
Parallel Graph Connectivity

15-853, Spring 2018

Parallel algorithms: lecture 3

Outline

• Connectivity
• Parallel BFS
• Random-mate connectivity
• Low-diameter decomposition
• Work-efficient connectivity
• Are parallel graph algorithms practical?

Graph Connectivity

• G(V, E), n = #vertices, m = #edges
• Given an undirected graph G(V, E):

are connected?s, t, � V

1 2

4 3

5

6

• Sequential algorithm: run BFS or DFS. time
• Nearly linear-work with union-find

O(n + m)

Parallel BFS

v

• BFS(G(V, E), v):
• Compute a BFS tree rooted at v
• I.e. compute a parent for all vertices reachable from v

• Idea: emulate sequential BFS. Run each step in parallel

• How do we compute the next frontier from current frontier?
• edge_map: primitive for traversal

edge_map

• Input:
• G(V, E)
• U (subset of vertices)
• update: vtx x vtx -> bool

1

4

3

2

8

7

U

N(U)

[v|(u, v) � E, u � U, update(u, v) = true]• Output:

edge_map

Output: [3, 7, 3, 8]

Usually implement update s.t. output is a set

• Input:
• G(V, E)
• U (subset of vertices)
• update: vtx x vtx -> bool

• Output: [v|(u, v) � E, u � U, update(u, v) = true]

1

4

3

2

8

7

U

N(U)

edge_map

O(log n) depth

O(|U | +
�

u�U

deg+(u)) work
• Runs in

1

4

3

2

8

7

U

N(U)

Parallel BFS

run at most diam(G) times

O(diam(G) log n) depthO(m) work

Parallel BFS for connectivity

• Real world graphs can have high diameter
• e.g. road networks and meshes

• Sequential dependencies between components
• BFS-based approach can be very fast on social/web graphs*

• Process the massive component using BFS
• Process remaining (small) components using LP

* Multistep connectivity, Slota et al. (2014)

http://www.sandia.gov/~srajama/publications/BFS_and_Coloring.pdf

Random Mate

• Idea: form a set of disjoint stars and contract
• #vertices decrease by a constant fraction each round

• Can show this implies O(log n) rounds w.h.p.

1 2

4 3

5

7

6

8

9 1 2

4 3

5

7

6

8

9

flip coins
(green = heads)

Source: Blelloch and Maggs, 6886-s18, lecture5.2

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://people.csail.mit.edu/jshun/6886-s18/lectures/lecture5-2.pdf

Random Mate

1 2

4 3

5

7

6

8

9

flip coins
(green = heads)

1 2

4 3

5

7

6

8

9

form stars

2

3

6

8

contract
Source: Blelloch and Maggs, 6886-s18, lecture5.2

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://people.csail.mit.edu/jshun/6886-s18/lectures/lecture5-2.pdf

Random Mate Implementation

• Use edgelist format E = [(1, 3), (1, 4), (3, 1), (4, 1), …]

2m edges

• Each iteration: O(m) work and O(log n) depth
• Each iteration reduces #active vertices by 1/4 in expectation

• O(log n) rounds w.h.p.
• O(m log n) work, O(log^2 n) depth in total (both w.h.p.)

Source: Blelloch and Maggs, 6886-s18, lecture5.2

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://people.csail.mit.edu/jshun/6886-s18/lectures/lecture5-2.pdf

Low-diameter decomposition

• Goal: decompose V into a set of clusters s.t.
• the number of inter-cluster edges is “small”
• diameter of each cluster is “small” (~log(n))

• More formally, given a parameter ,� 0 < � < 1

O(
log n

�
)

total cut edges � �m
max diameter is O(log n/�)

Low-diameter decomposition

• Even more formally, a decomposition, is a
partition of into s.t.
• The shortest path between using only vertices

in is at most (strong diameter)
• The number of edges is

at most (few inter-component edges)

(�, d)�
V V1, . . . , Vk

u, v � Vi

Vi d

�m

(u, v) � E, u � Vi, v � Vj , i �= j

0 < � < 1

Sequential low-diameter decomposition

An interesting sequential algorithm:*
• Pick an arbitrary vertex
• Grow a ball around it using BFS. Stop at the first radius r

s.t. the #boundary edges is < than beta * #internal edges
• Can show that the radius is at most
• LDD = run substep until all vertices are covered

O(log n/�)

*see:15-745 Lecture 12 Notes for details

Finding each ball is parallelizable, but there are sequential
dependencies between different balls…

(�, O(log n/�))Can you prove this gives a -decomposition?

