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Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

‘ Public-Key Algorithms:

- Diffie-Hellman Key Exchange
- El-Gamal, RSA, Blum-Goldwasser
- Quantum Cryptography

Case Studies: Kerberos, Digital Cash
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Public Key Cryptosystems

Introduced by Diffie and Hellman in 1976.

Plaintext Public Key systems

: K, = public key
K; —1 Encryption| E,(M)=C K, = private key

Cyphertext

: Digital signatures
K, — Decryption| D\(C) =M K; = private key

i K, = public ke
Original Plaintext 2P Y

Typically used as part of a more complicated protocol.
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One-way trapdoor functions

Both Public-Key and Digital signatures make use of
one-way trapdoor functions.

Public Key:

- Encode: ¢ = f(m)

- Decode: m = f-!(c) using trapdoor
Digital Signatures:

- Sign: ¢ = f{(m) using trapdoor

- Verify: m = f(c)
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Example of TLS (previously SSL)

TLS (Transport Layer Security) is the standard for the web (https),
and voice over IP.

Protocol (somewhat simplified): Bob -> amazon.com
B->A: client hello: protocol version, acceptable ciphers
A->B: server hello: cipher, session ID, |amazon.com|,erisign
B->A: key exchange, {masterkey}, ..on s public key
A->B: server finish: ([amazon,prev-messages,masterkey]
B->A: client finish: ([bob prev-messages,masterkey] J
A->B: server message: [messagel] } data
B->A: client message: [message?]
|lh|.. = Certificate
= Issuer, <h,h’ s public key, time stamp>iier s private key
<.>peivate key = Digital signature  {_} . .., = Public-key encryption
[..] = Secure Hash = Private-key encryption

and are derived from masterkey and session ID
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Public Key History

Some algorithms
- Diffie-Hellman, 1976, key-exchange based on discrete logs
- Merkle-Hellman, 1978, based on “knapsack problem”
- McEliece, 1978, based on algebraic coding theory
- RSA, 1978, based on factoring
- Rabin, 1979, security can be reduced to factoring
- ElGamal, 1985, based on discrete logs
- Blum-Goldwasser, 1985, based on quadratic residues
- Elliptic curves, 1985, discrete logs over Elliptic curves
- Chor-Rivest, 1988, based on knapsack problem
- NTRU, 1996, based on Lattices
- XTR, 2000, based on discrete logs of a particular field
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Diffie-Hellman Key Exchange

A group (6,*) and a primitive element (generator) g is
made public.

- Alice picks a, and sends g®to Bob
- Bob picks b and sends g° to Alice
- The shared key is g

Note the shared key is easy for Alice or Bob to
compute, but assuming discrete logs are hard is
hard for anyone else to compute.

Can someonhe see a problem with this protocol?
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Person-in-the-middle attack

Alice Mallory Bob

Key, = g* Key; = g

Mallory gets to listen to everything.
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ElGamal

Based on the difficulty of the discrete log problem.
Invented in 1985
Digital signature and Key-exchange variants

- Digital signature is AES standard

- Public Key used by TRW (avoided RSA patent)
Works over various groups

_ Zp,

- Multiplicative group GF(p"),

- Elliptic Curves
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ElGamal Public-key Cryptosystem

(6.*) is a group

* o a generator for G
* a e ZIGI

+ B=ad

G is selected so that it

is hard to solve the
discrete log problem.

Encode:
Pick random k € Z4

SRR

Public Key: (o, B) and
some description of G

Private Key: a

Decode:
D(y) = y2* (19"
= (m * BK)* (ko)
= (m * oka)* (gka)
= m
You need to know a to
easily decode y!
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ElGamal: Example

GzZu*
c =2
- a=8
+ B=2%8(mod 11) =3

Encode: 7

Pick random k = 4

E(m) = (24,7 * 3%)
= (b, 6)

Decode: (5, 6)
D(y) - 6 * (58)-1
- 6 * 4-1
6 * 3 (mod 11)

Public Key: (2, 3), Z;;
Private Key: a = 8

7
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Merkle-Hellman

Gets “security” from the Subet Sum (also called
knapsack) which is NP-hard to solve in general.

