
15-853 Page1

15-853:Algorithms in the Real World

Error Correcting Codes III (expander based codes)
– Expander graphs
– Low density parity check (LDPC) codes
– Tornado codes

Thanks to Shuchi Chawla for many of the slides

15-853 Page2

Why Expander Based Codes?
Linear codes like RS & random linear codes

The other two give nearly optimal rates
But they are slow :

Assuming an (n, (1-p)n, (1-e)pn+1)2 tornado code
*does not necessarily fix (d-1)/2 errors

Code Encoding Decoding*
Random Linear O(n2) O(n3)

RS O(n log n) O(n2)
LDPC O(n2) or better O(n)
Tornado O(n log 1/e) O(n log 1/e)

15-853 Page3

Error Correcting Codes Outline
Introduction
Linear codes
Read Solomon Codes
Expander Based Codes

– Expander Graphs
– Low Density Parity Check (LDPC) codes
– Tornado Codes

15-853 Page4

Expander Graphs (non-bipartite)

(a, b)-expander graph (0 < a < 1, 1 < b)
Properties

– Expansion: every small subset (k ≤ an) has many (≥
bk) neighbors

– Low degree – not technically part of the
definition, but typically assumed

k ≤ a n ≥ b k

G

|G| = n

15-853 Page5

Expander Graphs (bipartite)

Properties
– Expansion: every small subset (k ≤ an) on left has

many (≥ bk) neighbors on right
– Low degree – not technically part of the

definition, but typically assumed

k bits
(k ≤ an) bk bits

15-853 Page6

Expander Graphs
Useful properties:

– Every set of vertices has many neighbors
– Every balanced cut has many edges crossing it.

Related to the “isoperimetric number”.
– A random walk will quickly converge to the

stationary distribution (rapid mixing)
– The graph has “high dimension”
– Expansion is related to the eigenvalues of the

adjacency matrix (related to spectral graph
theory)

15-853 Page7

Expander Graphs: Applications
Pseudo-randomness: implement randomized

algorithms with few random bits
Cryptography: strong one-way functions from weak

ones.
Hashing: efficient n-wise independent hash functions
Random walks: quickly spreading probability as you

walk through a graph
Error Correcting Codes: several constructions
Communication networks: fault tolerance, gossip-

based protocols, peer-to-peer networks

15-853 Page8

d-regular graphs
An undirected graph is d-regular if every vertex has

d neighbors.

A bipartite graph is d-regular if every vertex on the
left has d neighbors on the right.

The constructions we will be looking at are all d-
regular.

15-853 Page9

Expander Graphs: Eigenvalues
Consider the normalized adjacency matrix Aij for an

undirected graph G (all rows sum to 1)
The (xi,li) satisfying

A xi = li xi
are the eigenvectors (xi) and eigenvalues (li) of A.

Consider the eigenvalues l0 ≥ l1 ≥ l2 ≥ …
For a d-regular graph, l0 = 1. Why?
The separation of the eigenvalues tell you a lot about

the graph (we will revisit this several times).
If l1 is much smaller than l0 then the graph is an

expander.
Expansion b ≥ (1/l1)2

15-853 Page10

Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (b)

Randomized constructions
– A random d-regular graph is an expander with a high

probability
– Construct by choosing d random perfect matchings
– Time consuming and cannot be stored compactly

Explicit constructions
– Cayley graphs, Ramanujan graphs etc
– Typical technique – start with a small expander, apply

operations to increase its size

15-853 Page11

Expander Graphs: Constructions
Start with a small expander, and apply operations to make it

bigger while preserving expansion

Squaring
– G2 contains edge (u,w) if G contains edges (u,v)

and (v,w) for some node v
– A’ = A2 – 1/d I
– l’ = l2 – 1/d
– d’ <= d2 - d

Size º
Degree ­
Expansion ­

15-853 Page12

Expander Graphs: Constructions
Start with a small expander, and apply operations to make it

bigger while preserving expansion

Tensor Product (Kronecker product)
– G = AxB nodes are (a,b) " aÎA and b Î B
– edge between (a,b) and (a’,b’) if A contains (a,a’)

and B contains (b,b’)
– n’ = n1n2

– l’ = max (l1, l2)
– d’ = d1d2

Size ­
Degree ­
Expansion ¯

15-853 Page13

Expander Graphs: Constructions
Start with a small expander, and apply operations to make it

bigger while preserving expansion

Zig-Zag product
– “Multiply” a big graph with a small graph

n2 = d1
d2 = Öd1

15-853 Page14

Expander Graphs: Constructions
Start with a small expander, and apply operations to make it

bigger while preserving expansion

Zig-Zag product
– “Multiply” a big graph with a small graph

Size ­
Degree ¯
Expansion ¯ (slightly)

