15-853:Algorithms in the Real World

Cryptography 1 and 2
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Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...

Private-Key Algorithms: Rijndael, DES

Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, SSL

15-853 Page 2



Cryptography Outline

‘ Introduction:

- terminology

- cryptanalytic attacks

- Security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, SSL

15-853 Page 3



Enigma Machine

"Tt was thanks to Ultra
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that we won the war.
- Winston Churchill
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Some Terminology

Cryptography - the general term
Cryptology - the mathematics

Encryption - encoding but sometimes used as general
term)

Cryptanalysis - breaking codes

Steganography - hiding message

Cipher - a method or algorithm for encrypting or
decrypting
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More Definitions

Plaintext
!
Key, — Encryption | E\(M) = C
Cyphertext
Key, — Decryption | D,(C) = M

l

Original Plaintext

Private Key or Symmetric: Key, = Key,

Public Key or Asymmetric: Key; ¢ Key,

Key, or Key, is public depending on the protocol
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Cryptanalytic Attacks

C = ciphertext messages
M = plaintext messages

Ciphertext Only:Attacker has multiple Cs but does
not know the corresponding Ms

Known Plaintext: Attacker knows some number of
(C.M) pairs.

Chosen Plaintext: Attacker gets to choose M and
generate C.

Chosen Ciphertext: Attacker gets to choose C and
generate M.
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What does it mean to be secure?

Unconditionally Secure: Encrypted message cannot
be decoded without the key

Shannon showed in 1943 that key must be as long as
the message to be unconditionally secure - this is
based on information theory

A one time pad - xor a random key with a message
(Used in 2" world war)

Security based on compumtlonal cost: it is

computationally “infeasible” to decode a message
without the key.

No (probabilistic) polynomial time algorithm can
decode the message.
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Alice - initiates a message or protocol

The Cast

Bob - second participant
Trent - trusted middleman

Eve - eavesdropper
Mallory - malicious active attacker

/" Trent \

Mallory

Alice

%’))) @Eve
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Primitives: One-Way Functions

(Informally): A function
Y = f(x)
/s one-way if it is easy to compute y from x but
“hard” to compute x from y

Building block of most cryptographic protocols

And, the security of most protocols rely on their
existence.

Unfortunately, not known to exist. This is true even
if we assume P 2 NP.
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One-way functions:

possible definition

1. F(x) is polynomial time
2. F1(x) is NP-hard

What is wrong with this definition?
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One-way functions:
better definition

For most y no single PPT (probabilistic polynomial
time) algorithm can compute x

Roughly: at most a fraction 1/|x|¥ instances x are
easy for any k and as |x| -> o

This definition can be used to make the probability
of hitting an easy instance arbitrarily small.

There are nice results on “pumping” to increase k.
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One-way functions:
better definition

Also important that cannot get any information
about y = F1(x). Even getting 1 bit of y, or some
slightly skewed probability over y could be
dangerous in a encryption scheme.
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Some examples (conjectures)

Factoring:
x = (u,v)
y = f(u,v) = u*v
If uand v are prime it is hard to generate them
fromy.
Discrete Log: y = g* mod p
where p is prime and g is a “generator” (ie., g, 92,
g3, ... generates all values < p).
DES with fixed message: y = DES,(m)

This would assume a family of DES functions of
increasing key size (for asymptotics)
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One-way functions in
private-key protocols

y = ciphertext m = plaintext k= key
Consider
y = Ex(m) = E(km) =E (k) (i.e.f=E,)
should this be a one-way function?

In a known-plaintext attack we know a (y,m) pair.
The m along with E defines f
E,.(k) needs to be easy

E,."(y) should be hard
Otherwise we could extract the key k.
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One-Way Trapdoor Functions

A one-way function with a “trapdoor”

The trapdoor is a key that makes it easy to invert
the function y = f(x)

Example: RSA (conjecture)
y = x¢mod n
Where n = pq (p, q, e are prime)

p or g or d (where ed = (p-1)(g-1) mod n) can be
used as trapdoors

In public-key algorithms
f(x) = public key (e.g., e and n in RSA)
Trapdoor = private key (e.g., d in RSA)
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One-way Hash Functions

Y = h(x) where

- y is a fixed length independent of the size of x.
In general this means h is not invertible since it
IS many to one.

- Calculating y from x is easy

- Calculating any x such that y = h(x) give y is
hard

Used in digital signatures and other protocols.
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Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
‘ Protocols:
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- key exchange
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash
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Protocols

Other protocols:
- Authentication
- Secret sharing
- Timestamping services
- Zero-knowledge proofs
- Blind-signatures
- Key-escrow
- Secure elections
- Digital cash

Implementation of the protocol is often the weakest
point in a security system.
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Protocols: Digital Signatures

Goals:

1. Convince recipient that message was actually
sent by a trusted source

2. Do not allow repudiation, /.e., that’s not my
signature.

3. Do not allow tampering with the message
without invalidating the signature

Item 2 turns out to be really hard to do
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Using private keys

Ek% Trent ﬂn + sig)

Alice Bob

- ka is a secret key shared by Alice and Trent
- kb is a secret key shared by Bob and Trent
sig is a note from Trent saying that Alice “signed” it.

