Parallel Graph Connectivity

Parallel algorithms: lecture 3

15-853, Spring 2018

Outline

e Connectivity

e Parallel BFS

* Random-mate connectivity
 |Low-diameter decomposition

* Work-efficient connectivity

* Are parallel graph algorithms practical?

Graph Connectivity

 G(V, E), n = #vertices, m = #edges
e Given an undirected graph G(V, E):

are s, t,e V connected?

\

e Sequential algorithm: run BFS or DFS. O(n + m) time
* Nearly linear-work with union-find

Parallel BFS

e BFS(G(V, E), v):
 Compute a BFS tree rooted at v
e |.e. compute a parent for all vertices reachable from v

e |dea: emulate sequential BFS. Run each step in parallel

« How do we compute the next frontier from current frontier?
 edge_map: primitive for traversal

edge_map

e |nput:
« G(V, E)
* U (subset of vertices)
e update: vtx X vtx -> bool
« Qutput: [v|(u,v) € E,u € U,update(u,v) = true]

N(U)

edge_map

e |nput:
e G(V, E)
* U (subset of vertices)
e update: vix x vtx -> bool
e Qutput: [v|(u,v) € E,u € U,update(u,v) = true

N(U)

Qutput: [3, 7, 3, 8]

Usually implement update s.t. output is a set

edge_map

edge_map(G, U, update) =
nghs = array(|Ul, <>);
parfor i in [0, [U]]
v = U[i];
out_nghs = G[v].out_nghs;
update_vtx = lambda x.update(v, X);
nghs[i] = filter(out_nghs, update_vtx);
return flatten(nghs);

* Runsin
O(|U| + Z deg, (u)) work

uelU
O(logn) depth

Parallel BFS

BFS(G(V, E), v) =

n = |V];

frontier = array(v);

visited = array(n, 0); visited[v] = 1;
parents = array(n, -1);

update = lambda (u, v).
if (!visited[v] && test_and_set(&visited[v]))
parents[v] = u;
return true;
return false;
while (|frontier| > 0): ECRINUCSRCIEN(CIRINER
frontier = edge_map(G, frontier, update);
return parents;

O(m) work O(diam(G) logn) depth

Parallel BFS for connectivity

* Real world graphs can have high diameter
* e.g.road networks and meshes

J v X
\’-_‘? \ & National Highway System (NHS]
. { .’ Y PE — AT NS AT

"‘L.\, e - " et I
7 . e R S
.- 4-'"-. ‘l_'>

e Seqguential dependencies between components
 BFS-based approach can be very fast on social/web graphs”®
e Process the massive component using BFS
* Process remaining (small) components using LP

* Multistep connectivity, Slota et al. (2014)

http://www.sandia.gov/~srajama/publications/BFS_and_Coloring.pdf

Random Mate

e |dea: form a set of disjoint stars and contract
e #vertices decrease by a constant fraction each round
* (Can show this implies O(log n) rounds w.h.p.

°

flip coins
(green = heads)

Source: Blelloch and Maggs, 6886-s18, lectureb.2

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://people.csail.mit.edu/jshun/6886-s18/lectures/lecture5-2.pdf

Random Mate

flip coins form stars
(green = heads) l

contract
Source: Blelloch and Maggs, 6886-s18, lectureb.2

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://people.csail.mit.edu/jshun/6886-s18/lectures/lecture5-2.pdf

Random Mate Implementation

 Use edgelistformat E =[(1,3),(1,4),(3,1),(4, 1), ...]

CC_Random_Mate(L, E) = T
if (|IE| = 0) return L; 2m edges
1. flip coins for all n vertices

2.

3.

4.
5.

For v where flip(v)=tails, hook to an
arbitrary heads ngh w, set L(v) = w
E’ = filter(E, lambda (u,v).
return L(u) != L(v);); // remove self edges
L’ = CC_Random_Mate(L, E’);
For v where flip(v)=tails, set L’(v)=L’(w)
(v hooked to w in step 2)

return L’ ;
* Each iteration: O(m) work and O(log n) depth
o Each iteration reduces #active vertices by 1/4 in expectation
 O(log n) rounds w.h.p.

