
15-853 Page 1

15-853:Algorithms in the Real World

Cryptography 3 and 4

15-853 Page 2

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms:

– Diffie-Hellman Key Exchange
– El-Gamal, RSA, Blum-Goldwasser
– Quantum Cryptography

Case Studies: Kerberos, Digital Cash

15-853 Page 3

Public Key Cryptosystems
Introduced by Diffie and Hellman in 1976.

Encryption

Decryption

K1

K2

Cyphertext

Ek(M) = C

Dk(C) = M

Original Plaintext

Plaintext Public Key systems
K1 = public key
K2 = private key

Digital signatures
K1 = private key
K2 = public key

Typically used as part of a more complicated protocol.

15-853 Page 4

One-way trapdoor functions
Both Public-Key and Digital signatures make use of

one-way trapdoor functions.
Public Key:

– Encode: c = f(m)
– Decode: m = f-1(c) using trapdoor

Digital Signatures:
– Sign: c = f-1(m) using trapdoor
– Verify: m = f(c)

15-853 Page 5

Example of TLS (previously SSL)
TLS (Transport Layer Security) is the standard for the web (https),

and voice over IP.
Protocol (somewhat simplified): Bob -> amazon.com

B->A: client hello: protocol version, acceptable ciphers
A->B: server hello: cipher, session ID, |amazon.com|verisign
B->A: key exchange, {masterkey}amazon�s public key
A->B: server finish: ([amazon,prev-messages,masterkey])key1
B->A: client finish: ([bob,prev-messages,masterkey])key2
A->B: server message: (message1,[message1])key1
B->A: client message: (message2,[message2])key2

|h|issuer = Certificate
= Issuer, <h,h�s public key, time stamp>issuer�s private key

<…>private key = Digital signature {…}public key = Public-key encryption
[..] = Secure Hash (…)key = Private-key encryption
key1 and key2 are derived from masterkey and session ID

hand-
shake

data

15-853 Page 6

Public Key History
Some algorithms

– Diffie-Hellman, 1976, key-exchange based on discrete logs
– Merkle-Hellman, 1978, based on �knapsack problem�
– McEliece, 1978, based on algebraic coding theory
– RSA, 1978, based on factoring
– Rabin, 1979, security can be reduced to factoring
– ElGamal, 1985, based on discrete logs
– Blum-Goldwasser, 1985, based on quadratic residues
– Elliptic curves, 1985, discrete logs over Elliptic curves
– Chor-Rivest, 1988, based on knapsack problem
– NTRU, 1996, based on Lattices
– XTR, 2000, based on discrete logs of a particular field

15-853 Page 7

Diffie-Hellman Key Exchange
A group (G,*) and a primitive element (generator) g is

made public.
– Alice picks a, and sends ga to Bob
– Bob picks b and sends gb to Alice
– The shared key is gab

Note the shared key is easy for Alice or Bob to
compute, but assuming discrete logs are hard is
hard for anyone else to compute.

Can someone see a problem with this protocol?

15-853 Page 8

Person-in-the-middle attack

Alice BobMallory

ga

gbgd

gc

Key1 = gad Key1 = gcb

Mallory gets to listen to everything.

15-853 Page 9

ElGamal
Based on the difficulty of the discrete log problem.
Invented in 1985
Digital signature and Key-exchange variants

– Digital signature is AES standard
– Public Key used by TRW (avoided RSA patent)

Works over various groups
– Zp,
– Multiplicative group GF(pn),
– Elliptic Curves

15-853 Page 10

ElGamal Public-key Cryptosystem

(G,*) is a group
• a a generator for G
• a Î Z|G|

• b = aa

G is selected so that it
is hard to solve the
discrete log problem.

Public Key: (a, b) and
some description of G

Private Key: a

Encode:
Pick random k Î Z|G|
E(m) = (y1, y2)

= (a k, m * bk)

Decode:
D(y) = y2 * (y1

a)-1

= (m * bk) * (aka)-1

= (m * aka) * (aka)-1

= m
You need to know a to

easily decode y!

