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15-853:Algorithms in the Real World

Cryptography 3 and 4
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Cryptography Outline
Introduction: terminology, cryptanalysis, security 
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: 

– Diffie-Hellman Key Exchange
– El-Gamal, RSA, Blum-Goldwasser
– Quantum Cryptography

Case Studies: Kerberos, Digital Cash
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Public Key Cryptosystems
Introduced by Diffie and Hellman in 1976.

Encryption

Decryption

K1

K2

Cyphertext

Ek(M) = C

Dk(C) = M

Original Plaintext

Plaintext Public Key systems
K1 = public key
K2 = private key

Digital signatures
K1 = private key
K2 = public key

Typically used as part of a more complicated protocol.
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One-way trapdoor functions
Both Public-Key and Digital signatures make use of 

one-way trapdoor functions.
Public Key:

– Encode:  c = f(m)
– Decode: m = f-1(c) using trapdoor

Digital Signatures:
– Sign: c = f-1(m) using trapdoor
– Verify: m = f(c)
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Example of TLS (previously SSL)
TLS (Transport Layer Security) is the standard for the web (https), 

and voice over IP.
Protocol (somewhat simplified): Bob -> amazon.com

B->A:  client hello: protocol version, acceptable ciphers
A->B:  server hello: cipher, session ID, |amazon.com|verisign
B->A:  key exchange, {masterkey}amazon�s public key
A->B:  server finish: ([amazon,prev-messages,masterkey])key1
B->A:  client finish: ([bob,prev-messages,masterkey])key2
A->B:  server message: (message1,[message1])key1
B->A:  client message: (message2,[message2])key2

|h|issuer        = Certificate
= Issuer, <h,h�s public key, time stamp>issuer�s private key

<…>private key = Digital signature    {…}public key = Public-key encryption
[..] = Secure Hash           (…)key = Private-key encryption
key1 and key2 are derived from masterkey and session ID

hand-
shake

data
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Public Key History
Some algorithms

– Diffie-Hellman, 1976, key-exchange based on discrete logs
– Merkle-Hellman, 1978,  based on �knapsack problem�
– McEliece, 1978, based on algebraic coding theory
– RSA, 1978, based on factoring
– Rabin, 1979, security can be reduced to factoring
– ElGamal, 1985, based on discrete logs
– Blum-Goldwasser, 1985, based on quadratic residues
– Elliptic curves, 1985, discrete logs over Elliptic curves
– Chor-Rivest, 1988, based on knapsack problem
– NTRU, 1996, based on Lattices
– XTR, 2000, based on discrete logs of a particular field
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Diffie-Hellman Key Exchange
A group (G,*) and a primitive element (generator) g is 

made public.
– Alice picks  a, and sends ga to Bob
– Bob picks b and sends gb to Alice
– The shared key is gab

Note the shared key is easy for Alice or Bob to 
compute, but assuming discrete logs are hard is 
hard for anyone else to compute.

Can someone see a problem with this protocol?
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Person-in-the-middle attack

Alice BobMallory

ga

gbgd

gc

Key1 = gad Key1 = gcb

Mallory gets to listen to everything.
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ElGamal
Based on the difficulty of the discrete log problem.
Invented in 1985
Digital signature and Key-exchange variants

– Digital signature is AES standard
– Public Key used by TRW (avoided RSA patent)

Works over various groups
– Zp, 
– Multiplicative group GF(pn), 
– Elliptic Curves
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ElGamal Public-key Cryptosystem

(G,*) is a group
• a a generator for G
• a Î Z|G|

• b = aa

G is selected so that it 
is hard to solve the 
discrete log problem.

Public Key: (a, b) and 
some description of G

Private Key: a

Encode:
Pick random k Î Z|G|
E(m) = (y1, y2)

= (a k, m * bk)

Decode:
D(y) = y2 * (y1

a)-1

= (m * bk) * (aka)-1

= (m * aka ) * (aka)-1

= m
You need to know a to 

easily decode y!
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ElGamal: Example

G = Z11
*

• a = 2
• a  = 8
• b = 28 (mod 11) = 3

Public Key: (2, 3), Z11
*

Private Key: a = 8

Encode: 7
Pick random k = 4
E(m) = (24, 7 * 34)

= (5, 6)

Decode: (5, 6)
D(y) = 6 * (58)-1

= 6 * 4-1

= 6 * 3 (mod 11)
= 7
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Merkle-Hellman
Gets �security� from the Subet Sum (also called 

knapsack) which is NP-hard to solve in general.
Subset Sum (Knapsack): Given a sequence W = {w0,w1, 

…,wn-1}, wi Î Z of weights and a sum S, calculate a 
boolean vector B, such that: 

Even deciding if there is a solution is NP-hard.  
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Merkle-Hellman

W is superincreasing if:

It is easy to solve the subset-sum problem for 
superincreasing W in O(n) time.