Subset Sum (Knapsack): Given a sequence W = {wg,wj,
.Wy.1}, W; € Z of weights and a sum S, calculate a
boolean vector B, such that:

> BW, =S

i=0

Even deciding if there is a solution is NP-hard.
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Merkle-Hellman

i—1
W is superincreasing if: w, 2 Z W,
=0
It is easy to solve the subse’r-]sum problem for
superincreasing W in O(n) time.
Main idea of Merkle-Hellman:
- Hide the easy case by multiplying each w; by a
constant a modulo a prime p
w; =a*w, mod p

- Knowing a and p allows you to retrieve the
superincreasing sequence
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Merkle-Hellman

What we need Encode:

C Wy, e, W, y=E(m)=2"mw,
superincreasing Decode:
Integers

z=alymodp

a! 2" m; w’ . mod p
al>. " maw,mod p
* W ;=aw, modp =Y "mow,

* p>2i1"w; and prime
a, 1<a<n

Solve subset sum prob:
(wy, -, Wy, Z)
obtaining my, --- m,

Public Key: w’;
Private Key: w;, p, q,

15-853 Page 14



Merkle Hellman: Problem

Was broken by Shamir in 1984,

Shamir showed how to use integer programming to
solve the particular class of Subset Sum problems
in polynomial time.

Lesson: don’ t leave your trapdoor loose.
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RSA

Name after Rivest, Shamir and Adleman (1978) but
apparently invented by Clifford Cocks in 1973.

Based on difficulty of factoring.

Used to hide the size of a group Z,” since:

Z,|=¢(n)=nIl(1-1/p)

Factoring has not been redliced to RSA

- an algorithm that generates m from c does not give
an efficient algorithm for factoring

On the other hand, factoring has been reduced to finding
the private-key.

- there is an efficient algorithm for factoring given
one that can find the private key from the public key.

15-853 Page 16



RSA Public-key Cryptosystem

What we need.:

+ pand q, primes of
approximately the
same size

© n=pg
¢(n) = (p-1)(q-1)

- ec” (1)(”)*

- d=elmod ¢(n)

Public Key: (e,n)
Private Key: d

Encode:
melZ,
E(m) = mé¢ mod n

Decode:
D(c) = cdmod n
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RSA continued

Why it works:
D(c) = cd¥mod n
= méd mod n
= ml+k(p-D@9-) mod n
= m!+ ke mod n
= m(m ¢M)k mod n
=m
Why is this argument not quite sound?

What if m ¢ Z," then m¢™ = 1 mod n
Answer 1: Not hard to show that it still works.

Answer 2: jackpot - you' ve factored n
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RSA computations

To generate the keys, we need to

- Find two primes p and q. Generate candidates
and use primality testing to filter them.

- Find e'!mod (p-1)(g-1). Use Euclid’ s algorithm.
Takes time log?(n)

To encode and decode

- Take me or cd. Use the power method.
Takes time log(e) log?(n) and log(d) log?(n) .

In practice e is selected to be small so that encoding
is fast.
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Security of RSA

Warning:
- Do not use this or any other algorithm naively!
Possible security holes:

- Need to use “safe” primes p and q. In particular
p-1 and g-1 should have large prime factors.

- p and q should not have the same number of digits.
Can use a middle attack starting at sqrt(n).

- e cannot be too small
- Don’ t use same n for different e’s.
- You should always “pad”
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Algorithm to factor givend and e

If an attacker has an algorithm that generates d from
e, then he/she can factor nin PPT. Variant of the

Rabin-Miller primality test.

Function TryFactor(e,d,n)
1. writeed-1as 2sr, r odd
2. choose w at random < n
3. v=w'modn
4. if v=1then return(fail)
5. while v#1modn
6. vy =V
7. v=vZimodn
8. if vo = n -1 then return(fail)
9. return(pass, gcd(vg + 1, n))

15-853

LasVegas algorithm
Probability of pass
s >.5.

