Parallel Graph Connectivity

Parallel algorithms: lecture 3

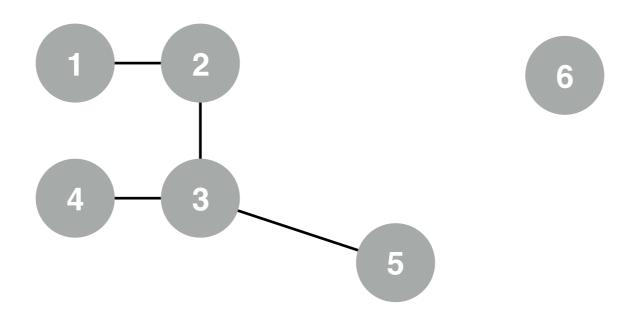
Outline

- Connectivity
- Parallel BFS
- Random-mate connectivity
- Low-diameter decomposition
- Work-efficient connectivity
- Are parallel graph algorithms practical?

Graph Connectivity

- G(V, E), n = #vertices, m = #edges
- Given an undirected graph G(V, E):

are $s, t \in V$ connected?



- Sequential algorithm: run BFS or DFS. O(n+m) time
- Nearly linear-work with union-find

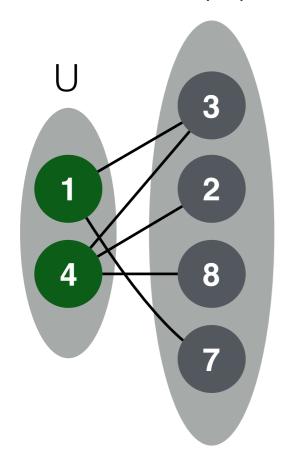
Parallel BFS

- BFS(G(V, E), v):
 - Compute a BFS tree rooted at v
 - I.e. compute a parent for all vertices reachable from v
- Idea: emulate sequential BFS. Run each step in parallel

- How do we compute the next frontier from current frontier?
- edge_map: primitive for traversal

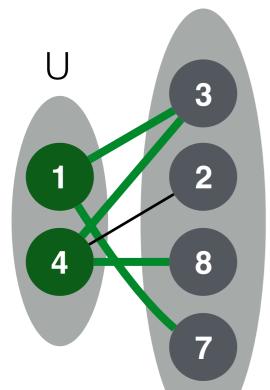
edge_map

- Input:
 - G(V, E)
 - U (subset of vertices)
 - update: vtx x vtx -> bool
- Output: $[v|(u,v) \in E, u \in U, \mathtt{update}(u,v) = \mathtt{true}]$ N(U)



edge_map

- Input:
 - G(V, E)
 - U (subset of vertices)
 - update: vtx x vtx -> bool
- Output: $[v|(u,v)\in E, u\in U, \mathtt{update}(u,v)=\mathtt{true}]$ N(U)



Output: [3, 7, 3, 8]

Usually implement update s.t. output is a set

edge_map

```
edge_map(G, U, update) =
  nghs = array(|U|, <>);
  parfor i in [0, |U|]
    v = U[i];
    out_nghs = G[v].out_nghs;
    update_vtx = lambda x.update(v, x);
    nghs[i] = filter(out_nghs, update_vtx);
  return flatten(nghs);
```

N(U)

Runs in

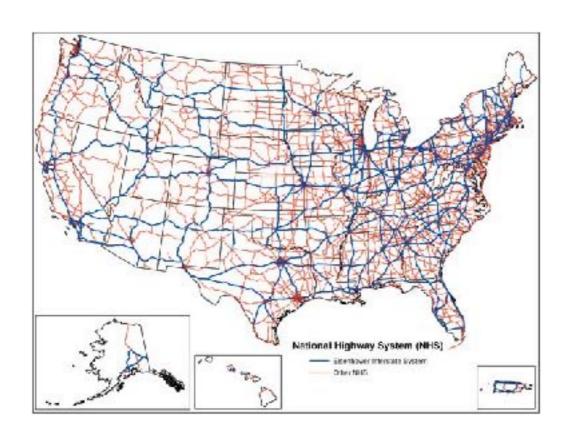
$$O(|U| + \sum_{u \in U} deg_{+}(u))$$
 work $O(\log n)$ depth

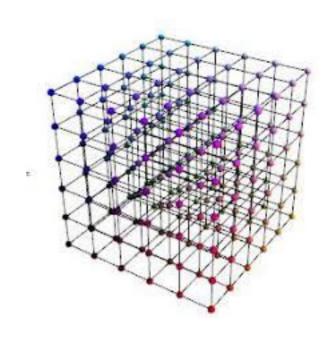
Parallel BFS

```
BFS(G(V, E), v) =
  n = |V|;
  frontier = array(v);
  visited = array(n, 0); visited[v] = 1;
  parents = array(n, -1);
  update = lambda (u, v).
    if (!visited[v] && test_and_set(&visited[v]))
      parents[v] = u;
      return true;
    return false;
  while (|frontier| > 0): run at most diam(G) times
    frontier = edge_map(G, frontier, update);
  return parents;
         O(m) work O(\operatorname{\mathsf{diam}}(G)\log n) depth
```