« O(m log n) work, O(log”"2 n) depth in total (both w.h.p.)
Source: Blelloch and Maggs, 6886-s18, lectureb.2

https://www.cs.cmu.edu/~guyb/papers/BM04.pdf
https://people.csail.mit.edu/jshun/6886-s18/lectures/lecture5-2.pdf

Low-diameter decomposition

 Goal: decompose V into a set of clusters s.t.
e the number of inter-cluster edges is “small”
e diameter of each cluster is “small” (~log(n))
» More formally, given a parameter 3, 0 < 58 < 1

max diameter is O(logn/fB)
total cut edges < fm

Low-diameter decomposition

e Even more formally, a (8, d)—decomposition, 0 < 8 < 1is a
partition of Vinto Vi,...,Vk s.t.
* The shortest path between u,v € V; using only vertices
in Vi is at most d (strong diameter)
* The number of edges (u,v) € E,u € V;,v € V;,i # j is
at most fm (few inter-component edges)

Sequential low-diameter decomposition

An interesting sequential algorithm: ™

 Pick an arbitrary vertex

 Grow a ball around it using BFS. Stop at the first radius r
s.t. the #boundary edges is < than beta * #internal edges

» Can show that the radius is at most O(logn/p3)

DD = run substep until all vertices are covered

Can you prove this gives a (8, O(logn/f))-decomposition?

Finding each ball is parallelizable, but there are sequential
dependencies between different balls...

*see:15-745 Lecture 12 Notes for details

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s18/ScribeNotes/lecture12.pdf

Parallel low-diameter decomposition

* Miller, Peng and Xu give an algorithm that computes
an (B3,0(logn/pB))-decomposition in
« O(m + n) expected work
» O(log” n) depth w.h.p.

Idea: grow balls in parallel from different vertices

Mimic sequential ball-growing process to
ensure strong diameter.

Challenge: how to guarantee that not too many edges are cut
and that the maximum radius is O(log n / beta)?

Use properties of the exponential distribution to
ensure bounds on #cut edges and radius.

Miller, Peng, Xu (2013): https://arxiv.org/abs/1307.3692

https://arxiv.org/abs/1307.3692

Parallel low-diameter decomposition

LDD(G(V, E), beta) =
n = |V|; num_finished = 0;
E = array(n, lambda i.Exp(beta));
C = array(n, -1);
parfor i in [0:n]
Cli]l] = v in V minimizing (d(v, i) - E[v]);

return C; shifted distance

Parallel low-diameter decomposition

Equivalently: compute start times based on E, run multi-BFS

LDD(G(V E), beta) =

n = |V|; num_finished = 0;

E = array(n, lambda i.Exp(beta));

S = array(n, lambda i.max(E) - E[i]); WRMROInelNil=RE1aRilg(e
C = array(n, (infty, infty));

num_processed = 0; round = 1;
while (num_processed < n)
F=FUA{vinV | S[vl < round, C[v] == infty}; SEINEW-YeleN(=t-Te\Ael=Ia|(=1aS
num_processed += |F]|;
update = lambda (u,v).
if (C[v].snd == infty)
writeMin(&C[v].fst, S[ul);
return false;
edge_map(G, F, update); IRV Nele[V[f=NVa\Ysi(=IeNalelals
check = lambda (u,v).
if (C[v].fst == S[ul)
C[v].snd = u;
return true;
return false;
F = edge_map(G, F, check); [EECHNIsINale]sk-Rel N1 @Ie MiRWR Y ols
round++;
return C;

Parallel low-diameter decomposition

» Strong diameter is O(logn/j)

Note: all vertices will start after max[E] rounds

 What is the maximum of n R.V.’s independently drawn
from Exp(8)?

Parallel low-diameter decomposition

 What is the maximum of n R.V.’s independently drawn
from Exp(B)?
* Let o, ~ Exp(p)

Pr

5max >

klogn]

B

< ZPI‘ 0y >
- veV
:n-exp<—5
1
— k-1

klogn]

B

klogn
&

* Maximum diameter is O(logn/B) w.h.p.

