
15-853 Page 1

15-853:Algorithms in the Real World

Cryptography 1 and 2

15-853 Page 2

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies: Kerberos, SSL

15-853 Page 3

Cryptography Outline
Introduction:

– terminology
– cryptanalytic attacks
– security

Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies: Kerberos, SSL

Enigma Machine
"It was thanks to Ultra

that we won the war.�
- Winston Churchill

15-853 Page 4

15-853 Page 5

Some Terminology
Cryptography – the general term
Cryptology – the mathematics
Encryption – encoding but sometimes used as general

term)
Cryptanalysis – breaking codes
Steganography – hiding message
Cipher – a method or algorithm for encrypting or

decrypting

15-853 Page 6

More Definitions

Private Key or Symmetric: Key1 = Key2

Public Key or Asymmetric: Key1 ≠ Key2
Key1 or Key2 is public depending on the protocol

Encryption

Decryption

Key1

Key2

Cyphertext

Ek(M) = C

Dk(C) = M

Original Plaintext

Plaintext

15-853 Page 7

Cryptanalytic Attacks
C = ciphertext messages
M = plaintext messages

Ciphertext Only:Attacker has multiple Cs but does
not know the corresponding Ms

Known Plaintext: Attacker knows some number of
(C,M) pairs.

Chosen Plaintext: Attacker gets to choose M and
generate C.

Chosen Ciphertext: Attacker gets to choose C and
generate M.

15-853 Page 8

What does it mean to be secure?
Unconditionally Secure: Encrypted message cannot

be decoded without the key
Shannon showed in 1943 that key must be as long as

the message to be unconditionally secure – this is
based on information theory

A one time pad – xor a random key with a message
(Used in 2nd world war)

Security based on computational cost: it is
computationally �infeasible� to decode a message
without the key.

No (probabilistic) polynomial time algorithm can
decode the message.

15-853 Page 9

The Cast
Alice – initiates a message or protocol
Bob - second participant
Trent – trusted middleman
Eve – eavesdropper
Mallory – malicious active attacker

Trent

Alice Bob
Eve

Mallory

15-853 Page 10

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives:

– one-way functions
– one-way trapdoor functions
– one-way hash functions

Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies: Kerberos, Digital Cash

15-853 Page 11

Primitives: One-Way Functions
(Informally): A function

Y = f(x)
is one-way if it is easy to compute y from x but
�hard� to compute x from y

Building block of most cryptographic protocols
And, the security of most protocols rely on their

existence.
Unfortunately, not known to exist. This is true even

if we assume P ≠ NP.

15-853 Page 12

One-way functions:
possible definition

1. F(x) is polynomial time
2. F-1(x) is NP-hard

What is wrong with this definition?

15-853 Page 13

One-way functions:
better definition

For most y no single PPT (probabilistic polynomial
time) algorithm can compute x

Roughly: at most a fraction 1/|x|k instances x are
easy for any k and as |x| -> ¥

This definition can be used to make the probability
of hitting an easy instance arbitrarily small.

There are nice results on “pumping” to increase k.

15-853 Page 14

One-way functions:
better definition

Also important that cannot get any information
about y = F-1(x). Even getting 1 bit of y, or some
slightly skewed probability over y could be
dangerous in a encryption scheme.

15-853 Page 15

Some examples (conjectures)
Factoring:

x = (u,v)
y = f(u,v) = u*v
If u and v are prime it is hard to generate them

from y.
Discrete Log: y = gx mod p

where p is prime and g is a �generator� (i.e., g1, g2,
g3, … generates all values < p).

DES with fixed message: y = DESx(m)
This would assume a family of DES functions of

increasing key size (for asymptotics)

15-853 Page 18

One-way functions in
private-key protocols

y = ciphertext m = plaintext k = key
Consider

y = Ek(m) = E(k,m) = Em(k) (i.e. f = Em)
should this be a one-way function?

In a known-plaintext attack we know a (y,m) pair.
The m along with E defines f

Em(k) needs to be easy
Em

-1(y) should be hard
Otherwise we could extract the key k.

