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15-853:Algorithms in the Real World

Error Correcting Codes II
– Cyclic Codes
– Reed-Solomon Codes
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Some Number Theory
Groups

– Definitions, Examples, Properties
Fields

– Definition, Examples
– Polynomials
– Galois Fields

Why does number theory play such an important role?

It is the mathematics of finite sets of values.
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Groups
A Group (G,*,I) is a set G with operator * such that:

1. Closure. For all a,b Î G, a * b Î G
2. Associativity. For all a,b,c Î G, a*(b*c) = (a*b)*c
3. Identity. There exists I Î G, such that for all 

a Î G, a*I=I*a=a
4. Inverse. For every a Î G, there exist a unique 

element b Î G, such that a*b=b*a=I
An Abelian or Commutative Group is a Group with the 

additional condition
5. Commutativity. For all a,b Î G, a*b=b*a
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Examples of groups
– Integers, Reals or Rationals with Addition
– The nonzero Reals or Rationals with 

Multiplication
– Non-singular n x n real matrices with Matrix 

Multiplication 
– Permutations over n elements with composition

[0®1, 1®2, 2®0] o [0®1, 1®0, 2®2] = [0®0, 1®2, 2®1]

We will only be concerned with finite groups, I.e., 
ones with a finite number of elements.
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Key properties of finite groups
Notation: aj º a * a * a * … j times

Theorem (Fermat�s little): for any finite group 
(G,*,I)  and g Î G, g|G| = I

Definition: the order of g Î G is the smallest 
positive integer m such that gm = I

Definition: a group G is cyclic if there is a g Î G 
such that order(g) = |G|

Definition: an element g Î G of order |G| is called a 
generator or primitive element of G.
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Groups based on modular arithmetic
The group of positive integers modulo a prime p

Zp
* º {1, 2, 3, …, p-1}

*p º multiplication modulo p
Denoted as: (Zp

*, *p)
Required properties

1. Closure.  Yes.
2. Associativity.  Yes.
3. Identity.  1.
4. Inverse.  Yes. 

Example: Z7
*= {1,2,3,4,5,6}

1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6
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Other properties
|Zp

*| = (p-1)
By Fermat�s little theorem:  a(p-1) = 1 (mod p)
Example of Z7

*

x x2 x3 x4 x5 x6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

For all p the group is cyclic. 

Generators
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Fields
A Field is a set of elements F with binary operators 

* and + such that
1. (F, +) is an abelian group
2. (F \ I+, *) is an abelian group

the �multiplicative group�
3. Distribution:  a*(b+c) = a*b + a*c
4. Cancellation: a*I+ = I+

The order of a field is the number of elements.
A field of finite order is a finite field.

The reals and rationals with + and * are fields.
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Finite Fields
Zp (p prime) with + and * mod p, is a finite field.

1. (Zp, +) is an abelian group (0 is identity)
2. (Zp \ 0, *) is an abelian group (1 is identity)
3. Distribution:  a*(b+c) = a*b + a*c
4. Cancellation: a*0 = 0 

Are there other finite fields?
What about ones that fit nicely into bits, bytes and 

words (i.e with 2k elements)?
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Polynomials over Zp

Zp[x] = polynomials on x with coefficients in Zp.
– Example of Z5[x]:  f(x) = 3x4 + 1x3 + 4x2 + 3
– deg(f(x)) = 4   (the degree of the polynomial)

Operations: (examples over Z5[x])
• Addition: (x3 + 4x2 + 3) + (3x2 + 1) = (x3 + 2x2 + 4) 
• Multiplication: (x3 + 3) * (3x2 + 1)  = 3x5 + x3 + 4x2 + 3
• I+ = 0,  I* = 1
• + and * are associative and commutative
• Multiplication distributes and 0 cancels
Do these polynomials form a field?
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Division and Modulus
Long division on polynomials (Z5[x]):
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Polynomials modulo Polynomials
How about making a field of polynomials modulo 

another polynomial?   This is analogous to Zp (i.e., 
integers modulo another integer).