(union bound)

) (cdf of Exp(p))

Parallel low-diameter decomposition

» Claim: each edge is cut (intercluster) with probability < 8

o\~
VAl

e Arrival times are random variables:
Ti — 5max — (52 + d(l, C)

A

define T: = Ommax — 15 = 0; — d(Z, C)

Source: 15-750 Spring 2017 notes

https://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ClassNotes/LowDiameter.pdf

Parallel low-diameter decomposition

A

T: = Ommax — 0; + d(Z, C) T = Oppax — L5 = 0; — d(Z, C)

arg grél‘r/l((SmaX — 0y +d(v,c)) = arg Iquflga&((% — d(v,c))

Note: Both expressions give the center that captures c

arg Iglea%(év — d(v,c))

Source: 15-750 Spring 2017 notes

https://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ClassNotes/LowDiameter.pdf

Parallel low-diameter decomposition

A

Tz’ — Tz — 5max — 57, — d(Z, C)

>
>
9 >
() >
T; — T;
« T; — Tj < 1 is exactly the event that (u,v) is cut!
«# - v
u v

Note: T; — T; ~ Exp() (memoryless property)

A

PI’[Ti—Tj<1] :1—€_B<5

Source: 15-750 Spring 2017 notes

https://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ClassNotes/LowDiameter.pdf

Parallel low-diameter decomposition

e Back to the algorithm:

LDD(G(V, E), beta) =

n = |V|; num_finished = 0;
E = array(n, lambda i.Exp(beta));
: arraY(n’ (tnty l'maX(E)) E[l]);
C = array(n, (infty, infty));
num_processed = 0; round = 1;
while (num_processed < n)
F=FUA{vin V | S[v] < round, C[v]
num_processed += |F|;

update = lambda (u,v).
if (C[v].snd == infty)
writeMin(&C[v].fst, S[ul);
return false;
edge_map(G, F, update); BV Nole|V[[g=N

check = lambda (u,v).
if (C[v].fst == S[ul)
C[v].snd = u;
return true;
return false;

F = edge_map(G, F, check); IECHNISINale[sk-Rel S @Me NIRRTV ols

round++;
return C;

Parallel low-diameter decomposition

* MPX algorithm computes an (3, O(logn/3))-decomp in
« O(m + n) expected work

* O(log”n) depth w.h.p. (can be made O(log nlog* n))

See for more details:

Parallel Graph Decompositions Using Random Shifts
Miller, Peng, Xu (SPAA 2013)

Improved Parallel Algorithms for Spanners and Hopsets
Miller, Peng, Vladu and Xu (SPAA 2015)

https://arxiv.org/abs/1307.3692
https://arxiv.org/abs/1309.3545

Work-efficient connectivity

Compute LDD Contract and Recurse

Work-efficient connectivity

Contract and Recurse
L' =10, 0, 1, 0, O]

Update

L[i]

abeling basecd

= L'[cluster]i]]
Return L

on L

Work-efficient connectivity

Connectivity(G(V, E), beta) =
L = LDD(G, beta);
G’(V’,E’) = Contract(G, L);

if (|IE’| == 0)
return L
L.’ = Connectivity(G’, beta)
L’ = array(n, lambda v.return L’[L[v]];);
return L°°;

* Assume contraction in O(m + n) work and O(log n) depth
e [-m edges after each round (expected)

em+f-m+ % -m...=0(m)work in expectation
« O(logn)levels w.h.p. => O(log® n) depth w.h.p.

Work-efficient connectivity

e (Connectivity can be solved in parallel in
¢ O(m + n) expected work
» O(log® n) depth
* Depth can be improved to O(lognloglognlog™ n)
* (Currently) only theoretically efficient connectivity
algorithm that is also practical!

See for more details/experiments:
A Simple and Practical Linear-Work Parallel Algorithm for Connectivity
Shun, Dhulipala and Blelloch (SPAA 2014)

https://ldhulipala.github.io/papers/WEConnectivity.pdf

Are parallel graph algorithms practical?

 Huge amount of interest in 80s and 90s
 PRAM algorithms: lots of nice work, but hardware wasn't
ready: never saw the gains promised by theory

parallel graph

PRAM algorithm

| | | 1
1940 1960 1980 2000 2008

Google n-gram viewer

https://books.google.com/ngrams/graph?content=parallel+graph,PRAM+algorithm&year_start=1800&year_end=2008&corpus=15&smoothing=3&share=&direct_url=t1;,parallel%20graph;,c0;.t1;,PRAM%20algorithm;,c0

Are parallel graph algorithms practical?

 Implement in cilk. Run on shared memory multicores, e.g.

LAPCES o
l:]“

Dell PowerEdge R930

e 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
* 1TB of main memory
* Costs less than a mid-range BMW

’IA\

.,.-&E?’