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s18/ScribeNotes/lecture12.pdf

Parallel low-diameter decomposition

Miller, Peng, Xu (2013): https://arxiv.org/abs/1307.3692

• Miller, Peng and Xu give an algorithm that computes
an -decomposition in
• expected work
• depth w.h.p.

(�, O(log n/�))

O(m + n)

O(log2 n)

Idea: grow balls in parallel from different vertices

Mimic sequential ball-growing process to
ensure strong diameter.

Challenge: how to guarantee that not too many edges are cut
and that the maximum radius is O(log n / beta)?

Use properties of the exponential distribution to
ensure bounds on #cut edges and radius.

https://arxiv.org/abs/1307.3692

Parallel low-diameter decomposition

shifted distance

Parallel low-diameter decomposition

Equivalently: compute start times based on E, run multi-BFS

1. Compute start times

L1: Add ready centers

L2: Acquire unvisited nghs

L3: Set ngh’s cluster id if we won

Parallel low-diameter decomposition

• Strong diameter is O(log n/�)

O(
log n

�
)

Note: all vertices will start after max[E] rounds

• What is the maximum of n R.V.’s independently drawn
from ?Exp(�)

Parallel low-diameter decomposition

• What is the maximum of n R.V.’s independently drawn
from ?

• Let
Exp(�)

Pr

�
�max >

k log n

�

�
�

�

v�V

Pr

�
�v >

k log n

�

�
(union bound)

= n · exp

�
� � · k log n

�

�
(cdf of)Exp(�)

=
1

nk�1

• Maximum diameter is w.h.p. O(log n/�)

�v � Exp(�)

Parallel low-diameter decomposition

• Claim: each edge is cut (intercluster) with probability < �

u v
c

• Arrival times are random variables:
Ti = �max � �i + d(i, c)

define

Source: 15-750 Spring 2017 notes

T̂i = �max � Ti = �i � d(i, c)

https://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ClassNotes/LowDiameter.pdf

Parallel low-diameter decomposition

Note: Both expressions give the center that captures c

0
T̂i � T̂j

i

j

Source: 15-750 Spring 2017 notes

T̂i = �max � Ti = �i � d(i, c)Ti = �max � �i + d(i, c)

arg max
v�V

(�v � d(v, c))

arg min
v�V

(�max � �v + d(v, c)) = arg max
v�V

(�v � d(v, c))

https://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ClassNotes/LowDiameter.pdf

Parallel low-diameter decomposition

Source: 15-750 Spring 2017 notes

0
T̂i � T̂j

• is exactly the event that (u,v) is cut! T̂i � T̂j < 1

Pr
�
T̂i � T̂j < 1

�
= 1 � e�� < �

u
c

v

Note: (memoryless property)T̂i � T̂j � Exp(�)

T̂i = Ti � �max = �i � d(i, c)

i

j

https://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ClassNotes/LowDiameter.pdf

Parallel low-diameter decomposition

• Back to the algorithm:

1. Compute start times

L1: Add ready centers

L2: Acquire unvisited nghs

L3: Set ngh’s cluster id if we won

O(n) work, O(log n) depth

O(log n/�) rounds w.h.p.

edge map: O(m) work in total

Each round: O(log n) depth

Parallel low-diameter decomposition

• MPX algorithm computes an -decomp in
• expected work
• depth w.h.p. (can be made)

(�, O(log n/�))

O(m + n)

O(log2 n)

See for more details:
Parallel Graph Decompositions Using Random Shifts
Miller, Peng, Xu (SPAA 2013)