Parallel BFS for connectivity

- Real world graphs can have high diameter
 - e.g. road networks and meshes



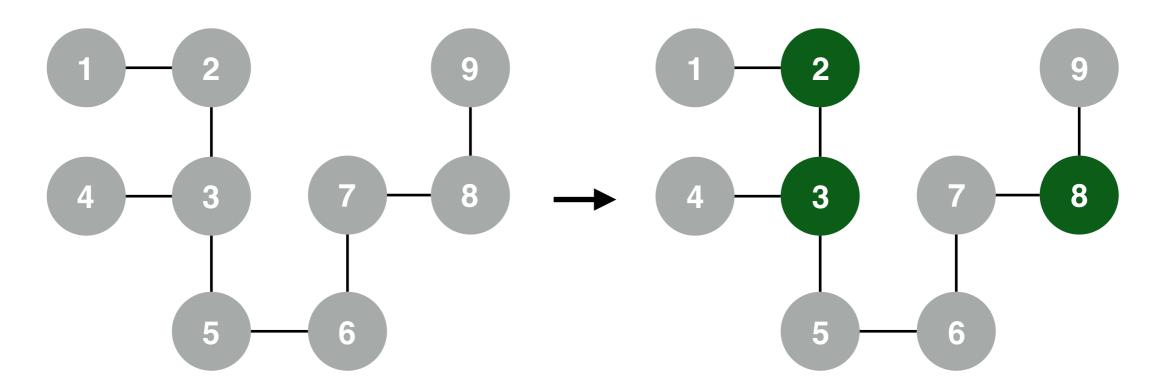


- Sequential dependencies between components
- BFS-based approach can be very fast on social/web graphs*
 - Process the massive component using BFS
 - Process remaining (small) components using LP

^{*} Multistep connectivity, Slota et al. (2014)

Random Mate

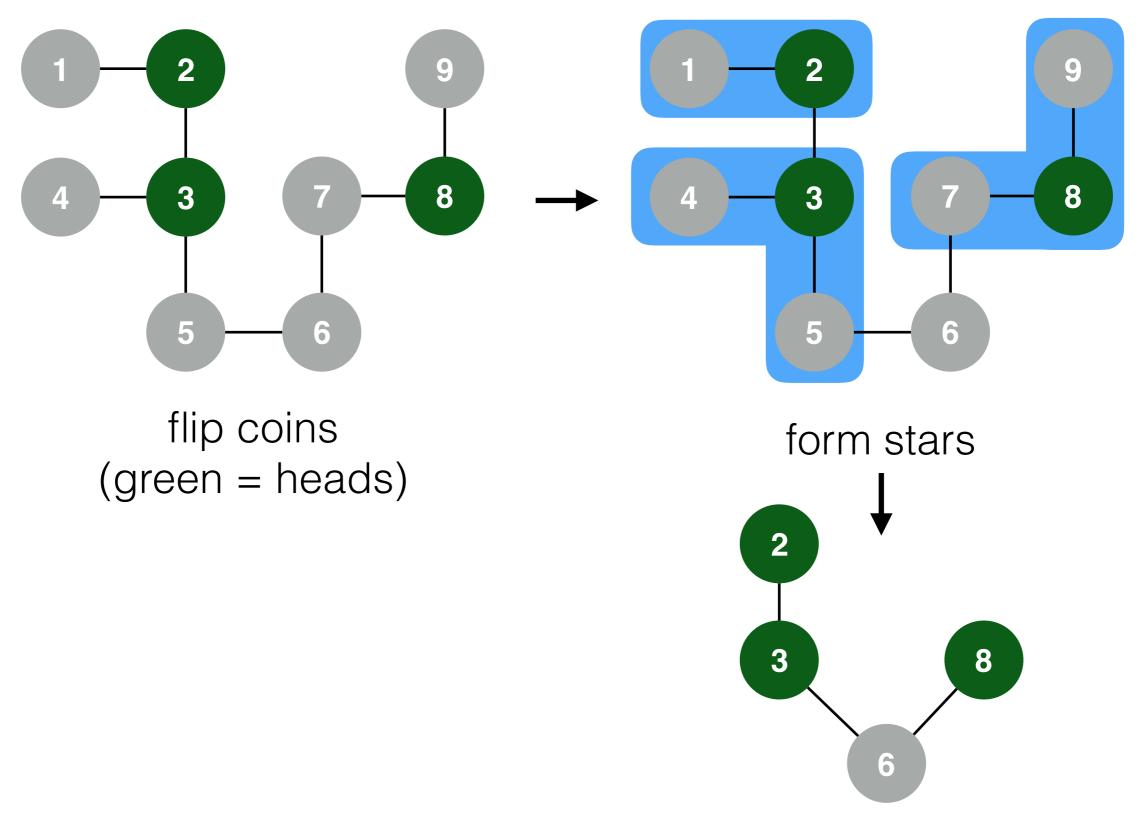
- Idea: form a set of disjoint stars and contract
- #vertices decrease by a constant fraction each round
 - Can show this implies O(log n) rounds w.h.p.



