
15-853 Page1

15-853:Algorithms in the Real World

Error Correcting Codes II
– Cyclic Codes
– Reed-Solomon Codes

15-853 Page 2

Some Number Theory
Groups

– Definitions, Examples, Properties
Fields

– Definition, Examples
– Polynomials
– Galois Fields

Why does number theory play such an important role?

It is the mathematics of finite sets of values.

15-853 Page 3

Groups
A Group (G,*,I) is a set G with operator * such that:

1. Closure. For all a,b Î G, a * b Î G
2. Associativity. For all a,b,c Î G, a*(b*c) = (a*b)*c
3. Identity. There exists I Î G, such that for all

a Î G, a*I=I*a=a
4. Inverse. For every a Î G, there exist a unique

element b Î G, such that a*b=b*a=I
An Abelian or Commutative Group is a Group with the

additional condition
5. Commutativity. For all a,b Î G, a*b=b*a

15-853 Page 4

Examples of groups
– Integers, Reals or Rationals with Addition
– The nonzero Reals or Rationals with

Multiplication
– Non-singular n x n real matrices with Matrix

Multiplication
– Permutations over n elements with composition

[0®1, 1®2, 2®0] o [0®1, 1®0, 2®2] = [0®0, 1®2, 2®1]

We will only be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-853 Page 5

Key properties of finite groups
Notation: aj º a * a * a * … j times

Theorem (Fermat�s little): for any finite group
(G,*,I) and g Î G, g|G| = I

Definition: the order of g Î G is the smallest
positive integer m such that gm = I

Definition: a group G is cyclic if there is a g Î G
such that order(g) = |G|

Definition: an element g Î G of order |G| is called a
generator or primitive element of G.

15-853 Page 6

Groups based on modular arithmetic
The group of positive integers modulo a prime p

Zp
* º {1, 2, 3, …, p-1}

*p º multiplication modulo p
Denoted as: (Zp

*, *p)
Required properties

1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes.

Example: Z7
*= {1,2,3,4,5,6}

1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6

15-853 Page 7

Other properties
|Zp

*| = (p-1)
By Fermat�s little theorem: a(p-1) = 1 (mod p)
Example of Z7

*

x x2 x3 x4 x5 x6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

For all p the group is cyclic.

Generators

15-853 Page 16

Fields
A Field is a set of elements F with binary operators

* and + such that
1. (F, +) is an abelian group
2. (F \ I+, *) is an abelian group

the �multiplicative group�
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*I+ = I+

The order of a field is the number of elements.
A field of finite order is a finite field.

The reals and rationals with + and * are fields.

15-853 Page 17

Finite Fields
Zp (p prime) with + and * mod p, is a finite field.

1. (Zp, +) is an abelian group (0 is identity)
2. (Zp \ 0, *) is an abelian group (1 is identity)
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*0 = 0

Are there other finite fields?
What about ones that fit nicely into bits, bytes and

words (i.e with 2k elements)?

15-853 Page 18

Polynomials over Zp

Zp[x] = polynomials on x with coefficients in Zp.
– Example of Z5[x]: f(x) = 3x4 + 1x3 + 4x2 + 3
– deg(f(x)) = 4 (the degree of the polynomial)

Operations: (examples over Z5[x])
• Addition: (x3 + 4x2 + 3) + (3x2 + 1) = (x3 + 2x2 + 4)
• Multiplication: (x3 + 3) * (3x2 + 1) = 3x5 + x3 + 4x2 + 3
• I+ = 0, I* = 1
• + and * are associative and commutative
• Multiplication distributes and 0 cancels
Do these polynomials form a field?

15-853 Page 19

Division and Modulus
Long division on polynomials (Z5[x]):

44
404
344
010

3041
41

2

2

23

232

+
++
++
+++

++++

+

x
xx
xx
xxx

xxxx

x

)4()1/()34(223 +=+++ xxxx

)44()1mod()34(223 +=+++ xxxx

)34()44()4)(1(232 ++=++++ xxxxx

15-853 Page 20

Polynomials modulo Polynomials
How about making a field of polynomials modulo

another polynomial? This is analogous to Zp (i.e.,
integers modulo another integer).

e.g. Z5[x] mod (x2+2x+1)
Does this work?
Does (x + 1) have an inverse?
Definition: An irreducible polynomial is one that is

not a product of two other polynomials both of
degree greater than 0.

e.g. (x2 + 2) for Z5[x]
Analogous to a prime number.