Will return p or g
if it passes.

Try until you pass.
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RSA Performance

Performance: (600Mhz PIII) (from: ssh toolkit):

Algorithm Bits/key Mbits/sec
RSA K 1024 .3bsec/key
n
ni 2048 | 2.83sec/key
1024 1786/sec 35
RSA Encrypt
2048 672/sec 1.2
1024 74/sec 074
RSA Decrypt
2048 12/sec 024
ElGamal Enc. 1024 31/sec 031
ElGamal Dec. 1024 61/sec 061
DES-cbc 56 95
twofish-cbc 128 140
Rijndael 128 180
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http://www.ssh.com/products/x509/performance.cfm

RSA in the “Real World”

Part of many standards: PKCS, ITU X.509,
ANSI X9.31, IEEE P1363

Used by: SSL, PEM, PGP, Entrust, ..

The standards specify many details on the
implementation, e.qg.

- e should be selected to be small, but not too
small

- “multi prime” versions make use of n = pqr...
this makes it cheaper to decode especially in
parallel (uses Chinese remainder theorem).
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Factoring in the Real World

Quadratic Sieve (QS):
T(n) — e(1+0(n))(lnn)1/2(ln(lnn))l/z

- Used in 1994 to factor a 129 digit (428-bit)
number. 1600 Machines, 8 months.

Number field Sieve (NFS):

T(n) _ e(l.923+0(1))(lnn)1/3 (In(Inn))2">

- Used in 1999 to factor 155 digit (512-bit) number.
35 CPU years. At least 4x faster than QS

- Used in 2003-2005 to factor 200 digits (663 bits)
75 CPU years ($20K prize)

- In 2009 the RSA 768 bits number was factored
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Probabilistic Encryption

For RSA one message goes to one cipher word. This
means we might gain information by running

Epublic(N\)-

Probabilistic encryption maps every M to many C

randomly. Cryptanalysists can’t tell whether
C= Epublic(M)-

ElGamal is an example (based on the random k), but it
doubles the size of message.

15-853 Page 25



BBS “secure” random bits

BBS (Blum, Blum and Shub, 1984)

- Based on difficulty of factoring, or finding
square roots modulo n = pq.

Fixed For a particular bit seq.
* pand g are primes such | |+ Seed: random x
that p=q =3 (mod 4) relatively prime to n.
* n=pq(is called aBlum ||+ Initial state: x,= x?
integer) - ith state: x; = (x;1)?
- ith bit: Isb of x.

Note that: y = 2 md¢00 (10d )
Therefore knowing p and q allows us to find x, from x;
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Blum-Goldwasser: A stream cypher

Public key: n (= pq) Private key: p or g

T.
Encrypt: 0 <i<l) Xor c(0<i<l)
b
Isb
Random x @ X BBS
|
\ci(|§i<l+logn)=x,
Decrypt:

Using p and g, find Xo=x; 2 mod(p=14a= (mod n)
Use this to regenerate the b; and hence m,

15-853 Page 27



Quantum Cryptography

In quantum mechanics, there is ho way to take a
measurement without potentially changing the
state. E.g.

- Measuring position, spreads out the momentum

- Measuring spin horizontally, “spreads out” the
spin probability vertically

Related to Heisenberg' s uncertainty principal

15-853 Page 28



Using photon polarization

|
/

| =5 /5 —

/ or \ ? (equal probability)

] or <« ? (equal probability)

measure measure
diagonal square
. destroys state
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Quantum Key Exchange

1. Alice sends bob photon stream randomly polarized
in one of 4 polarizations: I / \

2. Bob measures photons in random orientations

eg. X+ + X X X + X (orientations used)

\' | - \/ / - \ (measured polarizations)
and tells Alice in the open what orientations he
used, but not what he measured.