15-853 Page15

Combination: square and zig-zag

For a graph with size n, degree d, and eigenvalue l,
define G = (n, d, l). We would like to increase n while
holding d and l the same.
Squaring and zig-zag have the following effects:

(n, d, l)2 = (n, d2, l2) º ­­
(n1, d1, l1) zz (d1, d2, l2) = (n1d1, d2

2, l1+ l2+ l2
2) ­¯¯

Now given a graph H = (d4, d, 1/5) and G1 = (d4, d2, 2/5)
– Gi = Gi-1

2 zz H (square, zig-zag)
Giving: Gi = (ni, d2, 2/5) where ni = d4i (as desired)

15-853 Page16

Error Correcting Codes Outline
Introduction
Linear codes
Read Solomon Codes
Expander Based Codes

– Expander Graphs
– Low Density Parity Check (LDPC) codes
– Tornado Codes

15-853 Page17

Low Density Parity Check (LDPC) Codes

n
n-k ú

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

010101000
000100101
101001000
000010110
011000010
100010001

H

H

n

n-k

Each row is a vertex on the right and each column is
a vertex on the left.

A codeword on the left is valid if each right “parity
check” vertex has parity 0.

The graph has O(n) edges (low density)

code
bits

parity
check
bits

15-853 Page18

Applications in the “real world”
10Gbase-T (IEEE 802.3an, 2006)

– Standard for 10 Gbits/sec over copper wire
WiMax (IEEE 802.16e, 2006)

– Standard for medium-distance wireless.
Approx 10Mbits/sec over 10 Kilometers.

NASA
– Proposed for all their space data systems

15-853 Page19

History
Invented by Gallager in 1963 (his PhD thesis)

Generalized by Tanner in 1981 (instead of using
parity and binary codes, use other codes for
“check” nodes).

Mostly forgotten by community at large until the mid
90s when revisted by Spielman, MacKay and
others.

15-853 Page20

Distance of LDPC codes
Consider a d-regular LPDC with (a,3d/4) expansion.
Theorem: Distance of code is greater than an.
Proof. (by contradiction)
Assume a codeword with weight v ≤ an.
Let V be the set of 1 bits in the codeword
It has >3/4dv neighbors on the right
Average # of 1s per such neighbor

is < 4/3.
To make average work, at least one has

only 1 bit…which would cause an error
since parity has to be at least 2.

d = degree

V

neighbors

15-853 Page21

Correcting Errors in LDPC codes
We say a vertex is unsatisfied if parity ¹ 0

Algorithm:
While there are unsatisfied check bits
1. Find a bit on the left for which more than d/2

neighbors are unsatisfied
2. Flip that bit

Converges since every step reduces unsatisfied
nodes by at least 1.

Runs in linear time.
Why must there be a node with more than d/2

unsatisfied neighbors?

15-853 Page22

Coverges to closest codeword
Theorem: If # of error bits is less than an/4 with

3d/4 expansion then the simple decoding algorithm
will coverge to the closest codeword.

Proof: let:
ui = # of unsatisfied check bits

on step i
ri = # corrupt code bits on step i
si = # satisfied check bits with

corrupt neighbors on step i
We know that ui decreases on each

step, but what about ri?

15-853 Page23

Proof continued:

iii drus £+2

ui = unsatisfied
ri = corrupt
si = satisfied with corrupt neighbors

iii drsu
4
3

³+ (by expansion)
(by counting edges)

ii udr £
2
1

(by substitution)

00 dru £ (by counting edges)0uui < (steps decrease u)

Therefore: 02rri < i.e. number of corrupt bits cannot
double

If we start with at most an/4 corrupt bits we will never
get an/2 corrupt bits but the distance is an

15-853 Page24

More on decoding LDPC
Simple algorithm is only guaranteed to fix half as

many errors as could be fixed but in practice can
do better.

