15-853:Algorithms in the Real World

Error Correcting Codes II
- Cyclic Codes
- Reed-Solomon Codes

15-853 Pagel

Some Number Theory

Groups

- Definitions, Examples, Properties
Fields

- Definition, Examples

- Polynomials

- Galois Fields

Why does number theory play such an important role?

It is the mathematics of finite sets of values.

15-853 Page 2

Groups

A Group (6,*.I) is a set & with operator * such that:
1. Closure. Forallabe 6, a*bec &
2. Associativity. For dll ab,c € 6, a*(b*c) = (a*b)*c
3. Identity. There exists I € &, such that for all
ae G, a*I=I'*a-
4. Inverse. For every a € 6, there exist a unique
element b6 € 6, such that a”*b=Ha-=

An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. For all a6 € 6, a*b=b*a

15-853 Page 3

Examples of groups

- Integers, Reals or Rationals with Addition

- The nonzero Reals or Rationals with
Multiplication

- Non-singular n x n real matrices with Matrix
Multiplication

- Permutations over n elements with composition
[0-1,1-52,2>50]0[0-1, 150, 2-52]=[0-0, 152, 2->1]

We will only be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-853 Page 4

Key properties of finite groups

Notation: al=a*a>*a™ .. jtimes

Theorem (Fermat’ s little): for any finite group
(6*I) andge 6,gl6l =T

Definition: the order of g € G is the smallest
positive integer m such that gn=1T

Definition: a group G is cyclic if thereisag e 6
such that order(g) = |G|

Definition: an element g € G of order |G| is called a
generator or primitive element of G.

15-853 Page 5

Groups based on modular arithmetic

The group of positive integers modulo a prime p
Zp* = {1, 2, 3, ey p—l}
*, = multiplication modulo p
Denoted as: (Z,, *,)
Required properties
1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes.
Example: Z,°= {1,2,3,4,5,6}
11=1,21=4,31=5,61=6

15-853 Page 6

Other properties

|Zp*| = (P‘l)
By Fermat’s little theorem: aP-D=1 (mod p)
Example of Z;

X2 x3 x4 x5 X0

Gener'cn‘ors<

For all p the group is cyclic.

15-853 Page 7

A DW= X
RIDINDIN D=
OO ==
=N DD -
WD D
N (Y g S Y N

Fields

A Field is a set of elements F with binary operators
* and + such that

1. (F,+)is an abelian group

2. (F\I,, *)isan abelian group
the “multiplicative group”

3. Distribution: a*(b+c) = a*b + a*c

4. Cancellation: a*I. =1,
The order of a field is the number of elements.
A field of finite order is a finite field.

The reals and rationals with + and * are fields.

15-853 Page 16

Finite Fields

Z,(p prime) with + and * mod p, is a finite field.
1. (Z,, +)is an abelian group (O is identity)
2. (Z,\ 0, *)is an abelian group (1 is identity)
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*0=0

Are there other finite fields?

What about ones that fit nicely into bits, bytes and
words (i.e with 2k elements)?

15-853 Page 17

Polynomials over Z,

Z,[x] = polynomials on x with coefficients in Z,.

- Example of Z5[x]: f(x) = 3x* + 1x3 + 4x° + 3

- deg(f(x)) =4 (the degree of the polynomial)
Operations: (examples over Zs[x])
+ Addition: (x3 +4x2+ 3)+ (3x2+1)=(x3+2x°+4)
 Multiplication: (x3 + 3) * (3x2+1) = 3x>+ x3+4x%+ 3
- I.=0, I.=1
+ +and * are associative and commutative
* Multiplication distributes and O cancels
Do these polynomials form a field?

15-853 Page 18

Division and Modulus

Long division on polynomials (Z5[x]):
Ix+4

2+l >x3+4x2+0x+3

x> +0x°+1x+0
4x* +4x+3
4x° + 0x + 4
(x° +4x +3)/(x* +) =(x + 4) 4x +4
(x° +4x* +3)mod(x* + 1) = (4x + 4)
(X +D(x+4)+(dx+4)=(x" +4x* +3)

15-853 Page 19

Polynomials modulo Polynomials

How about making a field of polynomials modulo
another polynomial? This is analogous to Z, (i.e.,
infegers modulo another integer).

e.g. Zs[x] mod (x2+2x+1)
Does this work?
Does (x + 1) have an inverse?