Example: k-core

* |deas like work-efficiency matter!
* E.g. work-efticient vs work-inetticient k-core algorithms
 Run on the two largest publicly available graphs:

Graph V] IE| (symmetrized)
Hyperlink2014 1.7B 1248
Hyperlink2012 3.5B 225B

p = number of peeling steps done by the parallel algorithm

W = O(|E| + p|V])
D = O(plog|V])

Work-inefficient

O(|E

O(pl

I
08

v
v

) expected work
) depth w.h.p.

Work-efficient

Example: k-core

1000

Running time (seconds)

100 |

—k
o

** Julienne (work-efficient) —e—
~ Ligra (work-inefficient) —x—

1 2 4 8 16 32 64 72 72h
Number of threads

Across all inputs:
* Between 4-41x speedup over sequential peeling

* Speedups are smaller on small graphs with large p

e 2-Ox faster than work-inefficient implementation

—riendster
VI =121M
E| = 3.68

Example: k-core

 Run on the two largest publicly available graphs:

Graph V] IE| (symmetrized)
Hyperlink2014 1.7B 1248
Hyperlink2012 3.5B 2258

 On Hyperlink2012 graph our code takes 193s on 72h cores
e 8515s serially => 44x speedup
* Previous best time: 256-node cluster, each with 32 cores
* 6 minutes to compute approximate k-cores
 We compute exact k-cores
e 1.8x faster
e using 113x fewer cores

Example: connectivity Graph V] E|

Hyperlink2012 3.5B 2258

* Run connectivity on Ryperlink2012 graph

e« 38.3s on 72h cores

o 2080s serially => 54x speedup

* Very recently, folks from Yahoo (Oath research) presented a
new connectivity algorithm that runs in O(log n) rounds on
BSP model

* Their algorithm runs in 341s using:
1000 nodes, 24000 cores and 128Tb of memory

Our algorithm is 8x faster using 128x less memory and
333x fewer cores

* To be tair, their code runs on a graph with 272B vertices and
5.9T edges; out of reach of shared-memory for now...

Theoretically efficient parallel algorithms

Problem Model Work Depth
Breadth-First Scarch TS O(m) O(diam(G) log n)
Integral-Weight SSSP (weighted BFS) PW Q(m) expected O(diam(G) log n) w.hop.*
General-Weight SSSP (Bellman-Ford) PW O(diam(G)m) O(diam(G) log n)
Single-Source Betweenness Centrality (BC) FA O(m) O(diam(G) log n)
Low-Diameter Decomposition TS O(m) expected Of logz n) w.h.p.
Connectivity TS O(m) expected O(log” n) w.h.p.
Biconnectivity FA O(m) expected O(max(diam(G) log n, log” n)) w.h.p.
Strongly Connected Components PW O(mlog n) expected O(diam(G) log n) w.h.p.
Minimum Spanning Forest PW O(mlogn) O(]og"" n)
Maximal Independent Set FA O(m) expected O(log® n) w.h.p.
Maximal Matching PW O(m) expected Q(log” m/ loglog m) w.h.p.
Graph Coloring FA O(m + n) O(logn + Llog A)
k-core FA O(m + n) expected O(p log n) w.h.p.
Approximate Set Cover PW O(m) expected O(log” n) w.h.p.

Triangle Counting

Q(m>'?)

O(log n)

Based on 30 years of research on parallel algorithms

Theoretically efficient parallel algorithms

Problem (1) (72h) | (S)

Breadth-First Search 631 12 52
Integral-Weight SSSP (weighted BES) 4700 58.1 30
General-Weight SSSP (Bellman-Ford) 3180 33 60
Single-Source Betweenness Centrality (BC) | 3170 40) 79
[Low-Diameter Decomposition 464 12 38
Connectivity 2080 38.3 | 54
Biconnectivity — 201 —

Strongly Connecled Components 7720 182 42
Minimum Spanning Forest — 228 —
Maximal Independent Set 2210 34 63
Maximal Malching 11000 140 78

Graph Coloring 12200 174 70

k-core 8515 193 | 44

Approximate Set Cover 3720 104 33
Triangle Counting — 1470 | —

Running times in seconds on Hyperlink2012

All implementations are theoretically efficient and scalable!

