15-853:Algorithms in the Real World

Parallelism: Lecture 2
Parallel techniques and algorithms
-Working with collections
-Divide and conquer

15-853 Pagel

Parallel Techniques

Some common themes in “Thinking Parallel”
1. Working with collections.
- map, selection, reduce, scan, collect
2. Divide-and-conquer
- Even more important than sequentially
- Merging, matrix multiply, FFT, ...
3. Contraction
- Solve single smaller problem
- List ranking, graph contraction
4. Randomization
- Symmetry breaking and random sampling

15-853

Page2

Working with Collections

reduce ® [a, b, c, d, ...
—a®Ob®cOd+ ..

scan @ ident [a, b, ¢, d, ...
= [ident,a,a®b,a®b ®c, ..

sort compF A

collect [(2,a), (O,b), (2,c), (3.d), (O.e), (2,f)]
= [(0, [b.e]), (2.[a,c,f]), (3.[d])]

15-853 Page3

Example of scan: parentheses matching

The parentheses matching problem:

- Check if a set of a single kind of parentheses
match

- E.g. (0(00)) matches ((OONO() does not

- Easy to do serially by scanning left to right
keeping a counter.

- How do we do this in parallel

15-853 Page4

Example of scan: parentheses matching
The parentheses matching using a scan:

function parenthesesMatch(S) =

let
A = {if ¢ == ‘(then 1 else -1: c in S};
Sums = scan(add,0,A);

in

(reduce(min,Sums) >= 0)

Can also do it with a map and reduce, or with
recursion.

15-853 Page5

Example of Collect: Building an Tndex

Problem: Given a set of documents each a string,
compute an index that maps words to documents.

[(1,"this is the first document”),
(2,”this is the second™),

(3,"the third”),

(4,”and the fourth™)]

[("and” [4])),....("first” [1]),...("is",[1,2]), ...,
(“the”,[1,2,3,4]).("this",[1,2]),("third",[3])]

15-853 Page6

Example of Collect: Building an Tndex

Problem: Given a set of documents each with a
sequence of words, compute an index that maps
words to documents.

function makelIndex D =
let
a = flatten({{(w,1) : w in wordify(d)}
: (1,d) in D})
in collect(a);

15-853 Page7

MapReduce

function mapReduce (MAP,REDUCE, documents) =
let

temp = flatten({MAP(d) : d in documents}) ;
in flatten({REDUCE (k,vs) : (k,vs) in collect(temp)});
function mapRed (M,R) = (D => mapReduce (M,R,D));

wordcount = mapReduce(d => {(w,1l) : w in wordify(d)},
(w,c) => [(w,sum(c))]);

wordcount (["this is is document 17,
"this is document 2"]);

15-853 8

Technique 2: Divide-And-Conquer

* Merging
* Matrix multiplication
* Matrix inversion

- FFT
- K-d trees

15-853 Page9

Example: Merging

Merge (nil,12) = 12

Merge (11,nil) = 11

Merge (hl::tl, h2::t2) =
if (hl < h2) hl::Merge(tl,h2::t2)
else h2::Merge(hl::tl1l,t2)

What about in parallel?

15-853

The Split Operation

fun split (p, empty) = (empty ,empty)
| split (p, node(v, L, R)) =

if p < v then
let val (L1 ,R1l) = split(p ,L)
in (Ll,node(v, R1l, R)) end

else
let val (L1,R1l) = split(p ,R)
in (node (v, L, Ll), R1l) end;

11

Merging

Merge (A,B) = Span = O(log® n)

let -
Node (A, m, A) = A& Work = O(n)

(B, ,B;) = split(B, m) |
in Merge in parallel

Node (Merge (A;,B;) , m, Merge (A;,Bg))

Merge(A, ,B)) Merge(Ay .Be)

MergeSort

function mergeSort(S) =

if (#S < 2) S

else merge(mergesort(S[0:#S/2]),
mergesort (S[#S/2:#S]))

W(n) = 2 W(n/2) + O(n) = O(n log n)

What about the span?

15-853 Pagel3

Matrix Multiplication

Fun A*B { 'A A]
if #A < k then baseCase.. A = H 12
Cii = A *By; + AL,*By, _A21 A22_
Ci, = A *B;, + A,*B,, 7
C,; = A)*By; + A,*B,, B = Bll B12
C,, = A,;*B;, + A,*B,, le B22
return C)]
}
W.(n) = 8W(n/2)+0(n’) D(n) = Dn/2)+0()
= O(n’) = O(logn)

3
Parallelism = E =0 "
D logn

15-853 14

W (n)

Matrix Inversion

fun invert (M) {
if small baseCase

D! = invert (D) ‘A B

S = A - BDIC M =

Sl = invert (S) C D_

E = 87!

F = SBD! E F

G = -Dlcst M =

H = D! + D-!CS-!BD!} G H
= 2W(n/2)+6W.(n/2) D(n) = 2Dn/2)+6D.(n/2)
= 0On’) = O(n)

Parallelism = W = O(nz)
D

15-853 15

Fourier Transform

function fft(a,w) =
if #a == 1 then a
else
let r = {fft(b, even elts(w)):
b in [even elts(a),odd elts(a)]}
in {a + b *w : a in r[0] ++ r[O0];
b in r[l] ++ r[1l];
W in w};

W(n)

2W(n/2)+ O(n) D(n) = D[n/2)+0Q0)
O(nlogn) = O(logn)

Parallelism = % = 0(n)

15-853 16

Spatial Decompositions: Revisited

Typically consist of:

- Split the data points intfo some constant humber
of parts. This is similar to the selection in
Quicksort.

- Recursively subdivide within each part.

Both of these are easy to parallelize, but
problematic if highly imbalanced.

15-853 Pagel7

Callahan-Kosaraju: Build Tree

Function Tree(P)

if |P| = 1 then return leaf(P)

else

dpmax = dimension of |,

P;, P, = split P along d,,, at midpoint
Return Node(Tree(P,), Tree(P,), |, .x)

3

15-853

Pagel8

KK: Generating the Realization

function wsr(T)
if leaf(T) return @

else return wsr(left(T)) U wsr(right(T))
U wsrP(left(T),right(T)

function wsrP(T;, T>,)
if wellSep(T;,T,) return {(T,,T,)}
else if | ..(T;) > |...(T,) then
return wsrP(lef+(T;), T,) U wsrP(right(T;), T,)
else
return wsrP(T;, lef+(T,)) U wsrP(Ty, right(T>,))

15-853 Pagel9

Parallel Techniques

Some common themes in “Thinking Parallel”
1. Working with collections.
- map, selection, reduce, scan, collect
2. Divide-and-conquer
- Even more important than sequentially
- Merging, matrix multiply, FFT, ...
3. Contraction
- Solve single smaller problem
- List ranking, graph contraction
4. Randomization
- Symmetry breaking and random sampling

15-853

Page22