3. Alice tells Bob in the open which are correct
4. Bob and Alice keep the correct values
Susceptible o a man-in-the-middle attack
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Tn the “real world”

Not yet used in practice, but experiments have
verified that it works.

IBM has working system over 30cm at 10bits/sec.
More recently, up to 10km of fiber.

=L
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Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...

‘ Case Studies:
- Bitcoin

15-853 Page 32



Bitcoin

Developed by “Satoshi Nakamoto" in 2009.
Total value: $175 Billion
About 15Million "coins” in circulation.
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Bitcoin

Blockchain: Maintains a digital ledger of transactions
as a linked list (chain) of blocks

Blocks: Each block can contain multiple transactions.
Distributed: Maintained in a distributed fashion.

"Coinbase transactions”: Get "paid” in new cash (and
possibly transaction fees) for adding a new block
of transactions to the chain.

Proof of work: To add a block one needs to do some
“hard" work and prove they have done it.

Public: The blockchain is publicly readable by all, and
needs to be.
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Bitcoin

Digital Ledger of transactions

1.

oLk whr

6.
At end Jane has $4, everyone else is broke.
Goes back in history to the beginning of time.

New Cash -> Joe, $2
Joe -> Alice, $2 (1)
Alice -> Peter, $1 (2)
Alice -> Jane, $1 (2,3)
New Cash -> Peter, $2
Peter -> Jane $3 (3,5)

Currently 150Gbytes

15-853
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Uses of Cryptography

1. Digital signatures to sign a transaction
- Public key is your account name

- Private key used to sign a transfer from the
account

2. Secure hash to link the blocks

3. Merkle hash tree for efficiency (allows updating
the hash based on small changes)

4. Secure hash for proof of work
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Digital Signatures

Public Key : account name
Private Key: to sign transactions out of an account

For privacy, can use each "account” just once (to receive and
later transmit funds).

E.g.
- [Alice -> Jane, $1]4c.
- Alice and Jane are public keys
- Transaction (hash of) is signed by Alice
Uses Elliptic Curve Digital Signature Algorithm (ECDSA)
- Similar to Diffie-Hellman/ElGamal
- Uses elliptic curves as the "group”
* Points over finite field satisfying: y? = x3 +ax + b
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Elliptic curve

Addition: (other special cases, e.g. if Q is on tangent)
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Linking blocks

Block 1
Header

\

Hash Of Previous
Block Header

Merkle Root

Block 2
Header

\

Hash Of Previous
Block Header

Merkle Root

f

Block 1
Transactions

Block 3
Header

Hash Of Previous
Block Header

?

Block 2
Transactions

Merkle Root

f

Block 3
Transactions

Simplified Bitcoin Block Chain

Each block is limited to 1IMbyte
Every block has a "coinbase” transactions” that claims
the "reward"
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Merkle Tree

Can add leaf on right or modify any leaf with cost
O(log n) for updating the root.

hash(

Hash Hash

0 1

e nash( i )
Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) | |  hash(L4 )

Dat

L1 L2 L3 L4 Block
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Genesis block

Block 1

Orphan Blocks

Orphan block

| Prev. block :
Transactions
1
= Prev. block : ~Prev. block ! - Prev. block !
Transactions Transactions Transactions
Block 2 Block 3 Block 4
15-853

Orphan block

<_

‘—

Transactlons

<—~ Prev. bIock

Block 5

Transactlons

Block 292699
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Hashing

Uses SHA256, applied twice
Generates 32 bytes

Similar to private key systems.
Here is one round

A|IB|C|D|E|F |[G|H

-
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Mining coins: Proof of Work

Come up with a "nonce” such that the header hashes
to a “small number”.

Threshold for the number is set ever 14 days. Set so
that new block generated every 10 minutes or so.