15-853 Page 21

Galois Fields
The polynomials

Zp[x] mod p(x)
where

p(x) Î Zp[x],
p(x) is irreducible,
and deg(p(x)) = n (i.e. n+1 coefficients)

form a finite field. Such a field has pn elements.
These fields are called Galois Fields or GF(pn).
The special case n = 1 reduces to the fields Zp

The multiplicative group of GF(pn)\{0} is cyclic (this
will be important later).

15-853 Page 22

GF(2n)
Hugely practical!
The coefficients are bits {0,1}.
For example, the elements of GF(28) can be

represented as a byte, one bit for each term, and
GF(264) as a 64-bit word.
– e.g., x6 + x4 + x + 1 = 01010011

How do we do addition?

Addition over Z2 corresponds to xor.
• Just take the xor of the bit-strings (bytes or

words in practice). This is dirt cheap

15-853 Page 23

Multiplication over GF(2n)
If n is small enough can use a table of all

combinations.
The size will be 2n x 2n (e.g. 64K for GF(28)).
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial
on an overflow by 1 term is simply a test and an
xor.

e.g. 0111 / 1001 = 0111
1011 / 1001 = 1011 xor 1001 = 0010
^ just look at this bit for GF(23)

15-853 Page 24

Multiplication over GF(2n)
typedef unsigned char uc;

uc mult(uc a, uc b) {
int p = a;
uc r = 0;
while(b) {
if (b & 1) r = r ^ p;
b = b >> 1;
p = p << 1;
if (p & 0x100) p = p ^ 0x11B;

}
return r;

}

15-853 Page25

Viewing Messages as Polynomials
A (n, k, n-k+1) code:
Consider the polynomial of degree k-1

p(x) = ak-1 xk-1 + ! + a1 x + a0
Message: (ak-1, …, a1, a0)
Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size, we use ai Î GF(pr)
To make the i distinct, n < pr

Unisolvence Theorem: Any subset of size k of (p(1),
p(2), …, p(n)) is enough to (uniquely) reconstruct
p(x) using polynomial interpolation, e.g., LaGrange’s
Formula.

15-853 Page26

Polynomial-Based Code
A (n, k, 2s +1) code:

k 2s

Can detect 2s errors
Can correct s errors
Generally can correct a erasures and b errors if
a + 2b £ 2s

n

15-853 Page27

Correcting Errors
Correcting s errors:
1. Find k + s symbols that agree on a polynomial p(x).

These must exist since originally k + 2s symbols
agreed and only s are in error

2. There are no k + s symbols that agree on the
wrong polynomial p’(x)
- Any subset of k symbols will define p’(x)
- Since at most s out of the k+s symbols are in

error, p’(x) = p(x)

15-853 Page28

A Systematic Code
Systematic polynomial-based code

p(x) = ak-1 xk-1 + ! + a1 x + a0

Message: (ak-1, …, a1, a0)
Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s))

This has the advantage that if we know there are no
errors, it is trivial to decode.

The version of RS used in practice uses something
slightly different than p(1), p(2), …

This will allow us to use the “Parity Check” ideas
from linear codes (i.e., HcT = 0?) to quickly test
for errors.

15-853 Page29

Reed-Solomon Codes in the Real World

(204,188,17)256 : ITU J.83(A)2

(128,122,7)256 : ITU J.83(B)
(255,223,33)256 : Common in Practice

– Note that they are all byte based
(i.e., symbols are from GF(28)).

Decoding rate on 1.8GHz Pentium 4:
– (255,251) = 89Mbps
– (255,223) = 18Mbps

Dozens of companies sell hardware cores that
operate 10x faster (or more)
– (204,188) = 320Mbps (Altera decoder)

15-853 Page30

Applications of Reed-Solomon Codes
• Storage: CDs, DVDs, “hard drives”,
• Wireless: Cell phones, wireless links
• Sateline and Space: TV, Mars rover, …
• Digital Television: DVD, MPEG2 layover
• High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.

– e.g., Gallager codes, Turbo codes

15-853 Page31

RS and “burst” errors

They can both correct 1 error, but not 2 random errors.
– The Hamming code does this with fewer check bits

However, RS can fix 8 contiguous bit errors in one byte
– Much better than lower bound for 8 arbitrary errors

bitscheck 88)7log(8
81

1log »->÷
÷
ø

ö
ç
ç
è

æ
÷÷
ø

ö
çç
è

æ
++÷÷

ø

ö
çç
è

æ
+ n

nn
!

code bits check bits
RS (255, 253, 3)256 2040 16
Hamming (211-1, 211-11-1, 3)2 2047 11

Let’s compare to Hamming Codes (which are “optimal”).