Improved Parallel Algorithms for Spanners and Hopsets
Miller, Peng, Vladu and Xu (SPAA 2015)

O(log n log� n)

https://arxiv.org/abs/1307.3692
https://arxiv.org/abs/1309.3545

Work-efficient connectivity

Compute LDD

3

77

2

15

9

1
4

0

3

2

Contract and Recurse

1
4

0

3

2

Contract and Recurse
L’ = [0, 0, 1, 0, 0]

Update labeling based on L’

3

77

2

15

9

L[i] = L’[cluster[i]]
Return L

Work-efficient connectivity

• Assume contraction in O(m + n) work and O(log n) depth
• edges after each round (expected)

• work in expectation
• levels w.h.p. => depth w.h.p.

� · m

m + � · m + �2 · m. . . = O(m)

O(log n) O(log3 n)

Work-efficient connectivity

• Connectivity can be solved in parallel in
• expected work
• depth

• Depth can be improved to
• (Currently) only theoretically efficient connectivity

algorithm that is also practical!

O(m + n)

O(log3 n)

O(log n log log n log� n)

See for more details/experiments:
A Simple and Practical Linear-Work Parallel Algorithm for Connectivity
Shun, Dhulipala and Blelloch (SPAA 2014)

Work-efficient connectivity

https://ldhulipala.github.io/papers/WEConnectivity.pdf

Are parallel graph algorithms practical?

• Huge amount of interest in 80s and 90s
• PRAM algorithms: lots of nice work, but hardware wasn’t

ready: never saw the gains promised by theory

2008

Google n-gram viewer

?

https://books.google.com/ngrams/graph?content=parallel+graph,PRAM+algorithm&year_start=1800&year_end=2008&corpus=15&smoothing=3&share=&direct_url=t1;,parallel%20graph;,c0;.t1;,PRAM%20algorithm;,c0

Are parallel graph algorithms practical?

• Implement in cilk. Run on shared memory multicores, e.g.

Dell PowerEdge R930

• 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
• 1TB of main memory
• Costs less than a mid-range BMW

Example: k-core

• Ideas like work-efficiency matter!
• E.g. work-efficient vs work-inefficient k-core algorithms
• Run on the two largest publicly available graphs:

Graph |V| |E| (symmetrized)
Hyperlink2014 1.7B 124B
Hyperlink2012 3.5B 225B

number of peeling steps done by the parallel algorithm� =

W = O(|E| + �|V |)

D = O(� log |V |)

Work-inefficient Work-efficient

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

Example: k-core

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

• Between 4-41x speedup over sequential peeling
• Speedups are smaller on small graphs with large
• 2-9x faster than work-inefficient implementation

�

|V| = 121M
|E| = 3.6B

Friendster

Across all inputs:

Example: k-core

• Run on the two largest publicly available graphs:

Graph |V| |E| (symmetrized)
Hyperlink2014 1.7B 124B
Hyperlink2012 3.5B 225B

• On Hyperlink2012 graph our code takes 193s on 72h cores
• 8515s serially => 44x speedup
• Previous best time: 256-node cluster, each with 32 cores

• 6 minutes to compute approximate k-cores
• We compute exact k-cores

• 1.8x faster
• using 113x fewer cores

Example: connectivity

• Run connectivity on Hyperlink2012 graph
• 38.3s on 72h cores
• 2080s serially => 54x speedup
• Very recently, folks from Yahoo (Oath research) presented a

new connectivity algorithm that runs in O(log n) rounds on
BSP model

• Their algorithm runs in 341s using:
• 1000 nodes, 24000 cores and 128Tb of memory

Graph |V| |E|
(symmetrized)Hyperlink2012 3.5B 225B

Our algorithm is 8x faster using 128x less memory and
333x fewer cores

• To be fair, their code runs on a graph with 272B vertices and
5.9T edges; out of reach of shared-memory for now…

Theoretically efficient parallel algorithms

Based on 30 years of research on parallel algorithms

All implementations are theoretically efficient and scalable!
Running times in seconds on Hyperlink2012

Theoretically efficient parallel algorithms