To prevent repudiation Trent needs to keep m or at
least h(m) in a database
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Using Public Keys

Alice

Dyi(m)

» Bob

K1 = Alice’ s private key

Bob decrypts it with her public key

More Efficiently

Diy(h(m)) + m

Alice

h(m) is a one-way hash of m
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Key Exchange

Private Key method

Trent
Eka(kﬂenem’remkb(k)

Alice Bob
Public Key method
Alice Era(k) + Bob
Generates k kl = Bob’ s public key

Key exchange protocol (e.g. Diffie Hellman)

Alice | 1 Bob
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Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
‘ Number Theory Review: (Mostly covered last week)
- Groups
- Fields
- Polynomials and Galois fields
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash
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Number Theory Outline

Groups
- Definitions, Examples, Properties
- Multiplicative group modulo n
- The Euler-phi function
Fields
- Definition, Examples
- Polynomials
- Galois Fields
Why does number theory play such an important role?

It is the mathematics of finite sets of values.
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Groups

A Group (6,*.I)is a set & with operator * such that:
1. Closure.Forallabe 6, a*bec &
2. Associativity. For all a,b,c € 6, a*(b*c) = (a*b)*c
3. Identity. There exists I € &, such that for all
ae G, a*I=I*a=
4. Inverse. For every a € G, there exist a unique
element b € 6, such that a*b=b*a-=

An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. For all a6 € 6, a*b=b"a
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Examples of groups

- Integers, Reals or Rationals with Addition

- The nonzero Reals or Rationals with
Multiplication

- Non-singular n x n real matrices with Matrix
Multiplication

- Permutations over n elements with composition
[0-1,152,2—0] 0 [0—1, 10, 252]=[0-0, 12, 2->1]

We will only be concerned with finite groups, I.e.,
ones with a finite number of elements.
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Key properties of finite groups

Notation: al=a*a*a™ .. jtimes

Theorem (Fermat’ s little): for any finite group
(6*I) andge 6G,glél=T

Definition: the order of g € G is the smallest
positive integer m such that gm"=1T

Definition: a group G is cyclic if there is a g € G such
that order(g) = |G|

Definition: an element g € G of order |G| is called a
generator or primitive element of G.
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Groups based on modular arithmetic

The group of positive integers modulo a prime p
Z, ={1,23, ., p1}
*, = multiplication modulo p
Denoted as: (Z,”, *))
Required properties
1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes.
Example: Z,'={1,2,3,4,5,6}
11=1,21=4,31=5,61=6
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Other properties

|Zp*| - (P'l)
By Fermat’s little theorem: a®*-)=1 (mod p)
Example of Z;

X2 x3 x4 N X0

Genem’ror‘s<

For all p the group is cyclic.
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What if n is not a prime?

The group of positive integers modulo a non-prime n
Z.= {1,2,3, .., n1}, nnot prime
*, = multiplication modulo n
Required properties?
1. Closure. ?
2. Associativity. ?
3. Identity. ?
4. Inverse. ?

How do we fix this?
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Groups based on modular arithmetic

The multiplicative group modulo n
Z ={m:1l<m<n,gcd(nm)=1}
* = multiplication modulo n
Denoted as (Z,", *,)
Required properties:
Closure. Yes.
Associativity. Yes.
Identity. 1.
Inverse. Yes.
Example: Z;5 = {1,2,4,7,8,11,13,14}
11=1,21=-8,41=4,71=-13,111=11,141= 14
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The Euler Phi Function

Z,

¢(n) =
If nis a product of two primes p and q, then

p(n)=pq(1-1/p)d-1/q)=(p-1)(g-1)
Note that by Fermat’s Little Theorem:
a®”™ =1 (modn) for acZ,
Or for n = pq
a'?7P4 D =1 (modn) for ae Z;q

This will be very important in RSAl

=nll(1-1/p)
pln
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Generators

Example of Z,;": {1, 3,7, 9}

X X2 x3 x4

1 1 1 1
Generators < 3 g ; i

9 1 9 1

For n= (2, 4, p%, 2p®), p an odd prime, Z, is cyclic
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Operations we will need

Multiplication: a*b (mod n)
- Can be done in O(log? n) bit operations, or better
Power: ak (mod n)
- The power method O(log n) steps, O(log3 n) bit ops
fun pow(a,k) =
if (k = 0) then 1
else if (k mod 2 = 1)

then a * (pow(a,k/2))?2
else (pow(a, k/2))?2

Inverse: a! (mod n)
- Euclids algorithm O(log n) steps, O(log? n) bit ops
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Euclid” s Algorithm

Euclid’ s Algorithm:
gcd(a,b) = gcd(b,a mod b)
gcd(a,0)=a
“Extended” Euclid’ s algorithm:
- Find x and y such that ax + by = gcd(a,b)

- Can be calculated as a side-effect of Euclid’ s
algorithm.

