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15-853:Algorithms in the Real World

Error Correcting Codes III (expander based codes)
– Expander graphs
– Low density parity check (LDPC) codes
– Tornado codes

Thanks to Shuchi Chawla for many of the slides
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Why Expander Based Codes?
Linear codes like RS & random linear codes

The other two give nearly optimal rates
But they are slow :

Assuming an (n, (1-p)n, (1-e)pn+1)2 tornado code
*does not necessarily fix (d-1)/2 errors 

Code Encoding Decoding*
Random Linear O(n2) O(n3)

RS O(n log n) O(n2)
LDPC O(n2) or better O(n)
Tornado O(n log 1/e) O(n log 1/e)
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Error Correcting Codes Outline
Introduction
Linear codes
Read Solomon Codes
Expander Based Codes

– Expander Graphs
– Low Density Parity Check (LDPC) codes 
– Tornado Codes
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Expander Graphs (non-bipartite)

(a, b)-expander graph (0 < a < 1, 1 < b)
Properties

– Expansion: every small subset (k ≤ an) has many (≥ 
bk) neighbors 

– Low degree – not technically part of the 
definition, but typically assumed

k ≤ a n ≥ b k

G

|G| = n
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Expander Graphs (bipartite)

Properties
– Expansion: every small subset (k ≤ an) on left has 

many (≥ bk) neighbors on right
– Low degree – not technically part of the 

definition, but typically assumed

k bits
(k ≤ an) bk bits
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Expander Graphs
Useful properties:

– Every set of vertices has many neighbors
– Every balanced cut has many edges crossing it. 

Related to the “isoperimetric number”.
– A random walk will quickly converge to the 

stationary distribution (rapid mixing)
– The graph has “high dimension”
– Expansion is related to the eigenvalues of the 

adjacency matrix (related to spectral graph 
theory)
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Expander Graphs: Applications
Pseudo-randomness:  implement randomized 

algorithms with few random bits
Cryptography: strong one-way functions from weak 

ones.
Hashing: efficient n-wise independent hash functions
Random walks: quickly spreading probability as you 

walk through a graph
Error Correcting Codes: several constructions
Communication networks: fault tolerance, gossip-

based protocols, peer-to-peer networks
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d-regular graphs
An undirected graph is d-regular if every vertex has 

d neighbors.

A bipartite graph is d-regular if every vertex on the 
left has d neighbors on the right.

The constructions we will be looking at are all d-
regular.
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Expander Graphs: Eigenvalues
Consider the normalized adjacency matrix Aij for an 

undirected graph G (all rows sum to 1)
The (xi,li) satisfying 

A xi = li xi
are the eigenvectors (xi) and eigenvalues (li) of A.

Consider the eigenvalues l0 ≥ l1 ≥ l2 ≥ …
For a d-regular graph, l0 = 1.  Why?
The separation of the eigenvalues tell you a lot about 

the graph (we will revisit this several times).
If l1 is much smaller than l0 then the graph is an 

expander.
Expansion   b ≥ (1/l1)2
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Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (b)

Randomized constructions
– A random d-regular graph is an expander with a high 

probability
– Construct by choosing d random perfect matchings 
– Time consuming and cannot be stored compactly

Explicit constructions
– Cayley graphs, Ramanujan graphs etc
– Typical technique – start with a small expander, apply 

operations to increase its size
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Expander Graphs: Constructions
Start with a small expander, and apply operations to make it 

bigger while preserving expansion

Squaring
– G2 contains edge (u,w) if G contains edges (u,v) 

and (v,w) for some node v
– A’ = A2 – 1/d I
– l’ = l2 – 1/d
– d’ <= d2 - d

Size º
Degree ­
Expansion ­
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Expander Graphs: Constructions
Start with a small expander, and apply operations to make it 

bigger while preserving expansion

Tensor Product (Kronecker product)
– G = AxB nodes are (a,b)   " aÎA and b Î B
– edge between (a,b) and (a’,b’) if A contains (a,a’) 