15-853 Page 19

One-Way Trapdoor Functions
A one-way function with a �trapdoor�
The trapdoor is a key that makes it easy to invert

the function y = f(x)
Example: RSA (conjecture)

y = xe mod n
Where n = pq (p, q, e are prime)
p or q or d (where ed = (p-1)(q-1) mod n) can be

used as trapdoors
In public-key algorithms

f(x) = public key (e.g., e and n in RSA)
Trapdoor = private key (e.g., d in RSA)

15-853 Page 20

One-way Hash Functions
Y = h(x) where

– y is a fixed length independent of the size of x.
In general this means h is not invertible since it
is many to one.

– Calculating y from x is easy
– Calculating any x such that y = h(x) give y is

hard
Used in digital signatures and other protocols.

15-853 Page 21

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, …
Protocols:

– digital signatures
– key exchange

Number Theory: groups, fields, …
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies: Kerberos, Digital Cash

15-853 Page 22

Protocols
Other protocols:

– Authentication
– Secret sharing
– Timestamping services
– Zero-knowledge proofs
– Blind-signatures
– Key-escrow
– Secure elections
– Digital cash

Implementation of the protocol is often the weakest
point in a security system.

15-853 Page 23

Protocols: Digital Signatures
Goals:

1. Convince recipient that message was actually
sent by a trusted source

2. Do not allow repudiation, i.e., that�s not my
signature.

3. Do not allow tampering with the message
without invalidating the signature

Item 2 turns out to be really hard to do

15-853 Page 24

Using private keys

– ka is a secret key shared by Alice and Trent
– kb is a secret key shared by Bob and Trent

sig is a note from Trent saying that Alice �signed� it.
To prevent repudiation Trent needs to keep m or at

least h(m) in a database

Trent

Alice Bob

Eka(m) Ekb(m + sig)

15-853 Page 25

Using Public Keys

More Efficiently

Alice BobDk1(m)

Alice BobDk1(h(m)) + m

K1 = Alice�s private key
Bob decrypts it with her public key

h(m) is a one-way hash of m

15-853 Page 26

Key Exchange
Private Key method

Public Key method

Trent

Alice Bob

Eka(k) Ekb(k)Generates k

Alice Bob
Generates k

Ek1(k)

k1 = Bob�s public key

Key exchange protocol (e.g. Diffie Hellman)

Alice Bob

15-853 Page 27

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory Review: (Mostly covered last week)

– Groups
– Fields
– Polynomials and Galois fields

Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies: Kerberos, Digital Cash

15-853 Page 28

Number Theory Outline
Groups

– Definitions, Examples, Properties
– Multiplicative group modulo n
– The Euler-phi function

Fields
– Definition, Examples
– Polynomials
– Galois Fields

Why does number theory play such an important role?

It is the mathematics of finite sets of values.

15-853 Page 29

Groups
A Group (G,*,I) is a set G with operator * such that:

1. Closure. For all a,b Î G, a * b Î G
2. Associativity. For all a,b,c Î G, a*(b*c) = (a*b)*c
3. Identity. There exists I Î G, such that for all

a Î G, a*I=I*a=a
4. Inverse. For every a Î G, there exist a unique

element b Î G, such that a*b=b*a=I
An Abelian or Commutative Group is a Group with the

additional condition
5. Commutativity. For all a,b Î G, a*b=b*a

15-853 Page 30

Examples of groups
– Integers, Reals or Rationals with Addition
– The nonzero Reals or Rationals with

Multiplication
– Non-singular n x n real matrices with Matrix

Multiplication
– Permutations over n elements with composition

[0®1, 1®2, 2®0] o [0®1, 1®0, 2®2] = [0®0, 1®2, 2®1]

We will only be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-853 Page 31

Key properties of finite groups
Notation: aj º a * a * a * … j times

Theorem (Fermat�s little): for any finite group
(G,*,I) and g Î G, g|G| = I

Definition: the order of g Î G is the smallest
positive integer m such that gm = I

Definition: a group G is cyclic if there is a g Î G such
that order(g) = |G|

Definition: an element g Î G of order |G| is called a
generator or primitive element of G.

15-853 Page 32

Groups based on modular arithmetic
The group of positive integers modulo a prime p

Zp
* º {1, 2, 3, …, p-1}

*p º multiplication modulo p
Denoted as: (Zp

*, *p)
Required properties

1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes.