e.g. Z5[x] mod (x2+2x+1)
Does this work?
Does (x + 1) have an inverse?
Definition: An irreducible polynomial is one that is 

not a product of two other polynomials both of 
degree greater than 0.

e.g. (x2 + 2) for Z5[x] 
Analogous to a prime number.
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Galois Fields
The polynomials 

Zp[x] mod p(x) 
where 

p(x) Î Zp[x], 
p(x) is irreducible, 
and deg(p(x)) = n (i.e. n+1 coefficients) 

form a finite field.   Such a field has pn elements.
These fields are called Galois Fields or GF(pn).
The special case n = 1 reduces to the fields Zp

The multiplicative group of GF(pn)\{0} is cyclic (this 
will be important later).
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GF(2n)
Hugely practical! 
The coefficients are bits {0,1}.
For example, the elements of GF(28) can be 

represented as a byte, one bit for each term, and 
GF(264) as a 64-bit word.
– e.g., x6 + x4 + x + 1 = 01010011

How do we do addition?

Addition over Z2 corresponds to xor.
• Just take the xor of the bit-strings (bytes or 

words in practice).   This is dirt cheap
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Multiplication over GF(2n)
If n is small enough can use a table of all 

combinations.
The size will be 2n x 2n (e.g. 64K for GF(28)).
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial 
on an overflow by 1 term is simply a test and an 
xor.

e.g.      0111 / 1001 = 0111 
1011 / 1001 = 1011 xor 1001 = 0010 
^ just look at this bit for GF(23)
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Multiplication over GF(2n)
typedef unsigned char uc;

uc mult(uc a, uc b) {
int p = a;
uc r = 0;
while(b) {
if (b & 1) r = r ^ p;
b = b >> 1;
p = p << 1;
if (p & 0x100) p = p ^ 0x11B;

}
return r;

}
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Viewing Messages as Polynomials
A (n, k, n-k+1) code:
Consider the polynomial of degree k-1

p(x) = ak-1 xk-1 + ! + a1 x + a0
Message:  (ak-1, …, a1, a0) 
Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size, we use ai Î GF(pr)
To make the i distinct,  n < pr

Unisolvence Theorem:  Any subset of size k of (p(1), 
p(2), …, p(n)) is enough to (uniquely) reconstruct 
p(x) using polynomial interpolation, e.g., LaGrange’s 
Formula.
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Polynomial-Based Code
A (n, k, 2s +1) code:

k 2s

Can detect 2s errors
Can correct s errors
Generally can correct a erasures and b errors if 
a + 2b £ 2s

n
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Correcting Errors
Correcting s errors:
1. Find k + s symbols that agree on a polynomial p(x).

These must exist since originally k + 2s symbols 
agreed and only s are in error

2. There are no k + s symbols that agree on the 
wrong polynomial p’(x)
- Any subset of k symbols will define p’(x)
- Since at most s out of the k+s symbols are in 

error, p’(x) = p(x)
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A Systematic Code
Systematic polynomial-based code 

p(x) = ak-1 xk-1 + ! + a1 x + a0

Message:  (ak-1, …, a1, a0) 
Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s))

This has the advantage that if we know there are no 
errors, it is trivial to decode.

The version of RS used in practice uses something 
slightly different than p(1), p(2), …

This will allow us to use the “Parity Check” ideas 
from linear codes (i.e., HcT = 0?) to quickly test 
for errors.
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Reed-Solomon Codes in the Real World

(204,188,17)256  : ITU J.83(A)2

(128,122,7)256 : ITU J.83(B)
(255,223,33)256 : Common in Practice

– Note that they are all byte based 
(i.e., symbols are from GF(28)).

Decoding rate on 1.8GHz Pentium 4:
– (255,251) = 89Mbps
– (255,223) = 18Mbps

Dozens of companies sell hardware cores that 
operate 10x faster (or more)
– (204,188) = 320Mbps (Altera decoder)
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Applications of Reed-Solomon Codes
• Storage: CDs, DVDs, “hard drives”,
• Wireless: Cell phones, wireless links
• Sateline and Space: TV, Mars rover, …
• Digital Television: DVD, MPEG2 layover
• High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.