- Note that x and y can be zero or negative.
This allows us to find almod n, fora e Z,
In particular return X inax + ny = 1.
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Euclid” s Algorithm

fun euclid(a,b) =
if (b = 0) then a
else euclid(b, a mod b)

gcd
fun ext_euclid(a,b)/;//ﬂ_;:///////y

if (b = 0) then (a, 1, 0)

else . X
let (d, x, y) = ext euclid(b, a mod b)
in (d, y, x - (a/b) y)
end

The code is in the form of an inductive proof.

Exercise: prove the inductive step

15-853
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Discrete Logarithms

If g is a generator of Z,, then for all y there is a
unique x (mod ¢(n)) such that

- y=g*modn

This is called the discrete logarithm of y and we use
the notation
- X = logy(y)

In general finding the discrete logarithm is
conjectured to be hard. It is as hard as factoring.
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Polynomials with coefficients in GF(p")

We can make a finite field by using an irreducible
polynomial M(x) selected from GF(p™)[x].

For an order m polynomial and by abuse of notation we
write: GF(GF(p")"), which has p" elements.

Used in Reed-Solomon codes and Rijndael.

- In Rijndael p=2, n=8, m=4, i.e. each coefficient is a
byte, and each element is a 4 byte word (32 bits).

Note: all finite fields are isomorphic to GF(p"), so this
is really just another representation of GF(232).
This representation, however, has practical
advantages.
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Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
‘ Private-Key Algorithms:

- Block ciphers and product ciphers

- Rijndael, DES

- Cryptanalysis
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies: Kerberos, Digital Cash
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Private Key Algorithms

Plaintext

}
Key; — Encryption | E,(M) = C

Cyphertext

Key; — Decryption | D,(C) = M

l
Original Plaintext

What granularity of the message does E, encrypt?
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Private Key Algorithms

Block Ciphers: blocks of bits at a time

- DES (Data Encryption Standard)
Banks, linux passwords (almost), TSL, kerberos, ...

- Blowfish

- IDEA (used in PGP, TSL as option)

- Rijdael (AES) - the current standard
Stream Ciphers: one bit (or a few bits) at a time

- RC4 (TSL as option)

- PKZip

- Sober, Leviathan, Panama, ...
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Private Key: Block Ciphers

Encrypt one block at a time (e.g. 64 bits)
¢;= f(km) m;=f (kc)
Keys and blocks are often about the same size.
Equal message blocks will encrypt to equal codeblocks
- Why is this a problem?
Various ways to avoid this:
- E.g. ¢; = f(k,c;; xor m;)
“Cipher block chaining” (CBC)
Why could this still be a problem?

Solution: attach random block to the front of the

message
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Security of block ciphers

Ideal:
- k-bit -> k-bit key-dependent subsitution
(i.e. “random permutation™)
- If keys and blocks are k-bits, can be

Completely impractical.
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Iterated Block Ciphers

m key
e
R Lk
'S l
< kn l

15-853

Consists of n rounds

R = the “round”
function

s; = state after round i
k; = the ith round key
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Iterated Block Ciphers: Decryption

m key Run the rounds in

! o reverse.
Rt — Requires that R has an
s, | inverse.
RT e

752 /

x l
R LK

I

c
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Feistel Networks

If function is not invertible rounds can still be made

invertible. Requires 2 rounds to mix all bits.

high bits  low bits
| R
Foo- s
XOR
Forwards

T

XOR

Backwards

Used by DES (the Data Encryption Standard)

15-853
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Product Ciphers

Each round has two components:

- Substitution on smaller blocks
Decorrelate input and output: “confusion”

- Permutation across the smaller blocks
Mix the bits: “diffusion”

Substitution-Permutation Product Cipher

Avalanche Effect: 1 bit of input should affect all
output bits, ideally evenly, and for all settings of
other in bits
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Rijndael (AES)

Selected by AES (Advanced Encryption Standard,
part of NIST) as the new private-key encryption
standard in 2002 over DES.