Main idea of Merkle-Hellman:
– Hide the easy case by multiplying each wi by a 

constant a modulo a prime p

– Knowing a and p allows you to retrieve the 
superincreasing sequence
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Merkle-Hellman

What we need
• w1, !, wn

superincreasing 
integers

• p > åi=1
n wi and prime

• a,   1 £ a £ n
• w�i = a wi mod p

Public Key: w�i
Private Key: wi, p, a, 

Encode:
y = E(m) = åi=1

n mi w�i

Decode:
z = a-1 y mod p 

= a-1 åi=1
n mi w�i mod p

= a-1 åi=1
n miaiwi mod p

= åi=1
n mi wi

Solve subset sum prob:
(w1, !, wn, z)

obtaining m1, ! mn
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Merkle Hellman: Problem
Was broken by Shamir in 1984.
Shamir showed how to use integer programming to 

solve the particular class of Subset Sum problems 
in polynomial time.

Lesson: don�t leave your trapdoor loose.
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RSA
Name after Rivest, Shamir and Adleman (1978) but 

apparently invented by Clifford Cocks in 1973.
Based on difficulty of factoring.
Used to hide the size of a group Zn

* since: 
.
Factoring has not been reduced to RSA

– an algorithm that generates m from c does not give 
an efficient algorithm for factoring

On the other hand, factoring has been reduced to finding 
the private-key.
– there is an efficient algorithm for factoring given 

one that can find the private key from the public key.

)/11()(
|

* pnn
np

n -Õ==Z f
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RSA Public-key Cryptosystem

What we need:
• p and q, primes of 

approximately the 
same size

• n = pq
f(n) = (p-1)(q-1)

• e Î Z f(n)
*

• d = e-1 mod f(n)

Public Key: (e,n)
Private Key: d

Encode:
m Î Zn
E(m) = me mod n

Decode:
D(c) = cd mod n
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RSA continued
Why it works:
D(c) = cd mod n

= med mod n
= m1 + k(p-1)(q-1) mod n
= m1 + k f(n) mod n
= m(m f(n))k mod n
= m

Why is this argument not quite sound?
What if m Ï Zn

* then mf(n) ¹ 1 mod n
Answer 1: Not hard to show that it still works.

Answer 2: jackpot – you�ve factored n
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RSA computations
To generate the keys, we need to 

– Find two primes p and q.  Generate candidates 
and use primality testing to filter them.

– Find e-1 mod (p-1)(q-1). Use Euclid�s algorithm.  
Takes time log2(n)

To encode and decode
– Take me or cd.  Use the power method.

Takes time log(e) log2(n) and log(d) log2(n) .
In practice e is selected to be small so that encoding 

is fast.
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Security of RSA
Warning:

– Do not use this or any other algorithm naively!
Possible security holes:

– Need to use �safe� primes p and q.  In particular 
p-1 and q-1 should have large prime factors. 

– p and q should not have the same number of digits.   
Can use a middle attack starting at sqrt(n).

– e cannot be too small
– Don�t use same n for different e�s.
– You should always �pad�
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Algorithm to factor given d and e
If an attacker has an algorithm that generates d from 

e, then he/she can factor n in PPT.  Variant of the 
Rabin-Miller primality test.

Function TryFactor(e,d,n)
1. write ed – 1 as 2sr, r odd
2. choose w at random < n
3. v = wr mod n
4. if v = 1 then return(fail)
5. while v ¹ 1 mod n
6. v0 = v
7. v = v2 mod n
8. if v0 = n - 1 then return(fail)
9. return(pass, gcd(v0 + 1, n))

LasVegas algorithm
Probability of pass 
is > .5.
Will return p or q 
if it passes.
Try until you pass.
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RSA Performance
Performance: (600Mhz PIII) (from: ssh toolkit):                                

Algorithm Bits/key Mbits/sec

RSA Keygen
1024 .35sec/key
2048 2.83sec/key

RSA Encrypt
1024 1786/sec 3.5
2048 672/sec 1.2

RSA Decrypt
1024 74/sec .074
2048 12/sec .024

ElGamal Enc. 1024 31/sec .031
ElGamal Dec. 1024 61/sec .061
DES-cbc 56 95
twofish-cbc 128 140
Rijndael 128 180

http://www.ssh.com/products/x509/performance.cfm
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RSA in the �Real World�
Part of many standards: PKCS, ITU X.509, 

ANSI X9.31, IEEE P1363
Used by: SSL, PEM, PGP, Entrust, …

The standards specify many details on the 
implementation, e.g.
– e should be selected to be small, but not too 

small
– �multi prime� versions make use of n = pqr…

this makes it cheaper to decode especially in 
parallel (uses Chinese remainder theorem).
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Factoring in the Real World
Quadratic Sieve (QS):

– Used in 1994 to factor a 129 digit (428-bit) 
number.  1600 Machines, 8 months.