– e.g., Gallager codes, Turbo codes
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RS and “burst” errors

They can both correct 1 error, but not 2 random errors.
– The Hamming code does this with fewer check bits

However, RS can fix 8 contiguous bit errors in one byte
– Much better than lower bound for 8 arbitrary errors
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RS (255, 253, 3)256 2040 16
Hamming (211-1, 211-11-1, 3)2 2047 11

Let’s compare to Hamming Codes (which are “optimal”).
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Galois Field
GF(23) with irreducible polynomial: x3 + x + 1
a = x is a generator

a x 010 2
a2 x2 100 3
a3 x + 1 011 4
a4 x2 + x 110 5
a5 x2 + x + 1 111 6
a6 x2 + 1 101 7
a7 1 001 1

Will use this as an example.
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Discrete Fourier Transform (DFT)
Another View of polynomial-based codes
a is a primitive nth root of unity (an = 1) – a generator
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DFT Example
a = x is 7th root of unity in GF(23)/x3 + x + 1
(i.e., multiplicative group, which excludes additive inverse)
Recall a = “2”, a2 = “3”, … , a7 = 1 = “1”
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Should be clear that c = T • (m0,m1,…,mk-1,0,…)T

is the same as evaluating p(x) = m0 + m1x + … + mk-1xk-1

at n points.



function fft(a,w,+,*) =
if #a == 1 then return a
Else
w’ = [w0,w2,…,wn-1]
e = fft([a0,a2,…,an-2], w’)
o = fft([a1,a3,...,an-1], w’)
return [e0+o0 * w0, e1+o1 * w1,…,en/2-1+on/2-1 * wn/2-1,

e0+o0 * wn/2, e1+o1 * wn/2+1,…, en/2-1+on/2-1 * wn-1]
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Decoding
Why is it hard?

Brute Force: try  k+2s choose k + s possibilities and 
solve for each.
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Cyclic Codes
A linear code is cyclic if:

(c0, c1, …, cn-1) Î C Þ (cn-1, c0, …, cn-2) Î C

Both Hamming and Reed-Solomon codes are cyclic.
Note: we might have to reorder the columns to make 

the code “cyclic”.

Motivation: They are more efficient to decode than 
general codes.
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Generator and Parity Check Matrices
Generator Matrix:
A k x n matrix G such that: 

C = {m • G | m Î åk}
Made from stacking the basis vectors

Parity Check Matrix:
A (n – k) x n matrix H such that:  

C = {v Î ån | H • vT = 0}
Codewords are the nullspace of H

These always exist for linear codes
H • GT = 0
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Generator and Parity Check Polynomials
Generator Polynomial:
A degree (n-k) polynomial g such that: 

C = {m • g | m Î m0 + m1x + … + mk-1xk-1}
such that g | xn – 1    

Parity Check Polynomial:
A degree k polynomial h such that:  

C = {v Î ån [x] | h • v = 0 (mod xn –1)}
such that h | xn - 1

These always exist for linear cyclic codes
h • g = xn - 1
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Viewing g as a matrix
If g(x) = g0 + g1x + … + gn-k-1xn-k-1

We can put this generator in matrix form:

Write m = m0 + m1x +…+ mk-1xk-1 as (m0, m1, …, mk-1)
Then c = mG
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g generates cyclic codes

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (xn –1) = gn-k-1,0,…,g0,g1,…,gn-k-2
Consider h = h0 + h1x + … + hk-1xk-1 (gh = xn –1)

h0g + (h1x)g + … + (hk-2xk-2)g + (hk-1xk-1)g = xn - 1
xkg = -hk-1

-1(h0g + h1(xg) + … + hk-1(xk-1g)) mod (xn –1)
This is a linear combination of the rows.
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Viewing h as a matrix
If h = h0 + h1x + … + hk-1xk-1

we can put this parity check poly. in matrix form:
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Hamming Codes Revisited
The Hamming (7,4,3)2 code.
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g = 1 + x + x3 h = x4 + x2 + x + 1