15-853 Page32

Galois Field
GF(23) with irreducible polynomial: x3 + x + 1
a = x is a generator

a x 010 2
a2 x2 100 3
a3 x + 1 011 4
a4 x2 + x 110 5
a5 x2 + x + 1 111 6
a6 x2 + 1 101 7
a7 1 001 1

Will use this as an example.

15-853 Page33

Discrete Fourier Transform (DFT)
Another View of polynomial-based codes
a is a primitive nth root of unity (an = 1) – a generator

÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç

è

æ

=

-

-

)1)(1()1(21

)1(242

12

1

1
1

1111

nnnn

n

n

T

aaa

aaa
aaa

!
"#"""

!
!
!

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

×=

÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç

è

æ

-

-

-

0

0
1

0

1

1

0

!

!

!

!

k

n

k

k m

m

T

c

c
c

c

cTm 1-=Inverse DFT:

Evaluate polynomial mk-1xk-1 + ××× + m1x + m0
at n distinct roots of unity, 1, a, a2, a3, ×××, an-1

15-853 Page34

DFT Example
a = x is 7th root of unity in GF(23)/x3 + x + 1
(i.e., multiplicative group, which excludes additive inverse)
Recall a = “2”, a2 = “3”, … , a7 = 1 = “1”

÷÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

6

2

32

65432

6

771

61

51

441

3331

2222221

1111111

!!

6

5

4

63

42

65432

1
1
1
1
1
1

1111111

a
a
a

aa
aaa

aaaaaa

T

Should be clear that c = T • (m0,m1,…,mk-1,0,…)T

is the same as evaluating p(x) = m0 + m1x + … + mk-1xk-1

at n points.

function fft(a,w,+,*) =
if #a == 1 then return a
Else
w’ = [w0,w2,…,wn-1]
e = fft([a0,a2,…,an-2], w’)
o = fft([a1,a3,...,an-1], w’)
return [e0+o0 * w0, e1+o1 * w1,…,en/2-1+on/2-1 * wn/2-1,

e0+o0 * wn/2, e1+o1 * wn/2+1,…, en/2-1+on/2-1 * wn-1]

15-853 Page36

15-853 Page37

Decoding
Why is it hard?

Brute Force: try k+2s choose k + s possibilities and
solve for each.

15-853 Page38

Cyclic Codes
A linear code is cyclic if:

(c0, c1, …, cn-1) Î C Þ (cn-1, c0, …, cn-2) Î C

Both Hamming and Reed-Solomon codes are cyclic.
Note: we might have to reorder the columns to make

the code “cyclic”.

Motivation: They are more efficient to decode than
general codes.

15-853 Page39

Generator and Parity Check Matrices
Generator Matrix:
A k x n matrix G such that:

C = {m • G | m Î åk}
Made from stacking the basis vectors

Parity Check Matrix:
A (n – k) x n matrix H such that:

C = {v Î ån | H • vT = 0}
Codewords are the nullspace of H

These always exist for linear codes
H • GT = 0

15-853 Page40

Generator and Parity Check Polynomials
Generator Polynomial:
A degree (n-k) polynomial g such that:

C = {m • g | m Î m0 + m1x + … + mk-1xk-1}
such that g | xn – 1

Parity Check Polynomial:
A degree k polynomial h such that:

C = {v Î ån [x] | h • v = 0 (mod xn –1)}
such that h | xn - 1

These always exist for linear cyclic codes
h • g = xn - 1

15-853 Page41

Viewing g as a matrix
If g(x) = g0 + g1x + … + gn-k-1xn-k-1

We can put this generator in matrix form:

Write m = m0 + m1x +…+ mk-1xk-1 as (m0, m1, …, mk-1)
Then c = mG

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

--

--

110

120

110

00

00
00

kn

knkn

kn

ggg

ggg
ggg

G

!!!
"##"

!!!
!!!

15-853 Page42

g generates cyclic codes

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (xn –1) = gn-k-1,0,…,g0,g1,…,gn-k-2
Consider h = h0 + h1x + … + hk-1xk-1 (gh = xn –1)

h0g + (h1x)g + … + (hk-2xk-2)g + (hk-1xk-1)g = xn - 1
xkg = -hk-1

-1(h0g + h1(xg) + … + hk-1(xk-1g)) mod (xn –1)
This is a linear combination of the rows.