Example: Z7
*= {1,2,3,4,5,6}

1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6

15-853 Page 33

Other properties
|Zp

*| = (p-1)
By Fermat�s little theorem: a(p-1) = 1 (mod p)
Example of Z7

*

x x2 x3 x4 x5 x6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

For all p the group is cyclic.

Generators

15-853 Page 34

What if n is not a prime?
The group of positive integers modulo a non-prime n

Zn º {1, 2, 3, …, n-1}, n not prime
*p º multiplication modulo n

Required properties?
1. Closure. ?
2. Associativity. ?
3. Identity. ?
4. Inverse. ?

How do we fix this?

15-853 Page 35

Groups based on modular arithmetic
The multiplicative group modulo n

Zn
* º {m : 1 ≤ m < n, gcd(n,m) = 1}

* º multiplication modulo n
Denoted as (Zn

*, *n)
Required properties:

• Closure. Yes.
• Associativity. Yes.
• Identity. 1.
• Inverse. Yes.

Example: Z15
* = {1,2,4,7,8,11,13,14}

1-1 = 1, 2-1 = 8, 4-1 = 4, 7-1 = 13, 11-1 = 11, 14-1 = 14

15-853 Page 36

The Euler Phi Function

If n is a product of two primes p and q, then

)/11()(
|

* pnn
np

n -Õ=Z=f

)1)(1()/11)(/11()(--=--= qpqppqnf

Note that by Fermat�s Little Theorem:
*)(for)(mod 1 n

n ana ZÎ=f

Or for n = pq
*)1)(1(for)(mod 1 pq

qp ana ZÎ=--

This will be very important in RSA!

15-853 Page 37

Generators
Example of Z10

*: {1, 3, 7, 9}

x x2 x3 x4

1 1 1 1
3 9 7 1
7 9 3 1
9 1 9 1

For n = (2, 4, pe, 2pe), p an odd prime, Zn is cyclic

Generators

15-853 Page 38

Operations we will need
Multiplication: a*b (mod n)

– Can be done in O(log2 n) bit operations, or better
Power: ak (mod n)

– The power method O(log n) steps, O(log3 n) bit ops
fun pow(a,k) =
if (k = 0) then 1
else if (k mod 2 = 1)

then a * (pow(a,k/2))2
else (pow(a, k/2))2

Inverse: a-1 (mod n)
– Euclids algorithm O(log n) steps, O(log3 n) bit ops

15-853 Page 39

Euclid�s Algorithm
Euclid�s Algorithm:

gcd(a,b) = gcd(b,a mod b)
gcd(a,0) = a

�Extended� Euclid�s algorithm:
– Find x and y such that ax + by = gcd(a,b)
– Can be calculated as a side-effect of Euclid�s

algorithm.
– Note that x and y can be zero or negative.

This allows us to find a-1 mod n, for a Î Zn
*

In particular return x in ax + ny = 1.

15-853 Page 40

Euclid�s Algorithm
fun euclid(a,b) =
if (b = 0) then a
else euclid(b, a mod b)

fun ext_euclid(a,b) =
if (b = 0) then (a, 1, 0)
else
let (d, x, y) = ext_euclid(b, a mod b)
in (d, y, x – (a/b) y)
end

The code is in the form of an inductive proof.
Exercise: prove the inductive step

gcd

x

y

15-853 Page 41

Discrete Logarithms
If g is a generator of Zn

*, then for all y there is a
unique x (mod f(n)) such that
– y = gx mod n

This is called the discrete logarithm of y and we use
the notation
– x = logg(y)

In general finding the discrete logarithm is
conjectured to be hard. It is as hard as factoring.

15-853 Page 53

Polynomials with coefficients in GF(pn)
We can make a finite field by using an irreducible

polynomial M(x) selected from GF(pn)[x].
For an order m polynomial and by abuse of notation we

write: GF(GF(pn)m), which has pnm elements.
Used in Reed-Solomon codes and Rijndael.

– In Rijndael p=2, n=8, m=4, i.e. each coefficient is a
byte, and each element is a 4 byte word (32 bits).

Note: all finite fields are isomorphic to GF(pn), so this
is really just another representation of GF(232).
This representation, however, has practical
advantages.

