
Graph Compression

15-853, Spring 2018

Data compression: lecture 5



Outline

• What is a graph? 
• Graph representations 
• Compressing and reordering graphs 
• Examples



What is a graph?

• G(V, E), usually n for #vertices, m for #edges 
• Vertices model “objects” 
• Edges model relationship between objects



What is a graph?

• Edges can be undirected or directed

Undirected Directed

• Coauthorship network 
• Social networks (Facebook) 
• Protein-protein interaction

• Hyperlink graphs 
• Email graphs (enron) 
• Follower graphs (twitter)



Graph sizes in 2018

Graph |V| |E| (symmetrized)

com-Orkut 3M 234M

Twitter 41M 1.46B

Friendster 124M 3.61B

Hyperlink2012-Host 101M 2.04B

Facebook (2011) [1] 721M 68.4B

Hyperlink2014 [2] 1.7B 124B

Hyperlink2012 [2] 3.5B 225B

Facebook (2018) > 2B > 300B

Google (2018) ? ?

: Publicly available graphs

: Private graph datasets
[1] The Anatomy of the Facebook Social Graph, Ugander et al. 2011 
[2] http://webdatacommons.org/hyperlinkgraph/ 



Graph compression in industry

Problem: running into memory issues when storing the movie 
property graph in memory

Source: Netflix Tech Blog

https://medium.com/netflix-techblog/netflixgraph-metadata-library-an-optimization-case-study-6cc7d5eb2946


Graph compression in industry

Source: Facebook Reseach

https://research.fb.com/publications/compressing-graphs-and-indexes-with-recursive-graph-bisection/


Operations on graphs

• Static graphs: 
• scanning the whole graph (i.e. the storage cost) 
• get_neighbors(v) (in/out neighbors for digraphs) 
• is_edge(u, v) (is the (u, v) edge present in G?) 

• Dynamic graphs: 
• insert/delete edges

Source: MIT-6.172 Lecture 21

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations

Source: MIT-6.172 Lecture 21

0 0 0 0

1 0 1 1

0 0 0 1

0 1 1 0

Adjacency Matrix

• Vertices labeled from 0 to n-1 
• Entry of "1" if edge exists, 0 

o.w.

Edge List

(1, 0) 
(1, 2) 
(1, 3) 
(2, 3) 
(3, 1) 
(3, 2)

• Space requirements in terms of m and n?

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations

Source: MIT-6.172 Lecture 21, Image source: Stanford CS106b

Adjacency List
• Array of pointers (one per vertex) 
• Each vertex points to a list of its neighbors 
• Linked lists: bad cache performance, use arrays instead 

• Tradeoff: hard to insert/delete edges

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true
https://stanford.edu/class/archive/cs/cs106b/cs106b.1158/images/graph-adjacency-list.png


Graph representations

Source: MIT-6.172 Lecture 21

Compressed Sparse Row (Column)
• Cache-friendly method of storing graph in memory 
• Two arrays: Offsets and Edges 
• Offsets[i] stores the offset where vertex i’s edges start in Edges

0 2 5 5 10Offsets

2 13 0 2 3 100 101 102 155 156Edges

…

…

• How do we calculate the degree of a vertex?  
• Space usage? 
• Jargon: CSR used for out-edges, CSC for in-edges

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

ins/del neighbor

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

ins/del neighbor

O(n2) O(m) O(m + n) O(m + n)

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

ins/del neighbor

O(n2) O(m) O(m + n) O(m + n)

O(n) O(m) O(d) O(d)

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

ins/del neighbor

O(n2) O(m) O(m + n) O(m + n)

O(n) O(m) O(d) O(d)

O(1) O(m) O(d) O(d)

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

insert edge

delete edge

O(n2) O(m) O(m + n) O(m + n)

O(n) O(m) O(d) O(d)

O(1) O(m) O(d) O(d)

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

insert edge or

delete edge

O(n2) O(m) O(m + n) O(m + n)

O(n) O(m) O(d) O(d)

O(1) O(m) O(d) O(d)

O(1) O(1) O(1) O(d) O(m + n)

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: costs

Source: MIT-6.172 Lecture 21

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

insert edge or

delete edge

O(n2) O(m) O(m + n) O(m + n)

O(n) O(m) O(d) O(d)

O(1) O(m) O(d) O(d)

O(1) O(1) O(1) O(d) O(m + n)

O(1) O(m) O(d) O(m + n)

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Graph representations: summary

Source: MIT-6.172 Lecture 21

• Understand the set of operations before choosing a format 
• This lecture: mostly use CSR/CSC 

• Sparse graphs (m = O(n)) 
• Static algorithms 
• Need to scan over neighbors of a vertex efficiently

0 2 5 5 10Offsets

2 13 0 2 3 100 101 102 155 156Edges

…

…

n + m space

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true


Storing uncompressed graphs

• n = 3.6B, m = 225B (undirected edges) 
• Vertex ids fit into 4 bytes 
• > 900Gb to store in CSR format

Hyperlink2012 Graph

32Gb DRAM: about 300$*

So, about 9000$ of memory just to store the graph.  
Doesn’t include memory needed to run algorithms on it!