15-853 Page 11

ElGamal: Example

G = Z11
*

• a = 2
• a = 8
• b = 28 (mod 11) = 3

Public Key: (2, 3), Z11
*

Private Key: a = 8

Encode: 7
Pick random k = 4
E(m) = (24, 7 * 34)

= (5, 6)

Decode: (5, 6)
D(y) = 6 * (58)-1

= 6 * 4-1

= 6 * 3 (mod 11)
= 7

15-853 Page 12

Merkle-Hellman
Gets �security� from the Subet Sum (also called

knapsack) which is NP-hard to solve in general.
Subset Sum (Knapsack): Given a sequence W = {w0,w1,

…,wn-1}, wi Î Z of weights and a sum S, calculate a
boolean vector B, such that:

Even deciding if there is a solution is NP-hard.

SWB i

ni

i
i =å

<

=0

15-853 Page 13

Merkle-Hellman

W is superincreasing if:

It is easy to solve the subset-sum problem for
superincreasing W in O(n) time.

Main idea of Merkle-Hellman:
– Hide the easy case by multiplying each wi by a

constant a modulo a prime p

– Knowing a and p allows you to retrieve the
superincreasing sequence

å
-

=

³
1

0

i

j
ji ww

pwaw ii mod*=¢

15-853 Page 14

Merkle-Hellman

What we need
• w1, !, wn

superincreasing
integers

• p > åi=1
n wi and prime

• a, 1 £ a £ n
• w�i = a wi mod p

Public Key: w�i
Private Key: wi, p, a,

Encode:
y = E(m) = åi=1

n mi w�i

Decode:
z = a-1 y mod p

= a-1 åi=1
n mi w�i mod p

= a-1 åi=1
n miaiwi mod p

= åi=1
n mi wi

Solve subset sum prob:
(w1, !, wn, z)

obtaining m1, ! mn

15-853 Page 15

Merkle Hellman: Problem
Was broken by Shamir in 1984.
Shamir showed how to use integer programming to

solve the particular class of Subset Sum problems
in polynomial time.

Lesson: don�t leave your trapdoor loose.

15-853 Page 16

RSA
Name after Rivest, Shamir and Adleman (1978) but

apparently invented by Clifford Cocks in 1973.
Based on difficulty of factoring.
Used to hide the size of a group Zn

* since:
.
Factoring has not been reduced to RSA

– an algorithm that generates m from c does not give
an efficient algorithm for factoring

On the other hand, factoring has been reduced to finding
the private-key.
– there is an efficient algorithm for factoring given

one that can find the private key from the public key.

)/11()(
|

* pnn
np

n -Õ==Z f

15-853 Page 17

RSA Public-key Cryptosystem

What we need:
• p and q, primes of

approximately the
same size

• n = pq
f(n) = (p-1)(q-1)

• e Î Z f(n)
*

• d = e-1 mod f(n)

Public Key: (e,n)
Private Key: d

Encode:
m Î Zn
E(m) = me mod n

Decode:
D(c) = cd mod n

15-853 Page 18

RSA continued
Why it works:
D(c) = cd mod n

= med mod n
= m1 + k(p-1)(q-1) mod n
= m1 + k f(n) mod n
= m(m f(n))k mod n
= m

Why is this argument not quite sound?
What if m Ï Zn

* then mf(n) ¹ 1 mod n
Answer 1: Not hard to show that it still works.

Answer 2: jackpot – you�ve factored n

15-853 Page 19

RSA computations
To generate the keys, we need to

– Find two primes p and q. Generate candidates
and use primality testing to filter them.

– Find e-1 mod (p-1)(q-1). Use Euclid�s algorithm.
Takes time log2(n)

To encode and decode
– Take me or cd. Use the power method.

Takes time log(e) log2(n) and log(d) log2(n) .
In practice e is selected to be small so that encoding

is fast.