15-853 Page 54

Cryptography Outline
Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, …
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, …
Private-Key Algorithms:

– Block ciphers and product ciphers
– Rijndael, DES
– Cryptanalysis

Public-Key Algorithms: Knapsack, RSA, El-Gamal, …
Case Studies: Kerberos, Digital Cash

15-853 Page 55

Private Key Algorithms

Encryption

Decryption

Key1

Key1

Cyphertext

Ek(M) = C

Dk(C) = M

Original Plaintext

Plaintext

What granularity of the message does Ek encrypt?

15-853 Page 56

Private Key Algorithms
Block Ciphers: blocks of bits at a time

– DES (Data Encryption Standard)
Banks, linux passwords (almost), TSL, kerberos, …

– Blowfish
– IDEA (used in PGP, TSL as option)
– Rijdael (AES) – the current standard

Stream Ciphers: one bit (or a few bits) at a time
– RC4 (TSL as option)
– PKZip
– Sober, Leviathan, Panama, …

15-853 Page 57

Private Key: Block Ciphers
Encrypt one block at a time (e.g. 64 bits)

ci = f(k,mi) mi = f�(k,ci)
Keys and blocks are often about the same size.
Equal message blocks will encrypt to equal codeblocks

– Why is this a problem?
Various ways to avoid this:

– E.g. ci = f(k,ci-1 xor mi)
�Cipher block chaining� (CBC)

Why could this still be a problem?
Solution: attach random block to the front of the
message

15-853 Page 58

Security of block ciphers
Ideal:

– k-bit -> k-bit key-dependent subsitution
(i.e. �random permutation�)

– If keys and blocks are k-bits, can be
implemented with 22k entry table as a key!!!!!
Completely impractical.

15-853 Page 59

Iterated Block Ciphers

Consists of n rounds

R = the �round�
function

si = state after round i
ki = the ith round key

R

R

R

s1

.

.

.

m

c

.

.

.

key
k1

k2

kn

s2

15-853 Page 60

Iterated Block Ciphers: Decryption
Run the rounds in

reverse.
Requires that R has an

inverse.
R-1

R-1

R-1

s1

.

.

.

m

c

.

.

.

key

k2

kn

s2

k1

15-853 Page 61

Feistel Networks
If function is not invertible rounds can still be made

invertible. Requires 2 rounds to mix all bits.

F ki

XOR

F ki

XOR

high bits low bits

Forwards Backwards

R R-1

Used by DES (the Data Encryption Standard)

15-853 Page 62

Product Ciphers
Each round has two components:

– Substitution on smaller blocks
Decorrelate input and output: �confusion�

– Permutation across the smaller blocks
Mix the bits: �diffusion�

Substitution-Permutation Product Cipher
Avalanche Effect: 1 bit of input should affect all

output bits, ideally evenly, and for all settings of
other in bits

15-853 Page 63

Rijndael (AES)
Selected by AES (Advanced Encryption Standard,

part of NIST) as the new private-key encryption
standard in 2002 over DES.

Based on an open �competition�.
– Competition started Sept. 1997.
– Narrowed to 5 Sept. 1999

• MARS by IBM, RC6 by RSA, Twofish by
Counterplane, Serpent, and Rijndael

– Rijndael selected Oct. 2000.
– Official May 2002 (AES page on Rijndael)

Designed by Rijmen and Daemen (Dutch)

http://csrc.nist.gov/encryption/aes/

15-853 Page 64

Goals of Rijndael
Resistance against known attacks:

– Differential cryptanalysis
– Linear cryptanalysis
– Truncated differentials
– Square attacks
– Interpolation attacks
– Weak and related keys

Speed + Memory efficiency across platforms
– 32-bit processors
– 8-bit processors (e.g smart cards)
– Dedicated hardware

Design simplicity and clearly stated security goals

15-853 Page 65

High-level overview
An iterated block cipher with

– 10–14 rounds,
– 128-256 bit blocks, and
– 128-256 bit keys

Mathematically reasonably sophisticated

15-853 Page 66

Blocks and Keys
The blocks and keys are organized as matrices of

bytes. For the 128-bit case, it is a 4x4 matrix.