and B contains (b,b’)
– n’ = n1n2

– l’ = max (l1, l2)
– d’ = d1d2

Size ­
Degree ­
Expansion ¯
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Expander Graphs: Constructions
Start with a small expander, and apply operations to make it 

bigger while preserving expansion

Zig-Zag product
– “Multiply” a big graph with a small graph

n2 = d1
d2 = Öd1
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Expander Graphs: Constructions
Start with a small expander, and apply operations to make it 

bigger while preserving expansion

Zig-Zag product
– “Multiply” a big graph with a small graph

Size ­
Degree ¯
Expansion ¯ (slightly)
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Combination: square and zig-zag

For a  graph with size n, degree d, and eigenvalue l, 
define G = (n, d, l).   We would like to increase n while 
holding d and l the same.
Squaring and zig-zag have the following effects:

(n, d, l)2 = (n, d2, l2)   º ­­
(n1, d1, l1) zz (d1, d2, l2)  = (n1d1, d2

2, l1+ l2+ l2
2)  ­¯¯

Now given a graph H = (d4, d, 1/5) and G1 = (d4, d2, 2/5)
– Gi = Gi-1

2 zz H        (square, zig-zag)
Giving: Gi = (ni, d2, 2/5)   where ni = d4i   (as desired)
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Error Correcting Codes Outline
Introduction
Linear codes
Read Solomon Codes
Expander Based Codes

– Expander Graphs
– Low Density Parity Check (LDPC) codes 
– Tornado Codes
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Low Density Parity Check (LDPC) Codes
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Each row is a vertex on the right and each column is 
a vertex on the left.    

A codeword on the left is valid if each right “parity 
check” vertex has parity 0.

The graph has O(n) edges (low density)

code
bits

parity
check
bits
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Applications in the “real world”
10Gbase-T (IEEE 802.3an, 2006)

– Standard for 10 Gbits/sec over copper wire
WiMax (IEEE 802.16e, 2006)

– Standard for medium-distance wireless.   
Approx 10Mbits/sec over 10 Kilometers.

NASA
– Proposed for all their space data systems
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History
Invented by Gallager in 1963 (his PhD thesis)

Generalized by Tanner in 1981 (instead of using 
parity and binary codes, use other codes for 
“check” nodes).

Mostly forgotten by community at large until the mid 
90s when revisted by Spielman, MacKay and 
others.
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Distance of LDPC codes
Consider a d-regular LPDC with (a,3d/4) expansion.
Theorem: Distance of code is greater than an.
Proof. (by contradiction)
Assume a codeword with weight v ≤ an.
Let V be the set of 1 bits in the codeword
It has >3/4dv neighbors on the right
Average # of 1s per such neighbor 

is < 4/3.
To make average work, at least one has

only 1 bit…which would cause an error
since parity has to be at least 2.

d = degree

V

neighbors
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Correcting Errors in LDPC codes
We say a vertex is unsatisfied if parity ¹ 0

Algorithm:
While there are unsatisfied check bits
1. Find a bit on the left for which more than d/2 

neighbors are unsatisfied
2. Flip that bit

Converges since every step reduces unsatisfied 
nodes by at least 1.

Runs in linear time.
Why must there be a node with more than d/2 

unsatisfied neighbors?
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Coverges to closest codeword
Theorem:  If # of error bits is less than an/4 with 

3d/4 expansion then the simple decoding algorithm 
will coverge to the closest codeword.

Proof: let:
ui = # of unsatisfied check bits 

on step i
ri = # corrupt code bits on step i
si = # satisfied check bits with 

corrupt neighbors on step i
We know that ui decreases on each 

step, but what about ri?
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Proof continued:

iii drus £+2

ui = unsatisfied
ri = corrupt
si = satisfied with corrupt neighbors

iii drsu
4
3

³+ (by expansion)
(by counting edges)

ii udr £
2
1

(by substitution)

00 dru £ (by counting edges)0uui < (steps decrease u)

Therefore: 02rri < i.e. number of corrupt bits cannot
double

If we start with at most an/4 corrupt bits we will never
get an/2 corrupt bits but the distance is an
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More on decoding LDPC
Simple algorithm is only guaranteed to fix half as 

many errors as could be fixed but in practice can 
do better.