Fixing (d-1)/2 errors is NP hard
Soft “decoding” as originally specified by Gallager is

based on belief propagation---determine
probability of each code bit being 1 and 0 and
propagate probs. back and forth to check bits.

15-853 Page25

Encoding LDPC
Encoding can be done by generating G from H and

using matrix multiply.
What is the problem with this?
Various more efficient methods have been studied

Why is it that if min weight across codewords is l,
then distance is exactly l?

How many erasures can a code with distance d fix?

15-853 Page26

15-853 Page27

Error Correcting Codes Outline
Introduction
Linear codes
Read Solomon Codes
Expander Based Codes

– Expander Graphs
– Low Density Parity Check (LDPC) codes
– Tornado Codes

15-853 Page28

The loss model
Random Erasure Model:

– Each bit is lost independently with some
probability µ

– We know the positions of the lost bits
For a rate of (1-p) can correct (1-e)p fraction of the

errors.
Seems to imply a

(n, (1-p)n, (1-e)pn+1)2
code, but not quite because of random errors

assumption.
We will assume p = .5.
Error Correction can be done with some more effort

15-853 Page29

Message
bits Check

bits

c6 = m3 Å m7

Similar to LDPC codes but check bits are not
required to equal zero (i.e the graph does not
represent H).

15-853 Page30

Tornado codes
Will use d-regular bipartite graphs with n nodes on

the left and pn on the right (notes assume p = .5)
Will need b > d/2 expansion.

m1

m2

m3

mk

c1

cpk

degree = 2ddegree = d

k = # of message bits
(notes use n)

15-853 Page31

Tornado codes: Encoding
Why is it linear time?

Computes the sum modulo
2 of its neighborsm1

m2

m3

mk

c1

cpk

15-853 Page32

Tornado codes: Decoding
Assume that all the check bits are intact
Find a check bit such that only one of its neighbors

is erased (an unshared neighbor)
Fix the erased code, and repeat.

m1

m2

m1+m2+c1 = m3

mk

c1

cpk

15-853 Page33

Tornado codes: Decoding
Need to ensure that we can always find such a check bit
“Unshared neighbors” property

Consider the set of corrupted message bit and their
neighbors. Suppose this set is small.

=> at least one message bit has an unshared neighbor.

m1
m2

mk

c1

cpk

unshared
neighbor

15-853 Page34

Tornado codes: Decoding
Can we always find unshared neighbors?

Expander graphs give us this property if b > d/2
(see notes)

Also, [Luby et al] show that if we construct the
graph from a specific kind of degree sequence,
then we can always find unshared neighbors.

15-853 Page35

What if check bits are lost?

Cascading
– Use another bipartite graph to construct another level of

check bits for the check bits
– Final level is encoded using RS or some other code

k pk
p2k

plk £ Ön

total bits n £ k(1 +p + p2 + …)
= k/(1-p)

rate = k/n = (1-p)

15-853 Page36

Cascading

Encoding time
– for the first k stages : |E| = d x |V| = O(k)
– for the last stage: Ök x Ök = O(k)

Decoding time
– start from the last stage and move left
– again proportional to |E|
– also proportional to d, which must be at least

1/e to make the decoding work
Can fix kp(1-e) random erasures

15-853 Page37

Some extra slides

15-853 Page38

Expander Graphs: Properties
Prob. Dist. – p ; Uniform dist. – u

Small |p-u| indicates a large amount of “randomness”

Show that |Ap-u| · l2|p-u|
Therefore small l2 => fast convergence to uniform

Expansion b ¼ (1/l2)2

15-853 Page39

Expander Graphs: Properties
To show that |Ap-u| · l2|p-u|
Let p = u + p’

u is the principle eigenvector Au = u
p’ is perpendicular to u Ap’ · l2p’

So, Ap · u + l2p’

Thus, |Ap - u| · l2|p’|