The columns are not identical to the previous 
example Hamming code.

gh = x7 – 1,   GHT = 0  
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Factors of xn -1
Intentionally left blank
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Another way to write g
Let a be a generator of GF(pr).
Let n = pr - 1   (the size of the multiplicative group)
Then we can write a generator polynomial as
g(x) = (x-a)(x-a2) … (x - an-k),  h = (x- an-k+1)…(x-an)

Lemma: g | xn – 1,  h | xn – 1,  gh | xn – 1
(a | b means a divides b)
Proof:

– an = 1     (because of the size of the group) 
Þ an – 1 = 0 
Þ a root of xn – 1 
Þ (x - a) | xn -1

– similarly for a2, a3, …, an

– therefore xn - 1 is divisible by (x - a)(x - a2) …
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Back to Reed-Solomon
Consider a generator polynomial g Î GF(pr)[x], s.t. g | (xn – 1) 
Recall that n – k = 2s   (the degree of g is n-k-1, n-k coefficients)
Encode:

– m’ = m x2s (basically shift by 2s)
– b = m’ (mod g)
– c = m’ – b   = (mk-1, …, m0, -b2s-1, …, -b0)
– Note that c is a cyclic code based on g

- m’ = qg + b        
- c = m’ – b = qg

Parity check:
- h c = 0 ? 
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Example
Lets consider the (7,3,5)8 Reed-Solomon code.
We use GF(23)/x3 + x + 1

a x 010 2
a2 x2 100 3
a3 x + 1 011 4
a4 x2 + x 110 5
a5 x2 + x + 1 111 6
a6 x2 + 1 101 7
a7 1 001 1
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Example RS (7,3,5)8

g = (x - a)(x - a2)(x - a3)(x - a4) 
= x4 + a3x3 + x2 + ax + a3

h = (x - a5)(x - a6)(x - a7)
= x3 + a3x3 + a2x + a4

gh = x7 - 1
Consider the message: 110 000 110

m = (a4, 0, a4) = a4x2 + a4

m’ = x4m = a4x6 + a4x4

= (a4 x2 + x + a3)g + (a3x3 + a6x + a6)
c = (a4, 0, a4, a3, 0, a6, a6)

= 110 000 110 011 000 101 101

a 010
a2 100
a3 011
a4 110
a5 111
a6 101
a7 001

ch = 0 (mod x7 –1)

n = 7, k = 3, n-k = 2s = 4, d = 2s+1 = 5
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A useful theorem
Theorem: For any b, if g(b) = 0 then b2sm(b) = b(b)
Proof: 

x2sm(x) = m’(x) = g(x)q(x) + b(x)
b2sm(b) = g(b)q(b) + b(b) = b(b)

Corollary:  b2sm(b) = b(b)  for b Î {a, a2, a3,…, a2s=n-k}
Proof:

{a, a2, …, a2s} are the roots of g by definition.
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Fixing errors
Theorem: Any k symbols from c can reconstruct c 

and hence m
Proof:
We can write 2s equations involving m (cn-1, …, c2s) 

and b (c2s-1, …, c0).   These are
a2s m(a) = b(a)
a4s m(a2) = b(a2)
…
a2s(2s) m(a2s) = b(a2s)

We have at most 2s unknowns, so we can solve for 
them.    (I’m skipping showing that the equations 
are linearly independent).
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Efficient Decoding
I don’t plan to go into the Reed-Solomon decoding 

algorithm, other than to mention the steps.

Syndrome
Calculator

Error
Polynomial

Berlekamp
Massy

Error
Locations

Chien
Search

Error 
Magnitudes

Forney
Algorithm

Error
Correctorc m

This is the hard part.  CD players 
use this algorithm.
(Can also use Euclid’s algorithm.)


