depth

Summary

Parallel divide-and-conquer algorithms on trees

Merging two trees in parallel
Lower bound
A divide-and-conguer algorithm
Cost analysis

Applications:
1d range query and augmentations
Solve 1d stabbing query using interval trees
Solve 2d range query using range trees
Solve 3-sided query using priority search trees

