15-853:Algorithms in the Real World

Parallel Algorithms: Lecture 1
Nested parallelism
Cost model
Parallel techniques and algorithms

15-853 Pagel

Why Parallelism: Machines

Intel Xeon Eight-Core E5-2660 2.2GHz 8.0GT/s 20MB LGA2011
Processor without Fan, Retail BX80621E52660

by Intel
Be the first to review this item

Price: $137.99 & FREE Shipping
i Get $40.00 off instantly: Your cost could be $87.99 upon approval for the Amazon.com Store Card. Learn more

Note: Not eligible for Amazon Prime. Available with free Prime shipping from other sellers on Amazon.

Only 13 left in stock.
Get it as fast as Thursday, Oct. 13.
Ships from and sold by Galactics.

Model: Intel Xeon Processor E5-2660
Core Count: 8

Clock Speed: 2.2 GHz

Cache: 20 MB

» Max Memory Bandwidth: 51.2 GB/s

» Socket: LGA2011

Used & new (29) from $47.95 + $6.44 shipping

15-853 Page 2

Why Parallelism: Machines

by Rob Williams — Sunday, June 11, 2017

Intel 28-Core Xeon Platinum 8176 Dual-Socket Server Rocks
Cinebench Benchmark With |12 Threads

Data Center » Servers

AMD does an Italian job on Intel,
unveils 32-core, 64-thread 'Naples'
CPU

Claims to be two times faster than Chipzilla's latest
data centre processor

By Chris Mellor 8 Mar 2017 at 12:35 59(,) SHAREY

15-853 Page 3

112 core 4-chip server

Up to 6 TByte memory

15-853 Page 4

Knights Landing (64 cores)

Xeon Ph

Page 5

15-853

Qualcomm readies up 48-core Centriq 2400 ARM server chip

by Zak Killian — 12:51 PM on December 9, 2016

Maybe 2017 will be the year that ARM servers finally become a thing. After demoing a 24-core server
chip a little more than a year ago, Qualcomm's Datacenter Technologies subsidiary has announced
the Centrig 2400 CPU. This new chip is a 48-core ARMv8 processor based on a new in-house CPU
core design called Falkor, and it's compliant with ARM's Server Base System Architecture
specification. Earlier in the week, Qualcomm showed off the new hardware running "a typical
datacenter application" comprising Linux with Java and Apache Spark.

15-853 Page 6

4992 "cuda” cores

Nvidia Tesla K80 24GB GPU Accelerator passive cooling 2x Kepler
GK210 900-22080-0000-000

by NVIDIA
Yriririrsy ~ 29 customerreviews | 11 answered questions

Price: $4,295.95 + $11.55 shipping

Note: Not eligible for Amazon Prime.

In Stock.

Ships from and sold by eServer PRO.

Estimated Delivery Date: Aug. 27 - Sept. 1 when you choose Expedited at checkout.

» Nuvidia Tesla K80 GPU: 2x Kepler GK210

» Memory size (GDDRS5) : 24GB (12GB per GPU)

» CUDA cores: 4992 (2496 per GPU)

» Memory bandwidth: 480 GB/sec (240 GB/sec per GPU)

» 2.91 Tflops double precision performance with NVIDIA GPU Boost - See more at:
http://www.nvidia.com/object/tesla-servers.html#sthash.|IF5LVwFq.dpuf

4 new from $4,135.00

Upgrading to a Solid-State Drive?
Roll over image to zoom in Learn how to install an SSD with Amazon Tech Shorts. Learn more

15-853 7

LG Optimus 2X: first dual-core
smartphone launches with Android, 4-
inch display, 1080p video recording

@ Dec 2010 53

Samsung Galaxy S IV to feature Exynos 28nm quad-core
processor?
Written by Andre Yoskowitz @ 01 Nov 2012 18:02 NOV 201 2

It has been a few weeks but there is a
new rumor regarding the upcoming
Samsung Galaxy S IV.

According to reports, Samsung will pack
next year's flagship device with its "Adonis"
Exynos processor, a quad-core ARM 15
beast that uses efficient 28nm tech.