Seems to require brute force. Currently around 10%°
tries

version 02000000

previous block hash 17975b97cl8edl1f7e255adf297599b55

(reversed) 330edab87803c8170100000000000000
Header" Merkle root 8a07295a2747b4f1a0b3948df3990344

(reversed) cOelSfacb2b92b3al9cB8etbadcl141787

timestamp 358b0553

bits 535f0119

nonce 48750833
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"Mining" coins: Proof of work

Nonce is only 32-bits, so uses "secondary nonce”
which goes into the "coinbase” transaction.

Each block generates 12.5 coins (about $150K).
New block about every 10 minutes.
This is a "BIG" business: $21 Million/day

30000

. . 20000
Bitcoin
10000
Value . B _
2014 2015 2016 2017 2018
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Kerberos

A key-serving system based on Private-Keys (DES).
Assumptions
Built on top of TCP/IP networks

* Many “clients” (typically users, but perhaps
software)

* Many “servers” (e.g. file servers, compute servers,
print servers, ...)

User machines and servers are potentially insecure
without compromising the whole system

- A Kerberos server must be secure.
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ok wn =

Kerberos

Kerberos Ticket Granting Service

(TGS)

Client

Request ticket-granting-ticket (TGT)
<TGT>

Request server-ticket (ST)

<ST

Request service

15-853
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Kerberos V Message Formats

C = client S =server K= key
T = timestamp V = fime range
TGS = Ticket Granting Service A = Net Address

Ticket Granting Ticket: T, o5 = TES{C,AV K 155)Kss
Server Ticket: Tes = S, {CAVK:s IKs
Authenticator: Ac,s = {C,T,[K]}Kc,s

Client to Kerberos: {C, TGS}K,
Kerberos to Client: {K. 15s}K¢, Te1es
Client to TGS: AC,TGS' TC,TGS ) .
TGS to Client: {KC,S}KC,TGS/ TC,S POSSIbIY

Client to Server:  Acg, T¢s ___|repeat
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Kerberos Notes

All machines have to have synchronized clocks
- Must not be able to reuse authenticators
Servers should store all previous and valid tickets
- Help prevent replays

Client keys are typically a one-way hash of the
password. Clients do not keep these keys.

Kerberos 5 uses CBC mode for encryption Kerberos 4
was insecure because it used a honstandard mode.
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Electronic Payments

Privacy
- Identified
- Anonymous
Involvement

- Offline (just buyer and seller)
more practical for “micropayments”

- Online
* Notational fund transfer (e.g. Visa, CyberCash)
» Trusted 3rd party (e.g. FirstVirtual)
Today: “Digital Cash” (anonymous and possibly of fline)
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Some more protocols

1. Secret splitting (and sharing)
2. Bit commitment
3. Blind signatures

15-853 Page 50



Blind Signatures

Sigh a message m without knowing anything about m

Sounds dangerous, but can be used to give “value” to
an anonymous message

- Each signature has meaning:
$5 signature, $20 signature, ...
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Blind Signatures

An implementation: based on RSA
Trent blindly signs a message m from Alice
- Trent has public key (e,n) and private key d

- Alice selects random r < n and generates
m’ = mrémodn
and sends it to Trent.
This is called blinding m

- Trent signs it: s(m’) = (m re)d mod n
- Alice calculates:
s(m) =s(m’) r'l=mdpredl=md modn
Patented by Chaum in 1990.
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Ok wh

An anonymous online scheme

Bank
1< ZZ m 5
Alice 3 Merchant
6 ———
. Blinded Unique Random large ID (no collisions).

Siggic.(request for $100).
Sigpank_$100(blinded(ID)): signed by bank

559bank_$100(ID) Minting: 1. and 2.
Sigpank_100(ID) Spending: 3.-6.
OK from bank Left out encryption

OK from merchant
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The Perfect Crime

- Kidnapper takes hostage
* Ransom demand is a series of blinded coins
» Banks signs the coins to pay ransom

- Kidnapper tells bank to publish the coins in the
newspaper (they re just strings)

* Only the kidnapper can unblind the coins (only he
knows the blinding factor)

- Kidnapper can now use the coins and is completely
anonymous
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