
Page1

15-853:Algorithms in the Real World
Parallel Algorithms: Lecture 1

Nested parallelism
Cost model
Parallel techniques and algorithms

15-853

Why Parallelism: Machines

Page 215-853

Why Parallelism: Machines

Page 315-853

112 core 4-chip server

Page 4

x 4 =

Up to 6TByte memory

15-853

Xeon Phi: Knights Landing (64 cores)

Page 515-853

Page 615-853

4992 “cuda” cores

715-853

8

Up to 300K servers

15-853

9

Dec 2010

Nov 2012

15-853

Page 10

May 2015

Sep 2014

15-853

Page 11

Mar 2017, 12 core

15-853

12

UDOO

Raspberry
Pi 3

15-853

Page 13Andrew Chien, 200815-853

Outline (draft)
Concurrency vs. Parallelism
Concurrency example
Quicksort example
Nested Parallelism

- fork-join and parallel loops
Cost model: work and span
Techniques:

– Using collections: inverted index
– Divide-and-conquer: merging, mergesort, kd-

trees, matrix multiply, matrix inversion, fft
– Contraction : quickselect, list ranking, graph

connectivity, suffix arrays
Page1415-853

Parallelism vs. Concurrency

Concurrency

sequential concurrent

Parallelism
serial Traditional

programming
Traditional
OS

parallel Deterministic
parallelism

General
parallelism

15

Parallelism: using multiple processors/cores
running at the same time. Property of the machine
Concurrency: non-determinacy due to interleaving
threads. Property of the application.

15-853

Nested Parallelism

nested parallelism =
arbitrary nesting of parallel loops + fork-join

– Assumes no synchronization among parallel
tasks except at joint points.

– Deterministic if no race conditions

Advantages:
– Good schedulers are known
– Easy to understand, debug, and analyze

Page1615-853

Nested Parallelism: parallel loops
cilk_for (i=0; i < n; i++)

B[i] = A[i]+1;

Parallel.ForEach(A, x => x+1);

B = {x + 1 : x in A}

#pragma omp for
for (i=0; i < n; i++)

B[i] = A[i] + 1;

Page17

Cilk

Microsoft TPL
(C#,F#)

Nesl, Parallel Haskell

OpenMP

15-853

Nested Parallelism: fork-join
cobegin {
S1;
S2;}

coinvoke(f1,f2)
Parallel.invoke(f1,f2)

#pragma omp sections
{
#pragma omp section
S1;
#pragma omp section
S2;

} Page18

Dates back to the 60s. Used in
dialects of Algol, Pascal

Java fork-join framework
Microsoft TPL (C#,F#)

OpenMP (C++, C, Fortran, …)

15-853

Nested Parallelism: fork-join

Page19

spawn S1;
S2;
sync;

(exp1 || exp2)

plet
x = exp1
y = exp2

in
exp3

cilk, cilk+

Various functional
languages

Various dialects of
ML and Lisp

15-853

Serial Parallel DAGs
Dependence graphs of nested parallel computations are

series parallel

Two tasks are parallel if not reachable from each other.
A data race occurs if two parallel tasks are involved in a

race if they access the same location and at least one
is a write.

Page2015-853

Cost Model
Compositional:

Work : total number of operations
– costs are added across parallel calls

Depth : span/critical path of the computation
– Maximum span is taken across forked calls

Parallelism = Work/Depth
– Approximately # of processors that can be

effectively used.
Page2115-853

22

Combining for parallel for:
parfor i in [0:n]

f(i);

€

Wpexp(pfor ...) = Wexp(f(i))
i=0

n−1

∑

€

Dpexp(pfor ...) = i=0
n−1max Dexp(f(i))

work

span

Combining costs

15-853

A Formal Model: The MP-RAM
Start with the sequential Random Access Machine

(RAM) model
Add a fork(n) instruction:

1. Forks n identical child copies of the process,
the i-th one has i in a special index register

2. Suspend the parent
3. When all children finish, restart the parent

with 0 in the index register.
Purely nested. Can be viewed as series-parallel DAG.
Work and Depth as usual

15-853 Page23

MP-PRAM: ordering
Any serialization (topological sort of DAG) is valid,

and memory operations have normal semantics
under this ordering.

Results can depend on ordering
Definitions (pairs of instructions):

– Conflict: access the same location, at least one
of which is a write.

– Concurrent: are unordered in the DAG
– Race: conflict and concurrent

Race free programs always return the same result

15-853 Page24

25

Simple measures that give us a good sense of
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.
This is within a constant factor of optimal.
Goals in designing an algorithm

1. Work should be about the same as the
sequential running time. When it matches
asymptotically we say it is work efficient.

2. Parallelism (W/D) should be polynomial
O(n1/2) is probably good enough

Why Work and Span

15-853

26

Example: Quicksort
function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];

How much parallelism?

15-853

Partition

Recursive
calls

27

Quicksort Complexity

partition append

Span = O(n)

(less than, …)

Sequential Partition and appending
Parallel calls

Work = O(n log n)

Not a very good parallel algorithm

Parallelism = O(log n)

15-853 *All randomized
with high probability

Quicksort Complexity
Now lets assume the partitioning and appending can

be done with:
Work = O(n)
Span = O(log n)

but recursive calls are made sequentially.

15-853 Page28

29

Quicksort Complexity

Parallel partition
Sequential calls

Span = O(n)

Work = O(n log n)

Not a very good parallel algorithm

Parallelism = O(log n)

15-853 *All randomized
with high probability

30

Quicksort Complexity

Span = O(lg2 n)

Parallel partition
Parallel calls

Work = O(n log n)

A good parallel algorithm

Span = O(lg n)

Parallelism = O(n/log n)

15-853 *All randomized
with high probability

Quicksort Complexity
Caveat: need to show that depth of recursion is

O(log n) with high probability

15-853 Page31

32

Parallel selection

{e in S | e < a};

S = [2, 1, 4, 0, 3, 1, 5, 7]
F = S < 4 = [1, 1, 0, 1, 1, 1, 0, 0]
I = addscan(F) = [0, 1, 2, 2, 3, 4, 5, 5]

where F
R[I] = S = [2, 1, 0, 3, 1]

Each element gets sum of
previous elements.
Seems sequential?

15-853

33

Scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]
sum

recurse
[0, 3, 9, 13]

[2, 7, 12, 18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18][0, 2, 3, 7, 9, 12, 13, 18]

15-853

34

Scan code
function addscan(A) =
if (#A <= 1) then [0]
else let
sums = {A[2*i] + A[2*i+1] : i in [0:#a/2]};
evens = addscan(sums);
odds = {evens[i] + A[2*i] : i in [0:#a/2]};

in interleave(evens,odds);

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)

15-853

Parallel Techniques
Some common themes in �Thinking Parallel�
1. Working with collections.

– map, selection, reduce, scan, collect
2. Divide-and-conquer

– Even more important than sequentially
– Merging, matrix multiply, FFT, …

3. Contraction
– Solve single smaller problem
– List ranking, graph contraction

4. Randomization
– Symmetry breaking and random sampling

15-853 Page35