Definition: An irreducible polynomial is one that is
not a product of two other polynomials both of
degree greater than O.

e.g. (x2 + 2) for Zs[x]
Analogous to a prime number.

15-853 Page 20

Galois Fields

The polynomials
Z,[x] mod p(x)

where

p(x) € Z,[x],
p(x) is irreducible,
and deg(p(x)) = n (i.e. n+1 coefficients)

form a finite field. Such a field has p" elements.
These fields are called Galois Fields or GF(p").
The special case n = 1 reduces to the fields Z,

The multiplicative group of GF(p")\{0} is cyclic (this
will be important later).

15-853 Page 21

GF(2M)

Hugely practicall
The coefficients are bits {0,1}.

For example, the elements of GF(28) can be

represented as a byte, one bit for each term, and
GF(2%%) as a 64-bit word.

- e.g., x0+x*+ x+1=01010011
How do we do addition?

Addition over Z, corresponds to xor.

+ Just take the xor of the bit-strings (bytes or
words in practice). This is dirt cheap

15-853 Page 22

Multiplication over GF(2")

If nis small enough can use a table of all
combinations.

The size will be 2" x 2" (e.g. 64K for GF(28)).
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial
on an overflow by 1 term is simply a test and an
xor.

e.g. 0111 /1001 = 0111
1011 / 1001 = 1011 xor 1001 = 0010
" just look at this bit for GF(23)

15-853 Page 23

Multiplication over GF(2")

typedef unsigned char uc;

uc mult(uc a, uc b) {
int p = a;
uc r = 0;
while (b) {
if (b & 1) r=r * p;
b=Db > 1;
p=p<<1;
if (p & 0x100) p = p * 0x11B;
}

return r;

15-853 Page 24

Viewing Messages as Polynomials

A (n, k, n-k+1) code:
Consider the polynomial of degree k-1
p(x) = g XK1+ - +a X +qg
Message: (a4, ..., a;, ap)
Codeword: (p(1), p(2), ..., p(n))
To keep the p(i) fixed size, we use a, € GF(p")
To make the i distinct, n<pr

Unisolvence Theorem: Any subset of size k of (p(1),
p(2), ..., p(n)) is enough to (uniquely) reconstruct
p(x) using polynomial interpolation, e.g., LaGrange's
Formula.

15-853 Page25

Polynomial-Based Code

A (n, k, 2s +1) code:

> <—25—>

Can detect 2s errors
Can correct s errors

Generally can correct o erasures and errors if

a+2B<2s

15-853

Page26

Correcting Errors

Correcting s errors:

1. Find k + s symbols that agree on a polynomial p(x).
These must exist since originally k + 2s symbols
agreed and only s are in error

2. There are no k + s symbols that agree on the
wrong polynomial p'(x)
- Any subset of k symbols will define p'(x)
- Since at most s out of the k+s symbols are in
error, p'(x) = p(x)

15-853 Page27

A Systematic Code

Systematic polynomial-based code
p(X) = apq X¥1+ -+ a; X + ag
Message: (a4, ..., a;, ap)
Codeword: (a, 4, ..., a1, ag, p(1), p(2), ..., p(25))

This has the advantage that if we know there are no
errors, it is trivial to decode.

The version of RS used in practice uses something
slightly different than p(1), p(2), ..

This will allow us to use the "Parity Check" ideas
from linear codes (i.e., Hc™ = 0?) to quickly test
for errors.

15-853 Page28

Reed-Solomon Codes in the Real World

(204,188,17),5, : ITU J.83(A)?
(128,122,7),5, : ITU J.83(B)
(255,223,33),5, : Common in Practice

- Note that they are all byte based
(i.e., symbols are from GF(28)).

Decoding rate on 1.8GHz Pentium 4:
- (255,251) = 89Mbps
- (255,223) = 18Mbps

Dozens of companies sell hardware cores that
operate 10x faster (or more)

- (204,188) = 320Mbps (Altera decoder)

15-853

Page29

Applications of Reed-Solomon Codes

- Storage: CDs, DVDs, “hard drives”,

+ Wireless: Cell phones, wireless links

- Sateline and Space: TV, Mars rover, ...
- Digital Television: DVD, MPEG2 layover
- High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.
- e.g., Gallager codes, Turbo codes

15-853 Page30

RS and "burst” errors

Let's compare to Hamming Codes (which are "optimal”).

code bits | check bits
RS (255, 253, 3),5 2040 16
Hamming (211-1, 211-11-1, 3), 2047 11

They can both correct 1 error, but not 2 random errors.