flip coins (green = heads)

Source: Blelloch and Maggs, 6886-s18, lecture 5.2

Random Mate



contract

Source: Blelloch and Maggs, 6886-s18, lecture 5.2

Random Mate Implementation

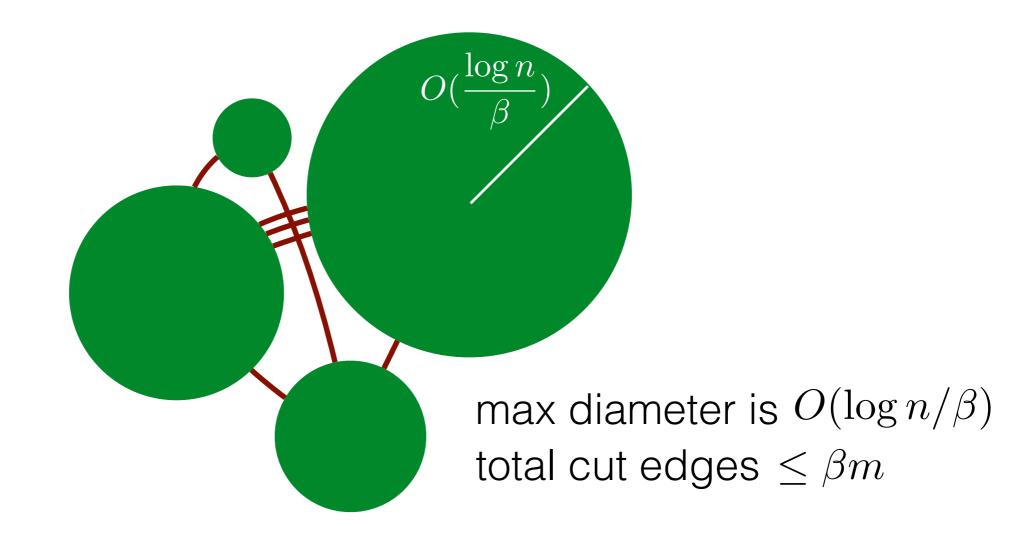
• Use edgelist format E = [(1, 3), (1, 4), (3, 1), (4, 1), ...] $CC_Random_Mate(L, E) =$ 2m edges if (|E| = 0) return L; 1. flip coins for all n vertices 2. For v where flip(v)=tails, hook to an arbitrary heads ngh w, set L(v) = w3. E' = filter(E, lambda (u,v). return L(u) != L(v);; // remove self edges 4. L' = $CC_Random_Mate(L, E')$; 5. For v where flip(v)=tails, set L'(v)=L'(w)(v hooked to w in step 2) return L';

- Each iteration: O(m) work and O(log n) depth
- Each iteration reduces #active vertices by 1/4 in expectation
 - O(log n) rounds w.h.p.
 - O(m log n) work, O(log^2 n) depth in total (both w.h.p.)

Source: Blelloch and Maggs, 6886-s18, lecture 5.2

Low-diameter decomposition

- Goal: decompose V into a set of clusters s.t.
 - the number of inter-cluster edges is "small"
 - diameter of each cluster is "small" (~log(n))
- More formally, given a parameter β , $0 < \beta < 1$



Low-diameter decomposition

- Even more formally, a (β, d) -decomposition, $0 < \beta < 1$ is a partition of V into V_1, \ldots, V_k s.t.
 - The shortest path between $u, v \in V_i$ using only vertices in V_i is at most d (strong diameter)
 - The number of edges $(u,v) \in E, u \in V_i, v \in V_j, i \neq j$ is at most βm (few inter-component edges)

Sequential low-diameter decomposition

An interesting sequential algorithm:*

- Pick an arbitrary vertex
- Grow a ball around it using BFS. Stop at the first radius r
 s.t. the #boundary edges is < than beta * #internal edges
- Can show that the radius is at most $O(\log n/\beta)$
- LDD = run substep until all vertices are covered

Can you prove this gives a $(\beta, O(\log n/\beta))$ -decomposition?

Finding each ball is parallelizable, but there are sequential dependencies between different balls...

*see: 15-745 Lecture 12 Notes for details

- Miller, Peng and Xu give an algorithm that computes an $(\beta, O(\log n/\beta))$ -decomposition in
 - O(m+n) expected work
 - $O(\log^2 n)$ depth w.h.p.