Number field Sieve (NFS):

– Used in 1999 to factor 155 digit (512-bit) number.  
35 CPU years.  At least 4x faster than QS

– Used in 2003-2005 to factor 200 digits (663 bits) 
75 CPU years ($20K prize)

– In 2009 the RSA 768 bits number was factored

2/12/1 ))(ln(ln)))(ln(1()( nnnoenT +=

3/23/1 ))(ln(ln)))(ln1(923.1()( nnoenT +=
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Probabilistic Encryption
For RSA one message goes to one cipher word.  This 

means we might gain information by running 
Epublic(M).

Probabilistic encryption maps every M to many C 
randomly.   Cryptanalysists can�t tell whether 
C = Epublic(M).

ElGamal is an example (based on the random k), but it 
doubles the size of message.
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BBS �secure� random bits
BBS (Blum, Blum and Shub, 1984)

– Based on difficulty of factoring, or finding 
square roots modulo n = pq.

Fixed
• p and q are primes such 

that p = q = 3 (mod 4)
• n = pq (is called a Blum 

integer)

For a particular bit seq.
• Seed: random x 

relatively prime to n.
• Initial state: x0 = x2

• ith state: xi = (xi-1)2

• ith bit: lsb of xi

Note that:
Therefore knowing p and q allows us to find x0 from xi

)(mod)(mod2
0 nxx n

i
i f-=
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Blum-Goldwasser: A stream cypher
Public key: n (= pq)        Private key: p or q

)(mod)1)(1mod(2
0 nxx qp

i
i ---=

Decrypt:
Using p and q, find 
Use this to regenerate the bi and hence mi

xi

xormi (0 £ i < l) ci (0 £ i < l)
bi

Random x x2 mod n BBS
lsb

ci (l £ i < l + log n) = xl

Encrypt:
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Quantum Cryptography
In quantum mechanics, there is no way to take a 

measurement without potentially changing the 
state.  E.g.
– Measuring position, spreads out the momentum
– Measuring spin horizontally, �spreads out� the 

spin probability vertically
Related to Heisenberg�s uncertainty principal 
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Using photon polarization

= ?  (equal probability)or

= or ? (equal probability)

measure
diagonal

measure
square

destroys state
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Quantum Key Exchange
1. Alice sends bob photon stream randomly polarized 

in one of 4 polarizations:

2. Bob measures photons in random orientations
e.g.: x + + x x x + x (orientations used)

\ |  - \ /  /   - \ (measured polarizations)
and tells Alice in the open what orientations he 
used, but not what he measured.

3. Alice tells Bob in the open which are correct
4. Bob and Alice keep the correct values
Susceptible to a man-in-the-middle attack
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In the �real world�
Not yet used in practice, but experiments have 

verified that it works.
IBM has working system over 30cm at 10bits/sec.
More recently, up to 10km of fiber. 
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Cryptography Outline
Introduction: terminology, cryptanalysis, security 
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, … 
Case Studies:

– Bitcoin



Bitcoin
Developed by ”Satoshi Nakamoto” in 2009.
Total value: $175 Billion
About 15Million “coins” in circulation.
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Bitcoin
Blockchain: Maintains a digital ledger of transactions 

as a linked list (chain) of blocks
Blocks: Each block can contain multiple transactions.
Distributed: Maintained in a distributed fashion.
“Coinbase transactions”: Get “paid” in new cash (and 

possibly transaction fees) for adding a new block 
of transactions to the chain.

Proof of work: To add a block one needs to do some
“hard” work and prove they have done it.

Public: The blockchain is publicly readable by all, and 
needs to be. 
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Bitcoin
Digital Ledger of transactions

1. New Cash -> Joe, $2
2. Joe -> Alice, $2 (1)
3. Alice –> Peter, $1 (2)
4. Alice -> Jane, $1 (2,3)
5. New Cash -> Peter, $2 
6. Peter -> Jane $3 (3,5)

At end Jane has $4, everyone else is broke.
Goes back in history to the beginning of time.
Currently 150Gbytes
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Uses of Cryptography
1. Digital signatures to sign a transaction

– Public key is your account name 
– Private key used to sign a transfer from the 

account
2. Secure hash to link the blocks
3. Merkle hash tree for efficiency (allows updating

the hash based on small changes)
4. Secure hash for proof of work
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Digital Signatures
Public Key : account name
Private Key: to sign transactions out of an account
For privacy, can use each “account” just once (to receive and

later transmit funds).
E.g.