- The Hamming code does this with fewer check bits
However, RS can fix 8 contiguous bit errors in one byte

- Much better than lower bound for 8 arbitrary errors

log[l + (Tj + -+ (ZJ] > 8log(n —7) = 88 check bits

15-853

Page31

Galois Field

GF(23) with irreducible polynomial: x3 + x + 1
o = X IS a generator

o X 010 2
o2 G 100 3
a3 x+1 011 4
a’ X% + X 110 5
od X2+ x+1 111 6
a x2+1 101 7
o’ 1 001 1

Will use this as an example.

15-853 Page32

Discrete Fourier Transform (DFT)

Another View of polynomial-based codes
o is a primitive nth root of unity (a" = 1) - a generator

(e) (my)

| | | |
1 « a’ o
T=\1 o at o ot =1 | _p | et
Cy 0
1 g™ 20D (D) ; :
\Cnt) L0)

Evaluate polynomial my_;x*! + ... + m;x + m,
at n distinct roots of unity, 1, a, a?, a3, -, ant

Inverse DFT: m=T"'¢c
15-853 Page33

DFT Example

o = X is 7™ root of unity in GF(23)/x3 + x + 1
(i.e., multiplicative group, which excludes additive inverse)

Recall o = "2", 02 ="3", .. ,a’=1="1"
1 1 1 1 1 1 1 11 1 1 1 1 1
1 a o o o & o] |1 2 22 25 2% 2° 2°
1 o o af 1 3 3 33

T=1 & a° =11 4 4%

1 o 1 5
1 o 1 6
1 af 1 7 76

Should be clear that ¢ = T ¢ (my,my,....m,1,0,.)7
is the same as evaluating p(x) = mg + m;x + ... + my_;xk!

at n points.
15-853 Page34

function fft(a,w,+*) =
if #a ==1then returna
Else
w = [Wo,Ws,... W, 1]
e = ff1([ay.a5,...,.0, 5], W)
o = fft([a.a5,...,a,1], W)

return [e,+0g Wgo €1+07 x Wy,...,8,/2.1%0p/2.1 * Wp/2.1,
€o+00 * Wp/2, €1%01 * Wp/241,-, €1/2.1%0p/2-1 * W 1]

15-853 Page36

Decoding

Why is it hard?

Brute Force: try k+2s choose k + s possibilities and
solve for each.

15-853 Page37

Cyclic Codes

A linear code is cyclic if:
(co, €1, s Cnp) € €= (Cp1, Cos oy Cpp) € C

Both Hamming and Reed-Solomon codes are cyclic.

Note: we might have to reorder the columns to make
the code “cyclic”.

Motivation: They are more efficient to decode than
general codes.

15-853 Page38

Generator and Parity Check Matrices

Generator Matrix:
A k x n matrix & such that:
C={meG|meK
Made from stacking the basis vectors
Parity Check Matrix:
A (n - k) X n matrix H such that:
C={veXr|Hevl=0}
Codewords are the nullspace of H

These always exist for linear codes
HeG"=0

15-853 Page39

Generator and Parity Check Polynomials

Generator Polynomial:
A degree (n-k) polynomial g such that:
C={meg|memyg+mx+. +mgxki}
such thatg | x"-1

Parity Check Polynomial:
A degree k polynomial h such that:
C={veX"[x]| hev=0(mod xn-1)}
such that h | x" -1

These always exist for linear cyclic codes
heg=xn-1

15-853 Page40

Viewing g as a matrix

If g(X) = go + giX + .. + Gpys X"
We can put this generator in matrix form:

/é;O g, o g 0 e 0 3\
G: O gO gn—k—Z gn—k—l O
\O O go gl gn—k—l/

Write m = mg + myx +..+ m,_x*1as (mg, mq, ..., M)
Then ¢ = mG

15-853 Page41

g generates cyclic codes

4 g, g v g 0 0 \ [g 3\
0 0 X
G=|" 8o | En-k-2 En-k-1 | . _ g
\ O O coe gO gl .o gn—k—l) \xk_lg)

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (x" -1) = g,4.1.0,....90.91,-- .9n-k_2
Consider h = hy + hyx + .. + h_xk1 (gh = x"-1)

hog + (hiX)g + ... + (hyoxk2)g + (hy 1 xk1)g = x" - 1

xkg = -h, 1 /(hog + hy(xg) + ... + hy_1(xk1g)) mod (x" -1)
This is a linear combination of the rows.