Idea: grow balls in parallel from different vertices

Mimic sequential ball-growing process to ensure strong diameter.

Challenge: how to guarantee that not too many edges are cut and that the maximum radius is O(log n / beta)?

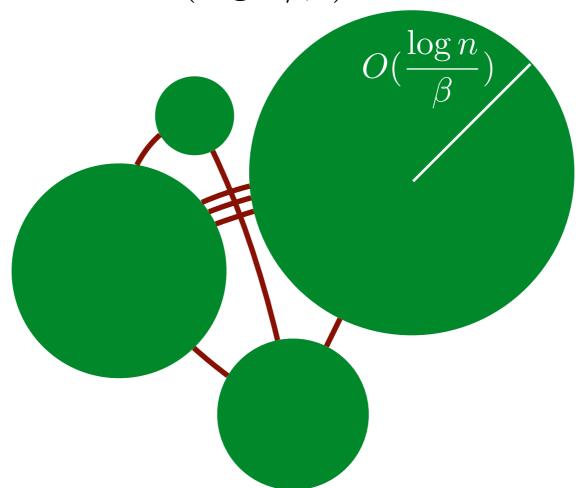
Use properties of the exponential distribution to ensure bounds on #cut edges and radius.

Miller, Peng, Xu (2013): https://arxiv.org/abs/1307.3692

Equivalently: compute start times based on E, run multi-BFS

```
LDD(G(V, E), beta) =
  n = |V|; num_finished = 0;
  E = array(n, lambda i.Exp(beta));
                                          1. Compute start times
  S = array(n, lambda i.max(E) - E[i]);
  C = array(n, (infty, infty));
  num_processed = 0; round = 1;
  while (num_processed < n)</pre>
    F = F \cup \{v \text{ in } V \mid S[v] < round, C[v] == infty\}; L1: Add ready centers
    num_processed += |F|;
    update = lambda (u,v).
      if (C[v].snd == infty)
        writeMin(&C[v].fst, S[u]);
      return false:
    edge_map(G, F, update);
L2: Acquire unvisited nghs
    check = lambda (u,v).
      if (C[v].fst == S[u])
        C[v].snd = u;
        return true;
      return false;
                                 L3: Set ngh's cluster id if we won
    F = edge_map(G, F, check);
    round++:
  return C;
```

• Strong diameter is $O(\log n/\beta)$



Note: all vertices will start after max[E] rounds

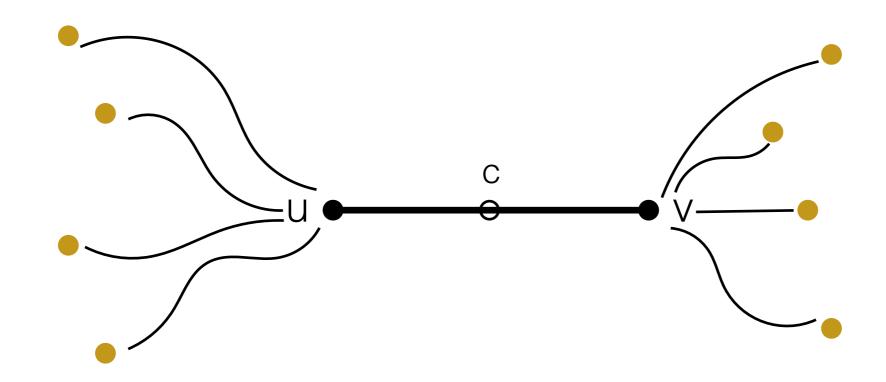
• What is the maximum of n R.V.'s independently drawn from $Exp(\beta)$?

- What is the maximum of n R.V.'s independently drawn from $Exp(\beta)$?
- Let $\delta_v \sim Exp(\beta)$

$$\Pr\left[\delta_{\max} > \frac{k \log n}{\beta}\right] \leq \sum_{v \in V} \Pr\left[\delta_v > \frac{k \log n}{\beta}\right]$$
 (union bound)
$$= n \cdot \exp\left(-\beta \cdot \frac{k \log n}{\beta}\right)$$
 (cdf of $Exp(\beta)$)
$$= \frac{1}{n^{k-1}}$$

• Maximum diameter is $O(\log n/\beta)$ w.h.p.

