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15-853:Algorithms in the Real World
Parallel Algorithms: Lecture 1

Nested parallelism
Cost model
Parallel techniques and algorithms
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Why Parallelism: Machines
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Why Parallelism: Machines
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112 core 4-chip server
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x 4 =

Up to 6TByte memory
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Xeon Phi: Knights Landing (64 cores)
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4992 “cuda” cores
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Up to 300K servers
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Dec 2010

Nov 2012
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May 2015

Sep 2014
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Mar 2017, 12 core
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UDOO

Raspberry
Pi 3

15-853



Page 13Andrew Chien, 200815-853



Outline (draft)
Concurrency vs. Parallelism
Concurrency example
Quicksort example
Nested Parallelism

- fork-join and parallel loops
Cost model: work and span
Techniques:

– Using collections: inverted index
– Divide-and-conquer: merging,  mergesort, kd-

trees, matrix multiply, matrix inversion, fft
– Contraction : quickselect, list ranking, graph 

connectivity, suffix arrays
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Parallelism vs. Concurrency

Concurrency

sequential concurrent

Parallelism
serial Traditional 

programming
Traditional 
OS

parallel Deterministic 
parallelism

General 
parallelism
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Parallelism: using multiple processors/cores 
running at the same time. Property of the machine
Concurrency: non-determinacy due to interleaving 
threads.  Property of the application.
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Nested Parallelism

nested parallelism =
arbitrary nesting of parallel loops + fork-join

– Assumes no synchronization among parallel 
tasks except at joint points.

– Deterministic if no race conditions

Advantages: 
– Good schedulers are known
– Easy to understand, debug, and analyze
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Nested Parallelism: parallel loops
cilk_for (i=0; i < n; i++) 

B[i] = A[i]+1;

Parallel.ForEach(A, x => x+1);

B = {x + 1 : x in A}

#pragma omp for 
for (i=0; i < n; i++) 

B[i] = A[i] + 1;
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Cilk

Microsoft TPL 
(C#,F#)

Nesl, Parallel Haskell

OpenMP
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Nested Parallelism: fork-join
cobegin { 
S1;
S2;}

coinvoke(f1,f2)
Parallel.invoke(f1,f2)

#pragma omp sections
{ 
#pragma omp section
S1;
#pragma omp section
S2;

} Page18

Dates back to the 60s.  Used in 
dialects of Algol, Pascal

Java fork-join framework
Microsoft TPL (C#,F#)

OpenMP (C++, C, Fortran, …)
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Nested Parallelism: fork-join

Page19

spawn S1;
S2;
sync;

(exp1 || exp2)

plet
x = exp1
y = exp2

in
exp3

cilk, cilk+

Various functional 
languages

Various dialects of 
ML and Lisp
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Serial Parallel DAGs
Dependence graphs of nested parallel computations are 

series parallel

Two tasks are parallel if not reachable from each other.
A data race occurs if two parallel tasks are involved in a 

race if they access the same location and at least one 
is a write.
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Cost Model
Compositional:

Work : total number of operations
– costs are added across parallel calls

Depth : span/critical path of the computation
– Maximum span is taken across forked calls

Parallelism = Work/Depth
– Approximately # of processors that can be 

effectively used.
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Combining for parallel for:
parfor i in [0:n]

f(i);

€ 

Wpexp(pfor ...) = Wexp(f(i))
i=0

n−1

∑

€ 

Dpexp(pfor ...) = i=0
n−1max Dexp(f(i))

work

span

Combining costs
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A Formal Model: The MP-RAM
Start with the sequential Random Access Machine 

(RAM) model
Add a fork(n) instruction:

1. Forks n identical child copies of the process, 
the i-th one has i in a special index register

2. Suspend the parent
3. When all children finish, restart the parent 

with 0 in the index register.
Purely nested.  Can be viewed as series-parallel DAG.
Work and Depth as usual
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MP-PRAM: ordering
Any serialization (topological sort of DAG) is valid, 

and memory operations have normal semantics 
under this ordering.

Results can depend on ordering
Definitions (pairs of instructions):

– Conflict: access the same location, at least one 
of which is a write.

– Concurrent: are unordered in the DAG 
– Race: conflict and concurrent

Race free programs always return the same result
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Simple measures that give us a good sense of 
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.
This is within a constant factor of optimal.
Goals in designing an algorithm

1. Work should be about the same as the 
sequential running time.  When it matches 
asymptotically we say it is work efficient.

2. Parallelism (W/D) should be polynomial 
O(n1/2) is probably good enough

Why Work and Span
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Example: Quicksort
function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];

How much parallelism?

15-853
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Recursive
calls
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Quicksort Complexity 

partition append

Span = O(n)

(less than, …)

Sequential Partition and appending
Parallel calls

Work = O(n log n)

Not a very good parallel algorithm

Parallelism = O(log n)

15-853 *All randomized
with high probability



Quicksort Complexity
Now lets assume the partitioning and appending can 

be done with:
Work = O(n)
Span = O(log n)

but recursive calls are made sequentially.
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Quicksort Complexity

Parallel partition
Sequential calls 

Span = O(n)

Work = O(n log n)

Not a very good parallel algorithm

Parallelism = O(log n)

15-853 *All randomized
with high probability
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Quicksort Complexity

Span = O(lg2 n)

Parallel partition
Parallel calls

Work = O(n log n)

A good parallel algorithm

Span = O(lg n)

Parallelism = O(n/log n)

15-853 *All randomized
with high probability



Quicksort Complexity
Caveat: need to show that depth of recursion is 

O(log n) with high probability
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Parallel selection

{e in S | e < a};

S                    =  [2, 1, 4, 0, 3, 1, 5, 7]
F = S < 4        =  [1, 1, 0, 1, 1, 1, 0, 0]
I = addscan(F) =  [0, 1, 2, 2, 3, 4, 5, 5]

where  F
R[I] = S      = [2, 1, 0, 3, 1]

Each element gets sum of
previous elements.
Seems sequential?
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Scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3,    6,     4,    12]
sum

recurse
[0,    3,     9,    13]

[2,    7,    12,   18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18][0, 2, 3, 7, 9, 12, 13, 18]
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Scan code
function addscan(A) =
if (#A <= 1) then [0]
else let
sums = {A[2*i] + A[2*i+1] : i in [0:#a/2]};
evens = addscan(sums);
odds = {evens[i] + A[2*i] : i in [0:#a/2]};

in interleave(evens,odds);

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)
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Parallel Techniques
Some common themes in �Thinking Parallel�
1. Working with collections.

– map, selection, reduce, scan, collect
2. Divide-and-conquer

– Even more important than sequentially
– Merging, matrix multiply, FFT, …

3. Contraction
– Solve single smaller problem
– List ranking, graph contraction

4. Randomization
– Symmetry breaking and random sampling
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