15-853 Page4?2

Viewing h as a matrix

If h = ho + h1X + ...+ hk_lxk_l
we can put this parity check poly. in matrix form:

0 - 0 h, - h ho\
H = O hk—l hk—z ho O
\h, o B Ry 0 o 0

Hc™ =0

15-853 Page43

Hamming Codes Revisited

The Hamming (7,4,3), code.

9:1+x+x3 h=x%*+x2+x+1
1 1 01 0 0 0) 00 1 01 1 1)
|0 T OO0 g0 01110
O O1 1 01 O \1011100)
000 1 10 1

gh=x7-1, GHT=0

The columns are not identical to the previous
example Hamming code.

15-853 Paged4

Factors of x" -1

Intentionally left blank

15-853 Page45

Another way to write g

Let a be a generator of GF(p").
Let n=pr-1 (the size of the multiplicative group)
Then we can write a generator polynomial as

g(x) = (x-a)(x-a?) .. (x - a"), h = (x- ankd) (x-an)
Lemma: g | x"-1, h|x"-1, gh|x"-1

(a | b means a divides b)
Proof:

- a"=1 (because of the size of the group)
=o"-1=0
= o root of xn -1
= (x-0)| x"-1

- similarly for a?, a3, ..., a"

- therefore x"- 1 is divisible by (x - a)(x - a?) ...

15-853 Paged6

Back to Reed-Solomon

Consider a generator polynomial g € GF(p)[x], s.t. g | (x" - 1)
Recall that n - k= 2s (the degree of g is n-k-1, n-k coefficients)
Encode:

- m =mxs (basically shift by 2s)

- b=m'(mod g)

-c=m-b =(mgy, ... mg, -bogy, ... -bp)

- Note that ¢ is a cyclic code based on g

-m=qg+b
-c=m-b=qg
Parity check:
- hc=07?

15-853 Paged7

Example

Lets consider the (7,3,5)s Reed-Solomon code.
We use GF(23)/x3 + x + 1

o X 010 2
o2 NG 100 3
a’ x+1 011 4
a’ X% + X 110 5
a? X2+ x+1 111 6
al x2+1 101 7
o’ 1 001 1

15-853 Page48

Example RS (7,35)s

n=7,k=3,n-k=2s=4,d=2s+1=5

g -= (X - OL)(X - OLZ)(X - (13)(X - (14) a | 010
= x*+ o3x3 + X2+ ax + o3 2 100
h=(x-a?)(x - a®)(x - a’) o3 | 011
= x3 +ad3x3 + a2x + a* o4 1 110
gh = x7 -1 o | 111
Consider the message: 110 000 110 ab | 101
m = (a?, 0, a?) = a*x2 + a4 o’ | 001

m = x*m = a%x® + ax?
= (a* x2 + x + a3)g + (a3%x3 + abx + af)
= (ly4 4] 3 6 ~6

¢= (%0, 0% 0% 0, 0% of) ch = 0 (mod x7 -1)
= 110 000 110 011 000 101 101

15-853 Page49

A useful theorem

Theorem: For any B, if g(B) = O then pB2sm(p) = b(B)
Proof:

x2sm(x) = m'(x) = g(x)q(x) + b(x)

B=sm(B) = g(B)q(B) + b(B) = b(B)

Corollary: B2sm(B) = b(B) for B € {a, a2, a3,..., a2snk}
Proof:
{a, a?, .., a%s} are the roots of g by definition.

15-853 Page50

Fixing errors

Theorem: Any k symbols from c can reconstruct c
and hence m

Proof:

We can write 2s equations involving m (¢,4, ..., Cys)
and b (C,¢ 4, ..., Cg). These are
a®s m(a) = b(a)
a* m(a?) = b(a?)

o.2s(2s) m(OLZS) - b(OLZS)
We have at most 2s unknowns, so we can solve for

them. (I'm skipping showing that the equations
are linearly independent).

15-853 Page51

Efficient Decoding

I don't plan to go into the Reed-Solomon decoding
algorithm, other than to mention the steps.

vV
Error Error Error
Syndrome : Polynomial Locations =Magn|‘rudes | Error | .
Calculator Berlekamp o Chien Forney Corrector
Massy Search Algorithm
k A

\

This is the hard part. CD players
use this algorithm.
(Can also use Euclid's algorithm.)

15-853 Page52