– [Alice -> Jane, $1]Alice

– Alice and Jane are public keys
– Transaction (hash of) is signed by Alice

Uses Elliptic Curve Digital Signature Algorithm (ECDSA)
– Similar to Diffie-Hellman/ElGamal
– Uses elliptic curves as the “group”

• Points over finite field satisfying: y2 = x3 + ax + b
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Elliptic curve
Addition: (other special cases, e.g. if Q is on tangent)

15-853 Page 38



Linking blocks
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Each block is limited to 1Mbyte
Every block has a “coinbase” transactions” that claims

the “reward”



Merkle Tree
Can add leaf on right or modify any leaf with cost 

O(log n) for updating the root.
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Orphan Blocks
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Hashing
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Uses SHA256, applied twice
Generates 32 bytes
Similar to private key systems.
Here is one round



Mining coins: Proof of Work
Come up with a “nonce” such that the header hashes 

to a ”small number”.   
Threshold for the number is set ever 14 days. Set so

that new block generated every 10 minutes or so.
Seems to require brute force. Currently around 1019

tries
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Header:



“Mining” coins: Proof of work
Nonce is only 32-bits, so uses “secondary nonce” 

which goes into the “coinbase” transaction.
Each block generates 12.5 coins (about $150K).
New block about every 10 minutes.
This is a “BIG” business:  $21 Million/day
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Bitcoin
Value
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Kerberos
A key-serving system based on Private-Keys (DES).
Assumptions
• Built on top of TCP/IP networks
• Many �clients� (typically users, but perhaps 

software)
• Many �servers� (e.g. file servers, compute servers, 

print servers, …)
• User machines and servers are potentially insecure 

without compromising the whole system
• A kerberos server must be secure.
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Kerberos

Kerberos

Client Server

Ticket Granting Service
(TGS)

12 3
4

5

1. Request ticket-granting-ticket (TGT)
2. <TGT>
3. Request server-ticket (ST)
4. <ST>
5. Request service
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C = client   S = server  K = key  
T = timestamp   V = time range
TGS = Ticket Granting Service  A = Net Address

Ticket Granting Ticket: TC,TGS = TGS,{C,A,V,KC,TGS}KTGS
Server Ticket:               TC,S     =   S,  {C,A,V,KC,S     }KS
Authenticator:               AC,S = {C,T,[K]}KC,S

1. Client to Kerberos: {C,TGS}KC
2. Kerberos to Client: {KC,TGS}KC, TC,TGS
3. Client to TGS:        AC,TGS, TC,TGS
4. TGS to Client:        {KC,S}KC,TGS, TC,S
5. Client to Server:    AC,S, TC,S

Kerberos V Message Formats

Possibly 
repeat
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Kerberos Notes
All machines have to have synchronized clocks

– Must not be able to reuse authenticators
Servers should store all previous and valid tickets

– Help prevent replays
Client keys are typically a one-way hash of the 

password.  Clients do not keep these keys.
Kerberos 5 uses CBC mode for encryption Kerberos 4 

was insecure because it used a nonstandard mode.
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Electronic Payments
Privacy

– Identified
– Anonymous

Involvement
– Offline (just buyer and seller)

more practical for �micropayments�
– Online

• Notational fund transfer (e.g. Visa, CyberCash)
• Trusted 3rd party (e.g. FirstVirtual)

Today: �Digital Cash� (anonymous and possibly offline)
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Some more protocols
1. Secret splitting (and sharing)
2. Bit commitment
3. Blind signatures
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Blind Signatures
Sign a message m without knowing anything about m
Sounds dangerous, but can be used to give �value� to 

an anonymous message
– Each signature has meaning:

$5 signature, $20 signature, …
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Blind Signatures
An implementation: based on RSA 
Trent blindly signs a message m from Alice

– Trent has public key (e,n) and private key d
– Alice selects random r < n and generates

m� = m re mod n
and sends it to Trent. 
This is called blinding m

– Trent signs it: s(m�) = (m re)d mod n
– Alice calculates:

s(m) = s(m�) r-1 = md red-1 = md mod n 
Patented by Chaum in 1990.
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1. Blinded Unique Random large ID (no collisions).  
Sigalice(request for $100).

2. Sigbank_$100(blinded(ID)):  signed by bank
3. Sigbank_$100(ID)
4. Sigbank_$100(ID)
5. OK from bank
6. OK from merchant

Alice Merchant

Bank
1 2

3
4

An anonymous online scheme 

5

6

Minting: 1. and 2.
Spending: 3.-6.
Left out encryption
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The Perfect Crime
• Kidnapper takes hostage
• Ransom demand is a series of blinded coins
• Banks signs the coins to pay ransom
• Kidnapper tells bank to publish the coins in the 

newspaper (they�re just strings)
• Only the kidnapper can unblind the coins (only he 

knows the blinding factor)
• Kidnapper can now use the coins and is completely 

anonymous


