15-853:Algorithms in the Real World

Error Correcting Codes ITI (expander based codes)
- Expander graphs
- Low density parity check (LDPC) codes
- Tornado codes

Thanks to Shuchi Chawla for many of the slides

15-853 Pagel



Why Expander Based Codes?

Linear codes like RS & random linear codes

The other two give nearly optimal rates
But they are slow :

Code Encoding Decoding™
Random Linear | O(n?) O(n3)

RS O(n log n) O(n?)

LDPC O(n?) or better | O(n)
Tornado O(n log 1/¢) O(n log 1/¢)

15-853

Assuming an (n, (1-p)n, (1-¢)pn+1), tornado code
*does not necessarily fix (d-1)/2 errors
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Error Correcting Codes Outline

Introduction

Linear codes

Read Solomon Codes

Expander Based Codes
‘ - Expander Graphs

- Low Density Parity Check (LDPC) codes
- Tornado Codes
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Expander Graphs (non-bipartite)

6] = n
G
(o, B)-expander graph (O<a <1,1<p)
Properties
- Expansion: every small subset (k < an) has many (>
Bk) neighbors

- Low degree - not technically part of the
definition, but typically assumed
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Expander Graphs (bipartite)

Bk bits

' 000000000

(oNeNeol

Properties

- Expansion: every small subset (k < an) on left has
many (= k) neighbors on right

- Low degree - not technically part of the
definition, but typically assumed
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Expander Graphs

Useful properties:
- Every set of vertices has many neighbors

- Every balanced cut has many edges crossing it.
Related to the “isoperimetric number”.

- A random walk will quickly converge to the
stationary distribution (rapid mixing)

- The graph has “high dimension”

- Expansion is related to the eigenvalues of the
adjacency matrix (related to spectral graph
theory)
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Expander Graphs: Applications

Pseudo-randomness: implement randomized
algorithms with few random bits

Cryptography: strong one-way functions from weak
ones.

Hashing: efficient n-wise independent hash functions

Random walks: quickly spreading probability as you
walk through a graph

Error Correcting Codes: several constructions

Communication networks: fault tolerance, gossip-
based protocols, peer-to-peer networks
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d-regular graphs

An undirected graph is d-regular if every vertex has
d neighbors.

A bipartite graph is d-regular if every vertex on the
left has d neighbors on the right.

The constructions we will be looking at are all d-
regular.
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Expander Graphs: Eigenvalues

Consider the normalized adjacency matrix A;; for an
undirected graph G (all rows sum to 1)

The (x;,\;) satisfying
AX = A X
are the eigenvectors (x;) and eigenvalues (1;) of A.

Consider the eigenvalues Ay > Ay 2 A, 2
For a d-regular graph, Ay = 1. Why?

The separation of the eigenvalues tell you a lot about
the graph (we will revisit this several times).

If % is much smaller than 2, then the graph is an
expander.

Expansion 2 (1/A,)?
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Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (3)

Randomized constructions

- A random d-regular graph is an expander with a high
probability

- Construct by choosing d random perfect matchings
- Time consuming and cannot be stored compactly

Explicit constructions
- Cayley graphs, Ramanujan graphs etc

- Typical technique - start with a small expander, apply
operations to increase its size
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Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Squaring

- G? contains edge (u,w) if G contains edges (u,v)
and (v,w) for some node v

- A= A?2-1/d1
- A =A2-1/d
-d<=d?-d :
Size =
Degree T
T

Expansion

15-853 Pagell



Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Tensor Product (Kronecker product)
- 6= AxB nodes are (a,b) VacAandb B

- edge between (a,b) and (a',b") if A contains (a,a’)
and B contains (b,b’)

- n': NN,

- A =max (A, Ap) Size T

- (j - c11C12’ E>E3£;r‘€3€3 /T
Expansion "
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Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Zig-Zag product
- "Multiply” a big graph with a small graph

> h, = d;
> dz = \/dl
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Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Zig-Zag product

- "Multiply” a big graph with a small graph
Size T

~
A
Degree \

Expansion  { (slightly)
P V

15-853 Pagel4



Combination: square and zig-zag

For a graph with size n, degree d, and eigenvalue A,
define G = (n, d, .). We would like to increase n while
holding d and A the same.

Squaring and zig-zag have the following effects:
(n,d, 1) =(n,d? 22) =11
(hy, di, Aq) 2z (dy, dp, Ap) = (Ngdy, dp?, Ag+ Ro* 25%) TUL
Now given a graph H = (d*, d, 1/5) and 6, = (d*, d?, 2/5)
- 6,=6,4° zzH (square, zig-zag)
Giving: G; = (n,, d, 2/5) where n, = d* (as desired)
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Error Correcting Codes Outline

Introduction

Linear codes

Read Solomon Codes

Expander Based Codes
- Expander Graphs

‘ - Low Density Parity Check (LDPC) codes
- Tornado Codes
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Low Density Parity Check (LDPC) Codes

n
10001000 1]
; party (010000
E(')Te check  HM i 0601001 01K
TS bits \
1 01001000
% n-k 0001 01 01 0

n H

Each row is a vertex on the right and each column is
a vertex on the left.

A codeword on the left is valid if each right "parity
check” vertex has parity O.

The graph has O(n) edges (low density)
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Applications in the "real world"

10Gbase-T (IEEE 802.3an, 2006)
- Standard for 10 Gbits/sec over copper wire
WiMax (TEEE 802.16e, 2006)

- Standard for medium-distance wireless.
Approx 10Mbits/sec over 10 Kilometers.

NASA
- Proposed for all their space data systems
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History

Invented by Gallager in 1963 (his PhD thesis)

Generalized by Tanner in 1981 (instead of using
parity and binary codes, use other codes for
“check” nodes).