• Claim: each edge is cut (intercluster) with probability $<\beta$



Arrival times are random variables:

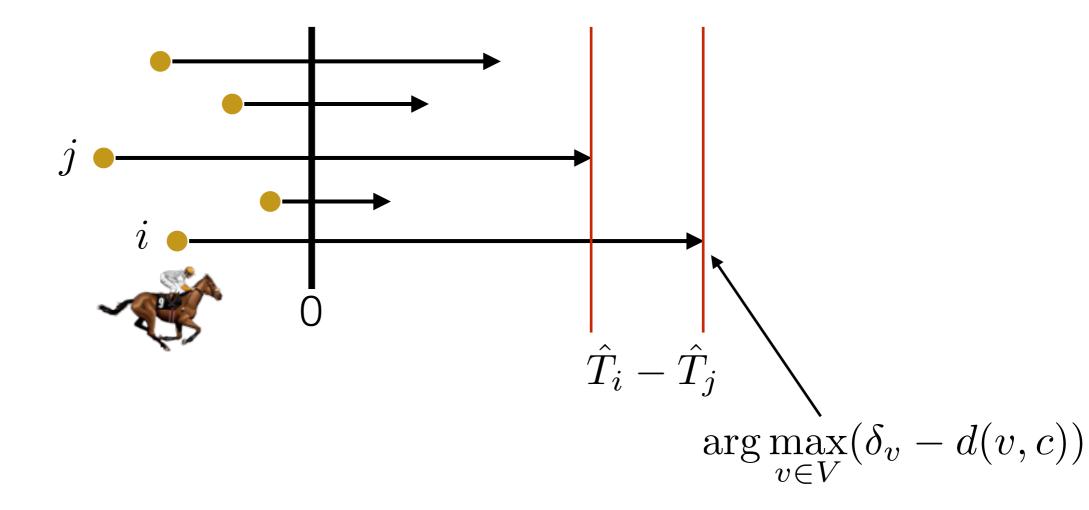
$$T_i = \delta_{\max} - \delta_i + d(i,c)$$
 define $\hat{T}_i = \delta_{\max} - T_i = \delta_i - d(i,c)$

Source: <u>15-750 Spring 2017 notes</u>

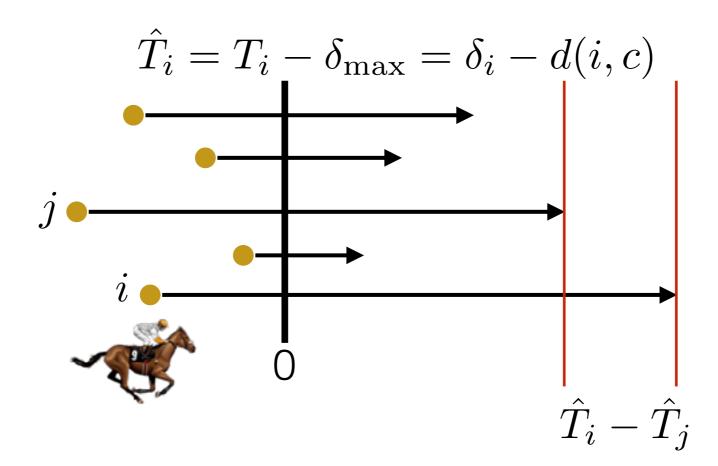
$$T_i = \delta_{\max} - \delta_i + d(i, c) \qquad \hat{T}_i = \delta_{\max} - T_i = \delta_i - d(i, c)$$

$$\arg\min_{v \in V} (\delta_{\max} - \delta_v + d(v, c)) = \arg\max_{v \in V} (\delta_v - d(v, c))$$

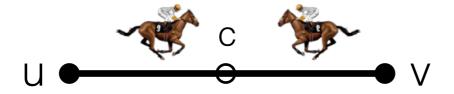
Note: Both expressions give the center that captures c



Source: <u>15-750 Spring 2017 notes</u>



• $\hat{T}_i - \hat{T}_j < 1$ is exactly the event that (u,v) is cut!



Note: $\hat{T}_i - \hat{T}_j \sim Exp(\beta)$ (memoryless property)

$$\mathbf{Pr}[\hat{T}_i - \hat{T}_j < 1] = 1 - e^{-\beta} < \beta$$

Source: <u>15-750 Spring 2017 notes</u>

Back to the algorithm:

return C;