Fixing (d-1)/2 errors is NP hard
Soft “decoding” as originally specified by Gallager is 

based on belief propagation---determine 
probability of each code bit being 1 and 0 and 
propagate probs. back and forth to check bits.
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Encoding LDPC
Encoding can be done by generating G from H and 

using matrix multiply.
What is the problem with this?
Various more efficient methods have been studied



Why is it that if min weight across codewords is l, 
then distance is exactly l?

How many erasures can a code with distance d fix?
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Error Correcting Codes Outline
Introduction
Linear codes
Read Solomon Codes
Expander Based Codes

– Expander Graphs
– Low Density Parity Check (LDPC) codes 
– Tornado Codes
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The loss model
Random Erasure Model:

– Each bit is lost independently with some 
probability µ

– We know the positions of the lost bits
For a rate of (1-p) can correct (1-e)p fraction of the 

errors.
Seems to imply a

(n, (1-p)n, (1-e)pn+1)2
code, but not quite because of random errors 

assumption.
We will assume p = .5. 
Error Correction can be done with some more effort
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Message 
bits Check 

bits

c6 = m3 Å m7

Similar to LDPC codes but check bits are not 
required to equal zero (i.e the graph does not 
represent H).
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Tornado codes
Will use d-regular bipartite graphs with n nodes on 

the left and pn on the right (notes assume p = .5)   
Will need b > d/2 expansion.

m1

m2

m3

mk

c1

cpk

degree = 2ddegree = d

k = # of message bits
(notes use n)
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Tornado codes: Encoding
Why is it linear time?

Computes the sum modulo 
2 of its neighborsm1

m2

m3

mk

c1

cpk
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Tornado codes: Decoding
Assume that all the check bits are intact
Find a check bit such that only one of its neighbors 

is erased (an unshared neighbor)
Fix the erased code, and repeat.

m1

m2

m1+m2+c1 = m3

mk

c1

cpk
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Tornado codes: Decoding
Need to ensure that we can always find such a  check bit
“Unshared neighbors” property

Consider the set of corrupted message bit and their 
neighbors. Suppose this set is small.

=> at least one message bit has an unshared neighbor.

m1
m2

mk

c1

cpk

unshared 
neighbor
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Tornado codes: Decoding
Can we always find unshared neighbors?

Expander graphs give us this property if b > d/2
(see notes)

Also, [Luby et al] show that if we construct the 
graph from a specific kind of degree sequence, 
then we can always find unshared neighbors.
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What if check bits are lost?

Cascading
– Use another bipartite graph to construct another level of 

check bits for the check bits
– Final level is encoded using RS or some other code

k pk
p2k

plk £ Ön

total bits n £ k(1 +p + p2 + …)
= k/(1-p)

rate = k/n = (1-p)
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Cascading

Encoding time
– for the first k stages : |E| = d x |V| = O(k)
– for the last stage: Ök x Ök = O(k)

Decoding time
– start from the last stage and move left
– again proportional to |E|
– also proportional to d, which must be at least  

1/e to make the decoding work
Can fix kp(1-e) random erasures
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Some extra slides
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Expander Graphs: Properties
Prob. Dist. – p ;     Uniform dist. – u

Small |p-u| indicates a large amount of “randomness”

Show that |Ap-u| · l2|p-u|
Therefore small l2 => fast convergence to uniform

Expansion   b ¼ (1/l2)2
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Expander Graphs: Properties
To show that  |Ap-u| · l2|p-u|
Let p = u + p’

u is the principle eigenvector Au = u
p’ is perpendicular to u Ap’ · l2p’

So, Ap · u + l2p’

Thus, |Ap - u| · l2|p’|