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

151173

141062

13951

12840

bbbb
bbbb
bbbb
bbbb

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

151173

141062

13951

12840

kkkk
kkkk
kkkk
kkkk

Data block Key

b0, b1, …, b15 is the order of the bytes in the stream.

15-853 Page 67

Galois Fields in Rijndael
Uses GF(28) over bytes.
The irreducible polynomial is:

M(x) = x8 + x4 + x3 + x + 1 or 100011011 or 0x11B

Also uses degree 3 polynomials with coefficients from
GF(28).

These are kept as 4 bytes (used for the columns)
The polynomial used as a modulus is:

M(x) = 00000001x4 + 00000001 or x4 + 1
Not irreducible, but we only need to find inverses of

polynomials that are relatively prime to it.

15-853 Page 68

Each round

0
3

1
2

Rotate
Rows

.

.

Byte
substitution

Mix
columns

+

Keyi

outin

The inverse runs the steps and rounds backwards.
Each step must be reversible!

15-853 Page 69

Byte Substitution
Non linear: y = b-1 (done over GF(28))
Linear: z = Ay + B (done over GF(2), i.e., binary)

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç

è

æ

=

0
1
1
0
0
0
1
1

10001111

11000111

11100011

11110001

BA

!

To invert the substitution:
y = A-1(z - B) (the matrix A is nonsingular)
b = y-1 (over GF(28))

15-853 Page 70

Mix Columns

For each column a in data block
a0
a1
a2
a3

compute b(x) = (a3x3+a2x2+a1x+a0)(3x3+x2+x+2) mod x4+1

where coefficients are taken over GF(28).

New column b is
b0
b1
b2
b3

where b(x)=b3x3+b2x2+b1x+b0

15-853 Page 71

Implementation

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

=

2113
3211
1321
1132

C

Using xj mod (x4 + 1) = x(j mod 4)

M(x) is not irreducible, but the rows of C and M(x)
are coprime, so the transform can be inverted.

(a3x3+a2x2+a1x+a0)(3x3+x2+x+2) mod x4+1

= (2a0+3a1+a2+a3) +
(a0+2a1+3a2+a3)x +
(a0+a1+2a2+3a3)x2 +
(3a0+a1+a2+2a3)x3

Therefore, b = C • a

15-853 Page 72

Generating the round keys
f

+ + + +

Words corresponding to columns of the key

f =
b1
b2
b3
b4

b2
b3
b4
b1

+

rotate sub byte consti

15-853 Page 73

Performance
Performance: (64-bit AMD Athlon 2.2Ghz, 2005, Open SSL):

Algorithm Bits/key Mbits/sec
DES-cbc 56 399
Blowfish-cbc 128 703
Rijndael-cbc 128 917

Intel X86 now has AES instructions (since 2008)
With instructions Intel-i7 gives 12Gbits/sec/core

X86 Instructions

15-853 Page 74

AESENC Perform one round of an AES
encryption flow

AESENCLAST Perform the last round of an AES
encryption flow

AESDEC Perform one round of an AES
decryption flow

AESDECLAST Perform the last round of an AES
decryption flow

AESKEYGENASSIST Assist in AES round key
generation

AESIMC Assist in AES Inverse Mix
Columns

PCLMULQDQ Carryless multiply (CLMUL)[3]

https://en.wikipedia.org/wiki/CLMUL_instruction_set
https://en.wikipedia.org/wiki/AES_instruction_set

15-853 Page 75

Linear Cryptanalysis
A known plaintext attack used to extract the key

Round
i1 il k1 km

o1 om

Consider a linear equality involving i, o, and k
– e.g.: k1 + k6 = i2 + i4 + i5 + o4

To be secure this should be true with p = .5
(probability over all inputs and keys)

If true with p = 1, then linear and easy to break
If true with p = .5 + e then you might be able to use

this to help break the system

15-853 Page 76

Differential Cryptanalysis
A chosen plaintext attack used to extract the key

Round

Considers fixed �differences� between inputs,
DI = I1 - I2, and sees how they propagate into
differences in the outputs, DO = O1 - O2.
�difference� is often exclusive OR

Assigns probabilities to different keys based on
these differences. With enough and appropriate
samples (I1, I2, O1, O2), the probability of a
particular key will converge to 1.

I K

O