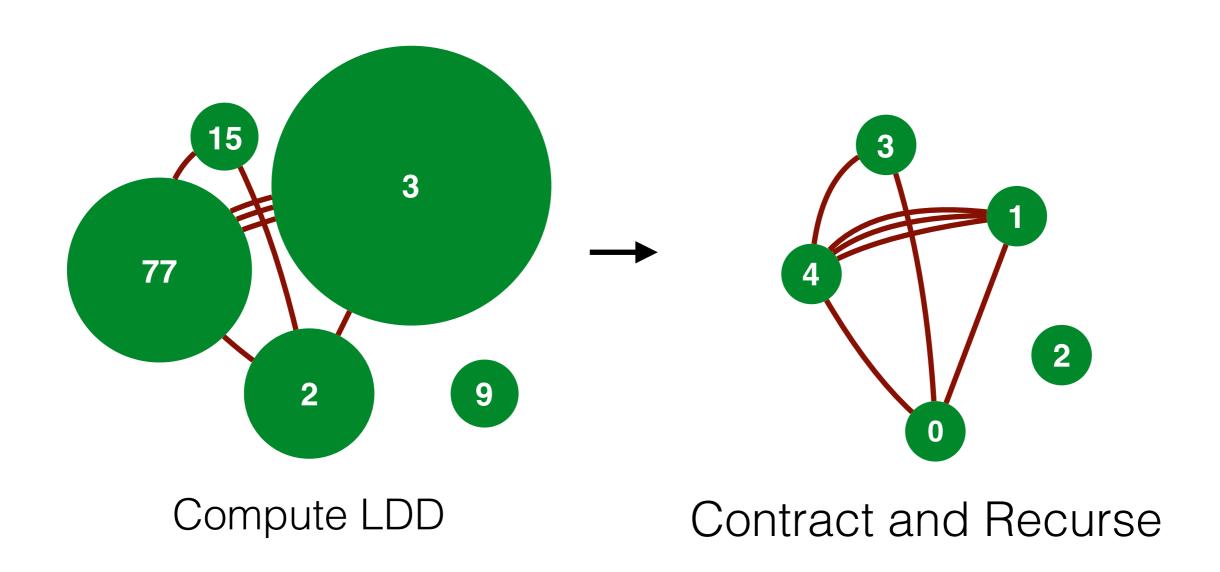
```
LDD(G(V, E), beta) =
  n = |V|; num_finished = 0;
  E = array(n, lambda i.Exp(beta));
                                           O(n) work, O(\log n) depth
  S = array(n, lambda i.max(E) - E[i]);
  C = array(n, (infty, infty));
  num_processed = 0; round = 1;
  while (num_processed < n)
    F = F \cup \{v \text{ in } V \mid S[v] < \text{round, } C[v] = O(\log n/\beta) \text{ rounds w.h.p.}
    num_processed += |F|;
    update = lambda (u,v).
      if (C[v].snd == infty)
        writeMin(&C[v].fst, S[u]);
                                          Each round: O(\log n) depth
      return false:
    edge_map(G, F, update); L2: Acquire
    check = lambda (u,v).
      if (C[v].fst == S[u])
        C[v].snd = u;
                                         edge_map: O(m) work in total
        return true;
      return false;
                                 L3: Set ngh's cluster id if we won
    F = edge_map(G, F, check);
    round++:
```

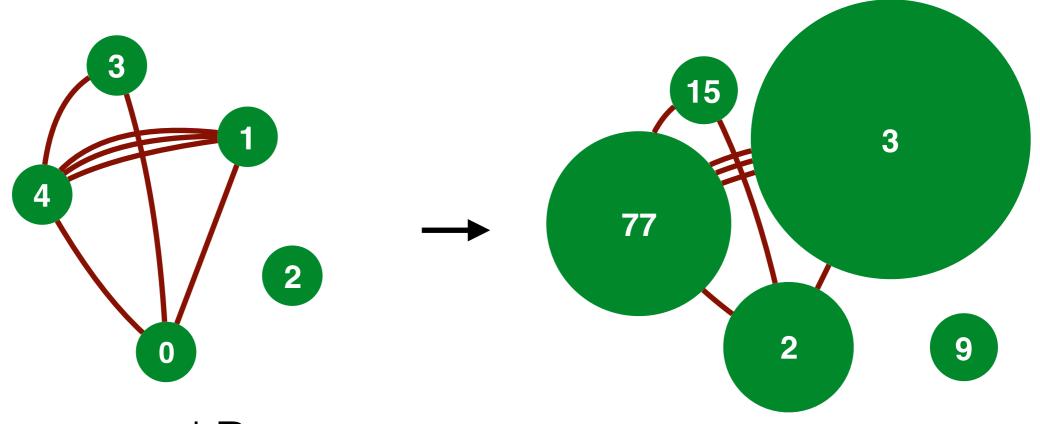
- MPX algorithm computes an $(\beta, O(\log n/\beta))$ -decomp in
 - O(m+n) expected work
 - $O(\log^2 n)$ depth w.h.p. (can be made $O(\log n \log^* n)$)

See for more details:

Parallel Graph Decompositions Using Random Shifts Miller, Peng, Xu (SPAA 2013)

Improved Parallel Algorithms for Spanners and Hopsets Miller, Peng, Vladu and Xu (SPAA 2015)





Contract and Recurse L' = [0, 0, 1, 0, 0]

Update labeling based on L' L[i] = L'[cluster[i]]Return L

```
Connectivity(G(V, E), beta) =
  L = LDD(G, beta);
  G'(V',E') = Contract(G, L);
  if (|E'| == 0)
    return L
  L' = Connectivity(G', beta)
  L'' = array(n, lambda v.return L'[L[v]];);
  return L'';
```

- Assume contraction in O(m + n) work and O(log n) depth
- $\beta \cdot m$ edges after each round (expected)
 - $m + \beta \cdot m + \beta^2 \cdot m \dots = O(m)$ work in expectation
- $O(\log n)$ levels w.h.p. => $O(\log^3 n)$ depth w.h.p.