Samsung is supposedly still testing the
application processor, but mass production

-85% scheduled for the Q1 2013 barring any
delays.

Lenovo Announces First Octa-Core Smartphone, The Vibe X2
Q0006

Jay McGregor, conTRIBUTOR
» ruero Sep 2014
4 Opinions expressed by Forbes Contributors are their own. p

10-core MediaTek Helio X20 is official

t by Robert Triggs - | 2 - .
e e _,{_{{g;;{.(;;f‘
ay 2 O 1 5 'j&« »‘ o —\:.L;T_‘: ‘

15-853 Page 10

MediaTek and TSMC trialing new /nm smartphon
processor with mad CPU core count

Posted: 09 Mar 2017, 06:53, by Luis D.

[e X

Mar 2017, 12 core

15-853 Page 11

G20

@ [
-
o

-
=

@
—

2015

‘Raspberry Fi 3 Model B V1.2
(©) Raspberry P

e
.~m

862
o~

=

€

D) &

i

Teolin)gies

=

oF A

gem

s

€3 “Ct

ALY
AT ON
Nz

0

Raspberry

Pi 3

12

Parallelism is here... And Growing!

Future: 100+

Axg AR Ry LR o1

0

4 a6 CEwm

Nehalem: 8+

-
Core 2 Duo (2)

2006 2007 2008 2009 2010 o 2015

Parallelism for the Masses

)

Andrew Chien, 20085-853

Outline (draft)

Concurrency vs. Parallelism
Concurrency example
Quicksort example
Nested Parallelism
- fork-join and parallel loops
Cost model: work and span
Techniques:
- Using collections: inverted index
- Divide-and-conquer: merging, mergesort, kd-
trees, matrix multiply, matrix inversion, fft

- Contraction : quickselect, list ranking, graph

connectivity, suffix arrays
15-853 Pagel4

Parallelism vs. Concurrency

Parallelism: using multiple processors/cores
running at the same time. Property of the machine

Concurrency: non-determinacy due to interleaving
threads. Property of the application.

Concurrency
sequential concurrent
Traditional Traditional

St programming | OS

Parallelism ——
Deterministic | General

parallel :)
parallelism parallelism

15-853 15

Nested Parallelism

nested parallelism =
arbitrary nesting of parallel loops + fork-join

- Assumes no synchronization among parallel
tasks except at joint points.

- Deterministic if no race conditions

Advantages:
- Good schedulers are known

- Easy to understand, debug, and analyze
15-853 Pagel6

Nested Parallelism: parallel loops

cilk for (i=0; i < n; i++) Cilk
B[i] = A[1]+1;

Microsoft TPL

Parallel.ForEach(A, x => x+1);

(CH . F#)
B={x+ 1 : x in A} Nesl, Parallel Haskell
#pragma omp for OpenMP

for (1=0; 1 < n; 1i++)
B[i] = A[i] + 1;

15-853 Pagel7

Nested Parallelism: fork-join

cobegin {
Sl;
S2;}

Dates back to the 60s. Used in
dialects of Algol, Pascal

Java fork-join framework

coinvoke(fl,£2) Microsoft TPL (C# F#)
Parallel.invoke(fl,£f2)

#pragma omp sections
{ OpenMP (C++, C, Fortran, ...)
#pragma omp section
S1;
#pragma omp section
S2;
} 15-853 Pagel8

Nested Parallelism: fork-join

spawn S1;

S2; cilk, cilk+

sync;

(expl || exp2) Various functional

languages

plet
X = expl Various dialects of
y = (3}{E)2 MI, and IJiJSI?

in

exp3

15-853 Pagel9

Serial Parallel DAGs

Dependence graphs of nested parallel computations are
series parallel

Two tasks are parallel if not reachable from each other.

A data race occurs if two parallel tasks are involved in a
race if they access the same location and at least one
IS a write.

15-853 Page20

Cost Model

Compositional:

Work : total number of operations
- costs are added across parallel calls

Depth : span/critical path of the computation
- Maximum span is taken across forked calls

Parallelism = Work/Depth

- Approximately # of processors that can be
effectively used.