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

-
--

--

gx

xg
g

ggg

ggg
ggg

G

k
kn

knkn

kn

1
110

120

110

00

00
00

!
""

!##!
""
""

15-853 Page43

Viewing h as a matrix
If h = h0 + h1x + … + hk-1xk-1

we can put this parity check poly. in matrix form:

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

-

--

-

00

00
00

011

021

011

!!
"##"

!!
!!

hhh

hhh
hhh

H

k

kk

k

HcT = 0

15-853 Page44

Hamming Codes Revisited
The Hamming (7,4,3)2 code.

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

=

1011000
0101100
0010110
0001011

G ÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=

0011101
0111010
1110100

H

g = 1 + x + x3 h = x4 + x2 + x + 1

The columns are not identical to the previous
example Hamming code.

gh = x7 – 1, GHT = 0

15-853 Page45

Factors of xn -1
Intentionally left blank

15-853 Page46

Another way to write g
Let a be a generator of GF(pr).
Let n = pr - 1 (the size of the multiplicative group)
Then we can write a generator polynomial as
g(x) = (x-a)(x-a2) … (x - an-k), h = (x- an-k+1)…(x-an)

Lemma: g | xn – 1, h | xn – 1, gh | xn – 1
(a | b means a divides b)
Proof:

– an = 1 (because of the size of the group)
Þ an – 1 = 0
Þ a root of xn – 1
Þ (x - a) | xn -1

– similarly for a2, a3, …, an

– therefore xn - 1 is divisible by (x - a)(x - a2) …

15-853 Page47

Back to Reed-Solomon
Consider a generator polynomial g Î GF(pr)[x], s.t. g | (xn – 1)
Recall that n – k = 2s (the degree of g is n-k-1, n-k coefficients)
Encode:

– m’ = m x2s (basically shift by 2s)
– b = m’ (mod g)
– c = m’ – b = (mk-1, …, m0, -b2s-1, …, -b0)
– Note that c is a cyclic code based on g

- m’ = qg + b
- c = m’ – b = qg

Parity check:
- h c = 0 ?

15-853 Page48

Example
Lets consider the (7,3,5)8 Reed-Solomon code.
We use GF(23)/x3 + x + 1

a x 010 2
a2 x2 100 3
a3 x + 1 011 4
a4 x2 + x 110 5
a5 x2 + x + 1 111 6
a6 x2 + 1 101 7
a7 1 001 1

15-853 Page49

Example RS (7,3,5)8

g = (x - a)(x - a2)(x - a3)(x - a4)
= x4 + a3x3 + x2 + ax + a3

h = (x - a5)(x - a6)(x - a7)
= x3 + a3x3 + a2x + a4

gh = x7 - 1
Consider the message: 110 000 110

m = (a4, 0, a4) = a4x2 + a4

m’ = x4m = a4x6 + a4x4

= (a4 x2 + x + a3)g + (a3x3 + a6x + a6)
c = (a4, 0, a4, a3, 0, a6, a6)

= 110 000 110 011 000 101 101

a 010
a2 100
a3 011
a4 110
a5 111
a6 101
a7 001

ch = 0 (mod x7 –1)

n = 7, k = 3, n-k = 2s = 4, d = 2s+1 = 5

15-853 Page50

A useful theorem
Theorem: For any b, if g(b) = 0 then b2sm(b) = b(b)
Proof:

x2sm(x) = m’(x) = g(x)q(x) + b(x)
b2sm(b) = g(b)q(b) + b(b) = b(b)

Corollary: b2sm(b) = b(b) for b Î {a, a2, a3,…, a2s=n-k}
Proof:

{a, a2, …, a2s} are the roots of g by definition.

15-853 Page51

Fixing errors
Theorem: Any k symbols from c can reconstruct c

and hence m
Proof:
We can write 2s equations involving m (cn-1, …, c2s)

and b (c2s-1, …, c0). These are
a2s m(a) = b(a)
a4s m(a2) = b(a2)
…
a2s(2s) m(a2s) = b(a2s)

We have at most 2s unknowns, so we can solve for
them. (I’m skipping showing that the equations
are linearly independent).

15-853 Page52

Efficient Decoding
I don’t plan to go into the Reed-Solomon decoding

algorithm, other than to mention the steps.

Syndrome
Calculator

Error
Polynomial

Berlekamp
Massy

Error
Locations

Chien
Search

Error
Magnitudes

Forney
Algorithm

Error
Correctorc m

This is the hard part. CD players
use this algorithm.
(Can also use Euclid’s algorithm.)