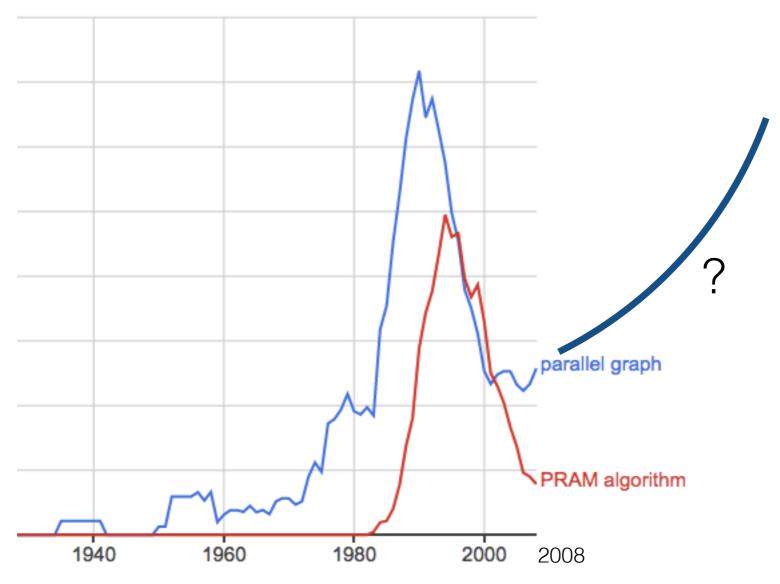
- Connectivity can be solved in parallel in
 - O(m+n) expected work
 - $O(\log^3 n)$ depth
- Depth can be improved to $O(\log n \log \log n \log^* n)$
- (Currently) only theoretically efficient connectivity algorithm that is also practical!

See for more details/experiments:

A Simple and Practical Linear-Work Parallel Algorithm for Connectivity Shun, Dhulipala and Blelloch (SPAA 2014)

Are parallel graph algorithms practical?

- Huge amount of interest in 80s and 90s
- PRAM algorithms: lots of nice work, but hardware wasn't ready: never saw the gains promised by theory



Google n-gram viewer

Are parallel graph algorithms practical?

Implement in cilk. Run on shared memory multicores, e.g.

Dell PowerEdge R930

- 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
- 1TB of main memory
- Costs less than a mid-range BMW

Example: k-core

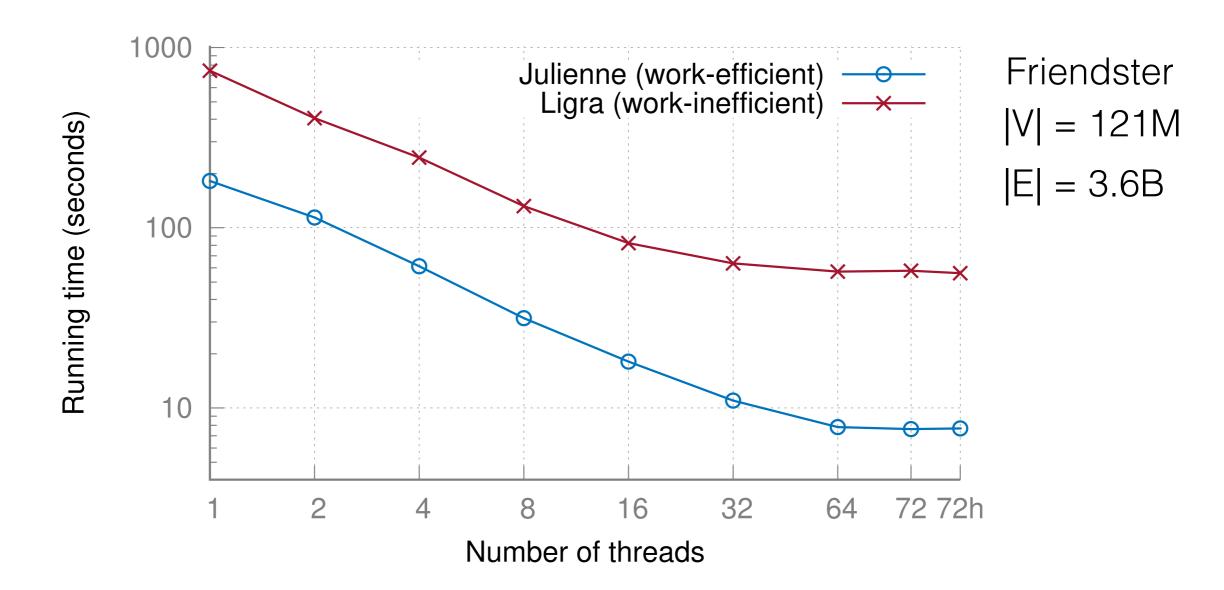
- Ideas like work-efficiency matter!
- E.g. work-efficient vs work-inefficient k-core algorithms
- Run on the two largest publicly available graphs:

Graph	[V]	E (symmetrized)		
Hyperlink2014	1.7B	124B		
Hyperlink2012	3.5B	225B		

 $\rho =$ number of peeling steps done by the parallel algorithm

$$W = O(|E| + \rho |V|)$$
 $O(|E| + |V|)$ expected work $D = O(\rho \log |V|)$ $O(\rho \log |V|)$ depth w.h.p. Work-inefficient

Example: k-core



Across all inputs:

- Between 4-41x speedup over sequential peeling
- Speedups are smaller on small graphs with large ρ
- 2-9x faster than work-inefficient implementation

Example: k-core

Run on the two largest publicly available graphs:

Graph	[V]	E (symmetrized)		
Hyperlink2014	1.7B	124B		
Hyperlink2012	3.5B	225B		

- On Hyperlink2012 graph our code takes 193s on 72h cores
- 8515s serially => 44x speedup
- Previous best time: 256-node cluster, each with 32 cores
 - 6 minutes to compute approximate k-cores
- We compute exact k-cores
 - 1.8x faster
 - using 113x fewer cores

Example: connectivity

Graph	[V]	[E]
Hyperlink2012	3.5B	225B

- Run connectivity on Hyperlink2012 graph
- 38.3s on 72h cores
- 2080s serially => 54x speedup
- Very recently, folks from Yahoo (Oath research) presented a new connectivity algorithm that runs in O(log n) rounds on BSP model
- Their algorithm runs in 341s using:
 - 1000 nodes, 24000 cores and 128Tb of memory

Our algorithm is 8x faster using 128x less memory and 333x fewer cores

 To be fair, their code runs on a graph with 272B vertices and 5.9T edges; out of reach of shared-memory for now...

Theoretically efficient parallel algorithms

Problem	Model	Work	Depth	
Breadth-First Search	TS	O(m)	$O(\operatorname{diam}(G)\log n)$	
Integral-Weight SSSP (weighted BFS)	PW	O(m) expected	$O(\operatorname{diam}(G)\log n)$ w.h.p.*	
General-Weight SSSP (Bellman-Ford)	PW	$O(\operatorname{diam}(G)m)$	$O(\operatorname{diam}(G)\log n)$	
Single-Source Betweenness Centrality (BC)	FA	O(m)	$O(\operatorname{diam}(G)\log n)$	
Low-Diameter Decomposition	TS	O(m) expected	$O(\log^2 n)$ w.h.p.	
Connectivity	TS	O(m) expected	$O(\log^3 n)$ w.h.p.	
Biconnectivity	FA	O(m) expected	$O(\max(\operatorname{diam}(G)\log n, \log^3 n))$ w.h.p.	
Strongly Connected Components	PW	$O(m \log n)$ expected	$O(\operatorname{diam}(G)\log n)$ w.h.p.	
Minimum Spanning Forest	PW	$O(m \log n)$	$O(\log^2 n)$	
Maximal Independent Set	FA	O(m) expected	$O(\log^2 n)$ w.h.p.	
Maximal Matching	PW	O(m) expected	$O(\log^3 m / \log \log m)$ w.h.p.	
Graph Coloring	FA	O(m+n)	$O(\log n + L \log \Delta)$	
k-core	FA	O(m+n) expected	$O(\rho \log n)$ w.h.p.	
Approximate Set Cover	PW	O(m) expected	$O(\log^3 n)$ w.h.p.	
Triangle Counting	-	$O(m^{3/2})$	$O(\log n)$	

Based on 30 years of research on parallel algorithms

Theoretically efficient parallel algorithms

Problem	(1)	(72h)	(S)
Breadth-First Search	631	12	52
Integral-Weight SSSP (weighted BFS)	4700	58.1	80
General-Weight SSSP (Bellman-Ford)	3180	53	60
Single-Source Betweenness Centrality (BC)	3170	40	7 9
Low-Diameter Decomposition	464	12	38
Connectivity	2080	38.3	54
Biconnectivity	_	201	
Strongly Connected Components	7720	182	42
Minimum Spanning Forest	_	228	_
Maximal Independent Set	2210	34	65
Maximal Matching	11000	140	78
Graph Coloring	12200	174	7 0
k-core	8515	193	44
Approximate Set Cover	3720	104	35
Triangle Counting		1470	

Running times in seconds on Hyperlink2012

All implementations are theoretically efficient and scalable!