Mostly forgotten by community at large until the mid
90s when revisted by Spielman, MacKay and
others.
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Distance of LDPC codes

Consider a d-reqular LPDC with (o,3d/4) expansion.
Theorem: Distance of code is greater than an.
Proof. (by contradiction)

Assume a codeword with weight v < an.

Let V be the set of 1 bits in the codeword
It has >3/4dv neighbors on the right v

Average # of 1s per such neighbor
is < 4/3.

To make average work, at least one has
only 1 bit..which would cause an error
since parity has to be at least 2.

~—— d = degree

7=

neighbors
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Correcting Errors in LDPC codes

We say a vertex is unsatisfied if parity # 0

Algorithm:
While there are unsatisfied check bits

1. Find a bit on the left for which more than d/2
neighbors are unsatisfied

2. Flip that bit

Converges since every step reduces unsatisfied
nodes by at least 1.

Runs in linear time.

Why must there be a node with more than d/2
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Coverges to closest codeword

Theorem: If # of error bits is less than an/4 with

3d/4 expansion then the simple decoding algorithm
will coverge to the closest codeword.

Proof: let:

® u. = # of unsatisfied check bits
on step |

e r; = # corrupt code bits on step i

® s = # satisfied check bits with
corrupt neighbors on step i

We know that u; decreases on each
step, but what about r;?
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Proof continued:

® U, = unsatisfied
® ;= corrupt
® S

satisfied with corrupt neighbors

u;+s; 2 Zd’”,- (by expansion)
25, +u. <dr., (by counting edges)

=

&

u, <u, (stepsdecreaseu) u, <dr, (by counting edges)

» i.e. number of corrupt bits cannot
O double

If we start with at most an/4 corrupt bits we will never

get an/2 corrupt bits but the distance is an
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Therefore: 7, <2




More on decoding LDPC

Simple algorithm is only guaranteed to fix half as
many errors as could be fixed but in practice can
do better.

Fixing (d-1)/2 errors is NP hard

Soft "decoding” as originally specified by Gallager is
based on belief propagation---determine
probability of each code bit being 1 and O and
propagate probs. back and forth to check bits.

Page24



Encoding LDPC

Encoding can be done by generating G from H and
using matrix multiply.

What is the problem with this?
Various more efficient methods have been studied
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Why is it that if min weight across codewords is |,
then distance is exactly I?

How many erasures can a code with distance d fix?
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Error Correcting Codes Outline

Introduction
Linear codes
Read Solomon Codes
Expander Based Codes
- Expander Graphs
- Low Density Parity Check (LDPC) codes
‘ - Tornado Codes
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The loss model

Random Erasure Model:

- Each bit is lost independently with some
probability p

- We know the positions of the lost bits

For a rate of (1-p) can correct (1-g)p fraction of the
errors.

Seems to imply a

(n, (1-p)n, (1-e)pn+1),

code, but not quite because of random errors
assumption.

We will assume p = .5.
Error Correction can be done with some more effort
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Message o 0
bits © o Check
0 0 bits
é C6 - m3 @ m7

00O

Similar to LDPC codes but check bits are not
required to equal zero (i.e the graph does not
represent H).
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Tornado codes

Will use d-regular bipartite graphs with n nodes on
the left and pn on the right (notes assume p = .5)

Will need 3 > d/2 expansion.

m;
m; Cy

degree =d| m;Q degree = 2d

o
000

Cpk

k = # of message bits
m (notes use n)

15-853 Page30



Tornado codes: Encoding

Why is it linear time?

Computes the sum modulo

m; 2 of its neighbors
m; ¢
ms; O

0 o

o o

o

Cpk

my
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Tornado codes: Decoding

Assume that all the check bits are intact

Find a check bit such that only one of its neighbors
is erased (an unshared neighbor)

Fix the erased code, and repeat.

m;
m, O-= ¢
m1+m2+C1 = m3 @
(o)
(o)
(o)

D,

000
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Tornado codes: Decoding

Need to ensure that we can always find such a check bit
“Unshared neighbors" property

Consider the set of corrupted message bit and their
neighbors. Suppose this set is small.

=> at least one message bit has an unshared neighbor.

e

unshared m0 €1
neighb{/ o

o o

/ 2

n1kc>

Cpk
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Tornado codes: Decoding

Can we always find unshared neighbors?

Expander graphs give us this property if > d/2
(see notes)

Also, [Luby et al] show that if we construct the
graph from a specific kind of degree sequence,
then we can always find unshared neighbors.
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What if check bits are lost?

Cascading

- Use another bipartite graph to construct another level of
check bits for the check bits

- Final level is encoded using RS or some other code

o pk ,
e
: : %i ............... olk <
8 total bitsn < k(1 +p + p2 + ..)
= k/(1-p)

(ol o]

rate = k/n = (1-p)
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Cascading

Encoding time
- for the first k stages : |E| = d x |V| = O(k)
- for the last stage: vk x vk = O(k)

Decoding time
- start from the last stage and move left
- again proportional to |E|

- also proportional to d, which must be at least
1/¢ to make the decoding work

Can fix kp(1-¢) random erasures
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Some extra slides
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Expander Graphs: Properties

Prob. Dist.-n; Uniform dist. - u
Small |r-u| indicates a large amount of “"randomness”

Show that |Ar-u| - A, |m-u]
Therefore small L, => fast convergence to uniform

Expansion B % (1/1,)?
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Expander Graphs: Properties

To show that |An-u| - A,|m-ul
letn=u+nm

u is the principle eigenvector
n is perpendicular fo u

S0, AT - U+ A,m

Thus, |Ar - u| - &, |7

15-853

Au=u
AT - AT
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