15-853 Page 20

Security of RSA
Warning:

– Do not use this or any other algorithm naively!
Possible security holes:

– Need to use �safe� primes p and q. In particular
p-1 and q-1 should have large prime factors.

– p and q should not have the same number of digits.
Can use a middle attack starting at sqrt(n).

– e cannot be too small
– Don�t use same n for different e�s.
– You should always �pad�

15-853 Page 21

Algorithm to factor given d and e
If an attacker has an algorithm that generates d from

e, then he/she can factor n in PPT. Variant of the
Rabin-Miller primality test.

Function TryFactor(e,d,n)
1. write ed – 1 as 2sr, r odd
2. choose w at random < n
3. v = wr mod n
4. if v = 1 then return(fail)
5. while v ¹ 1 mod n
6. v0 = v
7. v = v2 mod n
8. if v0 = n - 1 then return(fail)
9. return(pass, gcd(v0 + 1, n))

LasVegas algorithm
Probability of pass
is > .5.
Will return p or q
if it passes.
Try until you pass.

15-853 Page 22

RSA Performance
Performance: (600Mhz PIII) (from: ssh toolkit):

Algorithm Bits/key Mbits/sec

RSA Keygen
1024 .35sec/key
2048 2.83sec/key

RSA Encrypt
1024 1786/sec 3.5
2048 672/sec 1.2

RSA Decrypt
1024 74/sec .074
2048 12/sec .024

ElGamal Enc. 1024 31/sec .031
ElGamal Dec. 1024 61/sec .061
DES-cbc 56 95
twofish-cbc 128 140
Rijndael 128 180

http://www.ssh.com/products/x509/performance.cfm

15-853 Page 23

RSA in the �Real World�
Part of many standards: PKCS, ITU X.509,

ANSI X9.31, IEEE P1363
Used by: SSL, PEM, PGP, Entrust, …

The standards specify many details on the
implementation, e.g.
– e should be selected to be small, but not too

small
– �multi prime� versions make use of n = pqr…

this makes it cheaper to decode especially in
parallel (uses Chinese remainder theorem).

15-853 Page 24

Factoring in the Real World
Quadratic Sieve (QS):

– Used in 1994 to factor a 129 digit (428-bit)
number. 1600 Machines, 8 months.

Number field Sieve (NFS):

– Used in 1999 to factor 155 digit (512-bit) number.
35 CPU years. At least 4x faster than QS

– Used in 2003-2005 to factor 200 digits (663 bits)
75 CPU years ($20K prize)

– In 2009 the RSA 768 bits number was factored

2/12/1))(ln(ln)))(ln(1()(nnnoenT +=

3/23/1))(ln(ln)))(ln1(923.1()(nnoenT +=

15-853 Page 25

Probabilistic Encryption
For RSA one message goes to one cipher word. This

means we might gain information by running
Epublic(M).

Probabilistic encryption maps every M to many C
randomly. Cryptanalysists can�t tell whether
C = Epublic(M).

ElGamal is an example (based on the random k), but it
doubles the size of message.

15-853 Page 26

BBS �secure� random bits
BBS (Blum, Blum and Shub, 1984)

– Based on difficulty of factoring, or finding
square roots modulo n = pq.

Fixed
• p and q are primes such

that p = q = 3 (mod 4)
• n = pq (is called a Blum

integer)

For a particular bit seq.
• Seed: random x

relatively prime to n.
• Initial state: x0 = x2

• ith state: xi = (xi-1)2

• ith bit: lsb of xi

Note that:
Therefore knowing p and q allows us to find x0 from xi

)(mod)(mod2
0 nxx n

i
i f-=

15-853 Page 27

Blum-Goldwasser: A stream cypher
Public key: n (= pq) Private key: p or q

)(mod)1)(1mod(2
0 nxx qp

i
i ---=

Decrypt:
Using p and q, find
Use this to regenerate the bi and hence mi

xi

xormi (0 £ i < l) ci (0 £ i < l)
bi

Random x x2 mod n BBS
lsb

ci (l £ i < l + log n) = xl

Encrypt:

15-853 Page 28

Quantum Cryptography
In quantum mechanics, there is no way to take a

measurement without potentially changing the
state. E.g.
– Measuring position, spreads out the momentum
– Measuring spin horizontally, �spreads out� the

spin probability vertically
Related to Heisenberg�s uncertainty principal

15-853 Page 29

Using photon polarization

= ? (equal probability)or

= or ? (equal probability)

measure
diagonal

measure
square

destroys state

15-853 Page 30

Quantum Key Exchange
1. Alice sends bob photon stream randomly polarized

in one of 4 polarizations:

2. Bob measures photons in random orientations
e.g.: x + + x x x + x (orientations used)

\ | - \ / / - \ (measured polarizations)
and tells Alice in the open what orientations he
used, but not what he measured.

3. Alice tells Bob in the open which are correct
4. Bob and Alice keep the correct values
Susceptible to a man-in-the-middle attack

15-853 Page 31

In the �real world�
Not yet used in practice, but experiments have

verified that it works.
IBM has working system over 30cm at 10bits/sec.
More recently, up to 10km of fiber.

15-853 Page 32

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies:

– Bitcoin

Bitcoin
Developed by ”Satoshi Nakamoto” in 2009.
Total value: $175 Billion
About 15Million “coins” in circulation.

15-853 Page 33

Bitcoin
Blockchain: Maintains a digital ledger of transactions

as a linked list (chain) of blocks
Blocks: Each block can contain multiple transactions.
Distributed: Maintained in a distributed fashion.
“Coinbase transactions”: Get “paid” in new cash (and

possibly transaction fees) for adding a new block
of transactions to the chain.

Proof of work: To add a block one needs to do some
“hard” work and prove they have done it.

Public: The blockchain is publicly readable by all, and
needs to be.

15-853 Page 34

Bitcoin
Digital Ledger of transactions

1. New Cash -> Joe, $2
2. Joe -> Alice, $2 (1)
3. Alice –> Peter, $1 (2)
4. Alice -> Jane, $1 (2,3)
5. New Cash -> Peter, $2
6. Peter -> Jane $3 (3,5)

At end Jane has $4, everyone else is broke.
Goes back in history to the beginning of time.
Currently 150Gbytes

15-853 Page 35

Uses of Cryptography
1. Digital signatures to sign a transaction

– Public key is your account name
– Private key used to sign a transfer from the

account
2. Secure hash to link the blocks
3. Merkle hash tree for efficiency (allows updating

the hash based on small changes)
4. Secure hash for proof of work

15-853 Page 36

Digital Signatures
Public Key : account name
Private Key: to sign transactions out of an account
For privacy, can use each “account” just once (to receive and

later transmit funds).
E.g.

– [Alice -> Jane, $1]Alice

– Alice and Jane are public keys
– Transaction (hash of) is signed by Alice

Uses Elliptic Curve Digital Signature Algorithm (ECDSA)
– Similar to Diffie-Hellman/ElGamal
– Uses elliptic curves as the “group”

• Points over finite field satisfying: y2 = x3 + ax + b

15-853 Page 37

Elliptic curve
Addition: (other special cases, e.g. if Q is on tangent)

15-853 Page 38

Linking blocks

15-853 Page 39

Each block is limited to 1Mbyte
Every block has a “coinbase” transactions” that claims

the “reward”

Merkle Tree
Can add leaf on right or modify any leaf with cost

O(log n) for updating the root.