15-853

Page21

Combining costs

Combining for parallel for:
parfor i in [0:n]

£(1);

W (pfor ..) = EWeXp (i)

n-1 .
D, (ptor ..) =maXx._, D, (f(1))

15-853

work

span

22

A Formal Model: The MP-RAM

Start with the sequential Random Access Machine
(RAM) model

Add a fork(n) instruction:

1. Forks nidentical child copies of the process,
the i-th one has i in a special index register

2. Suspend the parent

3. When all children finish, restart the parent
with O in the index register.

Purely nested. Can be viewed as series-parallel DAG.
Work and Depth as usual

15-853 Page23

MP-PRAM: ordering

Any serialization (topological sort of DAG) is valid,
and memory operations have normal semantics
under this ordering.

Results can depend on ordering
Definitions (pairs of instructions):

- Conflict: access the same location, at least one
of which is a write.

- Concurrent: are unordered in the DAG
- Race: conflict and concurrent
Race free programs always return the same result

15-853 Page24

Why Work and Span

Simple measures that give us a good sense of
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.

This is within a constant factor of optimal.
Goals in designing an algorithm

1. Work should be about the same as the
sequential running time. When it matches
asymptotically we say it is work efficient.

2. Parallelism (W/D) should be polynomial
O(n'/2) is probably good enough

15-853

25

Example: Quicksort

function quicksort(S) =
if (#S <= 1) then S
else let

a = S[rand(#S)]

S1 = {e in S | e < a}; o

S2 = {e in S | e = a}; Partition

S3 = {ein S | e > a}; .

R = {quicksort(v) : v in [S1, S3]}; Recursive
in R[0] ++ S2 ++ R[1]; calls

How much parallelism?

15-853 26

Quicksort Complexity

Sequential Partition and appending
Parallel calls

Work = O(n log n)

< N
/ %
partition \ > append
(less than, ...) N
—
Span = O(n) : Parallelism = O(log n)

Not a very good parallel algorithm
15-853 *All randomized 5,
with high probability

Quicksort Complexity

Now lets assume the partitioning and appending can
be done with:

Work = O(n)
Span = O(log n)
but recursive calls are made sequentially.

15-853 Page28

Quicksort Complexity

Parallel partition
Sequential calls

N

\

"~

\

\

Not a very good parallel algorithm

Span = O(h)

Work = O(n log n)

Parallelism = O(log n)

*All randomized
with high probability

Quicksort Complexity

Parallel partition Span = O(Ign)
Parallel calls /

=
<E> / Work = O(n log n)

Span = O(lgZn) Parallelism = O(n/log n)

A good parallel algorithm
15-853 *All randomized 5,
with high probability

Quicksort Complexity

Caveat: need to show that depth of recursion is
O(log n) with high probability

15-853 Page31

Parallel selection

{e in S | e < a};

S = [2,1,4,0,3,1,5,7]
F=S<4 =11,1,0,1,1,1,0, 0]
I =addscan(F)= [0,1,2,2,3,4,5, 5]

where F
R[I]=5 =[2,1,0,3,1]

Each element gets sum of
previous elements.

Seems sequential?
15-853 32

sum

recurse

sum

interleave

Scan

[2,1,4,2,3,1,5,7]
AN N
3/ 6.,/ 4,

15-853

33

Scan code

function addscan(dA) =

if (#A <= 1) then [0]

else let
sums = {A[2*1] + A[2*i+1]
evens = addscan (sums) ;
odds = {evens[i] + A[2%*i]

in interleave (evens,odds) ;

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)

15-853

: 1 in [0:#a/2]1};

: 1 in [0:#a/21};

34

Parallel Techniques

Some common themes in “Thinking Parallel”
1. Working with collections.
- map, selection, reduce, scan, collect
2. Divide-and-conquer
- Even more important than sequentially
- Merging, matrix multiply, FFT, ...
3. Contraction
- Solve single smaller problem
- List ranking, graph contraction
4. Randomization
- Symmetry breaking and random sampling

15-853

Page35