Based on an open “competition”.
- Competition started Sept. 1997.
- Narrowed to 5 Sept. 1999

* MARS by IBM, RC6 by RSA, Twofish by
Counterplane, Serpent, and Rijndael

- Rijndael selected Oct. 2000.
- Official May 2002 (AES page on Rijndael)
Designed by Rijmen and Daemen (Dutch)
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http://csrc.nist.gov/encryption/aes/

Goals of Rijndael

Resistance against known attacks:
- Differential cryptanalysis
- Linear cryptanalysis
- Truncated differentials
- Square attacks
- Interpolation attacks
- Weak and related keys
Speed + Memory efficiency across platforms
- 32-bit processors
- 8-bit processors (e.g smart cards)
- Dedicated hardware
Design simplicity and clearly stated security goals
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High-level overview

An iterated block cipher with
- 10-14 rounds,
- 128-256 bit blocks, and
- 128-256 bit keys
Mathematically reasonably sophisticated

15-853
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Blocks and Keys

The blocks and keys are organized as matrices of
bytes. For the 128-bit case, it is a 4x4 matrix.

(bo by by by \ (ko ky kg ks \
by bs by b ky ks ky ks
b, by by by ky ke kg ki

\b?, b7 bl 1 blS Y, \k3 k7 kl 1 le Y,

Data block Key

bo, by, ..., bis is the order of the bytes in the stream.
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Galois Fields in Rijndael

Uses GF(28) over bytes.
The irreducible polynomial is:
M(x) = x8+ x4+ x3+x+1 or 100011011 or Ox11B

Also uses degree 3 polynomials with coefficients from
GF(28).
These are kept as 4 bytes (used for the columns)
The polynomial used as a modulus is:
M(x) = 00000001x* + 00000001 or x* +1

Not irreducible, but we only need to find inverses of
polynomials that are relatively prime to it.
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Each round

In

Byte
substitution

—

—
—»>

Key;

—= WO

ke

out

Rotate Mix
Rows

columns

The inverse runs the steps and rounds backwards.
Each step must be reversiblel
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Byte Substitution

Non linear: y = b (done over GF(28))
Linear: z = Ay + B (done over GF(2), /.e., binary)

1
1
1
1

p_‘p_ay_‘o

0 0 1
0 0 1
1 0 1
1 1 1

O;—a;—u;—x

1 1
0 1
0 O
0 0

>
Il
O == O D =

To invert the substitution:
y = Al(z-B) (the matrix A is nonsingular)
b=y (over GF(28))
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Mix Columns

For each column a in data block

compute b(x) = (a3x3+a,x%+a;x+ay)(3x3+x%+x+2) mod x*+1

where coefficients are taken over GF(28).

New column b is b? where b(x)=b;x3+b,x%+b;x+b,

b,
by
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Implementation

Using xJ mod (x4 + 1) = x(i med 4)

= (2ap*+3as+a,+a3) +
(ag+2a;+3a,+a3)X +

(ag*rai+2a,+3a3)xe + P 3 1 1)
(300"‘01"‘02"‘203))(3 12 3 1
Therefore,b=Cea C= 1 1 2 3
3 1 1 2,

M(x) is not irreducible, but the rows of C and M(x)
are coprime, so the transform can be inverted.
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Generating the round keys

s

i

;

;

Words corresponding to columns of the key

\\\\\/
b1 bz/"
f= bz Jbs—
b3 b4\>
b4 X bl 7

>

>

L >

| ———P

rotate  sub byte

15-

853
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Performance

Performance: (64-bit AMD Athlon 2.2Ghz, 2005, Open SSL):

Algorithm | Bits/key | Mbits/sec
DES-cbc 56 399
Blowfish-cbc 128 703
Rijndael-cbc 128 917

Intel X86 now has AES instructions (since 2008)
With instructions Intel-i7 gives 12Gbits/sec/core

15-853
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X86 Instructions

Perform one round of an AES

AESENC .
encryption flow
AESENCLAST Perform the last round of an AES
encryption flow
AESDEC Zer'form. one round of an AES
ecryption flow
AESDECLAST Zer'for'm. the last round of an AES
ecryption flow
AESKEYGENASSIST Assist in AES round key
generation
AESIMC Assist in AES Inverse Mix
Columns
PCLMULQDQ Carryless multiply (CLMUL)E!
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Linear Cryptanalysis

A known plaintext attack used to extract the key

) kl||| |k"“

Round

R
01 Om

Consider a linear equality involving i, o, and k
- eg. Ki+kgziy+ig+isg+ 0y

To be secure this should be true withp = .5
(probability over all inputs and keys)

If true with p = 1, then linear and easy to break

If true with p = .5 + ¢ then you might be able o use
this to help break the system
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Differential Cryptanalysis

A chosen plaintext attack used to extract the key
I L] L] K
Round

Considers fixed “differences” between inputs,
Ar = I, - I,,and sees how they propagate into
differences in the outputs, A; = O - O,.
“difference” is often exclusive OR

Assigns probabilities to different keys based on
these differences. With enough and appropriate
samples (I;, I,, Oy, O,), the probability of a
particular key will converge to 1.
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