15-853 Page 40

Orphan Blocks

15-853 Page 41

Hashing

15-853 Page 42

Uses SHA256, applied twice
Generates 32 bytes
Similar to private key systems.
Here is one round

Mining coins: Proof of Work
Come up with a “nonce” such that the header hashes

to a ”small number”.
Threshold for the number is set ever 14 days. Set so

that new block generated every 10 minutes or so.
Seems to require brute force. Currently around 1019

tries

15-853 Page 43

Header:

“Mining” coins: Proof of work
Nonce is only 32-bits, so uses “secondary nonce”

which goes into the “coinbase” transaction.
Each block generates 12.5 coins (about $150K).
New block about every 10 minutes.
This is a “BIG” business: $21 Million/day

15-853 Page 44

Bitcoin
Value

15-853 Page 45

Kerberos
A key-serving system based on Private-Keys (DES).
Assumptions
• Built on top of TCP/IP networks
• Many �clients� (typically users, but perhaps

software)
• Many �servers� (e.g. file servers, compute servers,

print servers, …)
• User machines and servers are potentially insecure

without compromising the whole system
• A kerberos server must be secure.

15-853 Page 46

Kerberos

Kerberos

Client Server

Ticket Granting Service
(TGS)

12 3
4

5

1. Request ticket-granting-ticket (TGT)
2. <TGT>
3. Request server-ticket (ST)
4. <ST>
5. Request service

15-853 Page 47

C = client S = server K = key
T = timestamp V = time range
TGS = Ticket Granting Service A = Net Address

Ticket Granting Ticket: TC,TGS = TGS,{C,A,V,KC,TGS}KTGS
Server Ticket: TC,S = S, {C,A,V,KC,S }KS
Authenticator: AC,S = {C,T,[K]}KC,S

1. Client to Kerberos: {C,TGS}KC
2. Kerberos to Client: {KC,TGS}KC, TC,TGS
3. Client to TGS: AC,TGS, TC,TGS
4. TGS to Client: {KC,S}KC,TGS, TC,S
5. Client to Server: AC,S, TC,S

Kerberos V Message Formats

Possibly
repeat

15-853 Page 48

Kerberos Notes
All machines have to have synchronized clocks

– Must not be able to reuse authenticators
Servers should store all previous and valid tickets

– Help prevent replays
Client keys are typically a one-way hash of the

password. Clients do not keep these keys.
Kerberos 5 uses CBC mode for encryption Kerberos 4

was insecure because it used a nonstandard mode.

15-853 Page 49

Electronic Payments
Privacy

– Identified
– Anonymous

Involvement
– Offline (just buyer and seller)

more practical for �micropayments�
– Online

• Notational fund transfer (e.g. Visa, CyberCash)
• Trusted 3rd party (e.g. FirstVirtual)

Today: �Digital Cash� (anonymous and possibly offline)

15-853 Page 50

Some more protocols
1. Secret splitting (and sharing)
2. Bit commitment
3. Blind signatures

15-853 Page 54

Blind Signatures
Sign a message m without knowing anything about m
Sounds dangerous, but can be used to give �value� to

an anonymous message
– Each signature has meaning:

$5 signature, $20 signature, …

15-853 Page 55

Blind Signatures
An implementation: based on RSA
Trent blindly signs a message m from Alice

– Trent has public key (e,n) and private key d
– Alice selects random r < n and generates

m� = m re mod n
and sends it to Trent.
This is called blinding m

– Trent signs it: s(m�) = (m re)d mod n
– Alice calculates:

s(m) = s(m�) r-1 = md red-1 = md mod n
Patented by Chaum in 1990.

15-853 Page 56

1. Blinded Unique Random large ID (no collisions).
Sigalice(request for $100).

2. Sigbank_$100(blinded(ID)): signed by bank
3. Sigbank_$100(ID)
4. Sigbank_$100(ID)
5. OK from bank
6. OK from merchant

Alice Merchant

Bank
1 2

3
4

An anonymous online scheme

5

6

Minting: 1. and 2.
Spending: 3.-6.
Left out encryption

15-853 Page 58

The Perfect Crime
• Kidnapper takes hostage
• Ransom demand is a series of blinded coins
• Banks signs the coins to pay ransom
• Kidnapper tells bank to publish the coins in the

newspaper (they�re just strings)
• Only the kidnapper can unblind the coins (only he

knows the blinding factor)
• Kidnapper can now use the coins and is completely

anonymous