*Source: Hynix HMA84GR7MFR4N-UH 32GB DDR4-2400 ECC REG DIMM Server Memory



Compressing graphs

• Web graphs 
• Difference encoding 
• Reordering for locality



Web graphs

• Vertices are web pages 
• Directed edges represent hyperlinks 
• Used: 

• Understand structure of the web 
• Mine communities 
• Prioritize crawling 

Entire conferences around the web and web-algorithms



Compressing web graphs

Is the web structured?



Compressing web graphs

• Locality: Many links stay within the same sub-domain. I.e. 
most links point closeby in the lexicographic ordering 

• Similarity: Pages closeby in the lexicographic order tend to 
have similar sets of neighbors 

• Boldi and Vigna (WWW 2004) exploit these observations about 
the internet in the WebGraph framework: 
• Reference coding 
• Difference coding

Lots of structure!

Source: Boldi and Vigna, “The WebGraph Framework I: Compression Techniques”, WWW 2004

http://www.ics.uci.edu/~djp3/classes/2008_01_01_INF141/Materials/p595-boldi.pdf


Compressing web graphs: techniques

Reference coding

vertex 0: [1, 2, 4, 5, 9, 10] 
…

vertex 6: [1, 2, 4, 5, 9, 13]

Original graph:
vertex 0: [1, 2, 4, 5, 9, 10] 

…
vertex 6: ref(0), {10}, {13}

Reference coded:

Idea: to encode neighbors of v 
• Find previous vertex, ref, which has significant overlap 
• Encode edges with respect to ref.

How do you find good references?

Is accessing N(v) efficient? (O(deg(v)?)

Source: Boldi and Vigna, “The WebGraph Framework I: Compression Techniques”, WWW 2004

http://www.ics.uci.edu/~djp3/classes/2008_01_01_INF141/Materials/p595-boldi.pdf


Compressing web graphs: techniques

Difference coding

N(3) = [2, 4, 1, 13, 5, 9]

We want to store a set of integer vertex ids

Sort the elements

N(3) = [1, 2, 4, 5, 9, 13]

Neighbor lists exhibit a high degree of locality

Store gaps instead of the actual integers 

[1-3, 2-1, 4-2, 5-4, 9-5, 13-9]

= [(-)2, 1, 2, 1, 4, 4]

Compress the gaps using integer codes

Source: Boldi and Vigna, “The WebGraph Framework I: Compression Techniques”, WWW 2004

http://www.ics.uci.edu/~djp3/classes/2008_01_01_INF141/Materials/p595-boldi.pdf


Compressing web graphs

WebGraph Framework

Why do in edges compress better?

Combines: 
• Reference coding 
• Difference encoding

• out edges: 3.08 bits/edge 
• in edges: 2.89 bits/edge

The WWW paper shows that these two techniques can 
be used to represent a billion-edge web graph in

Source: Boldi and Vigna, “The WebGraph Framework I: Compression Techniques”, WWW 2004

http://www.ics.uci.edu/~djp3/classes/2008_01_01_INF141/Materials/p595-boldi.pdf


Compressing web graphs

Many other systems and techniques:
Fast and Compact Web Graph Representations 

• Grammar-based techniques (Re-Pair, LZ) 
• Similar space as WebGraph, but faster access times 

Representing Web Graphs 
• Hierarchical representation of web graphs 

Towards Compressing Web Graphs 
• Another early scheme based on copying 



Compressing CSR

• General purpose technique 
• Compresses lists with small, regular gaps well 
• Easy to see that accessing neighbors is O(deg(v)) 

Use difference coding

0 2 5 5 10Offsets

2 13 0 2 3 100 101 102 155 156Edges

…

…

2 11 -1 2 1 97 1 1 53 1Compressed edges …

Source: Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+

https://ldhulipala.github.io/papers/Ligra+.pdf


Variable length codes

8 1 1 53 1

• Most gaps are small; want to avoid wasting 4 bytes/gap
k-bit codes

Gaps:

• Ex: byte-code.

0 0 0 0 0 1 1 1

continue bit

encoding(7)

1 0 0 0 0 0 0 1encoding(129)

0 0 0 0 0 0 0 1

= (2^0)*(block1) 
+ (2^7)*(block2)

Source: Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+

https://ldhulipala.github.io/papers/Ligra+.pdf


Variable length codes

• First gap could be negative, so first block is encoded 
specially (6 data bits, 1 continue bit, 1 sign-bit) 

• Decoding: 

• Any issues with byte-codes? What if gaps are really small?

k-bit codes

Source: Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+

https://ldhulipala.github.io/papers/Ligra+.pdf


Variable length codes

• Same ideas work, encode data in blocks of k-1 bits 
• Decoding cost grows in practice, more branches 

4-bit codes (nibbles)

What is a 1-bit code?
• Recall gamma codes: to encode a number x 

• store T, the largest power of two < x in unary 
• store a “0” (delimiter) 
• store x % T 

1-bit code is effectively a gamma code

Source: Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+

https://ldhulipala.github.io/papers/Ligra+.pdf


Variable length codes

• Branches are costly in practice 

• Increases space, but decoding is cheaper (less branches)

Run-length encoded byte-codes

1 1 1 1 1 2 1 1 1 1#bytes/gap

run length encode

 Source: MIT-6.172 Lecture 21, Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra+

0 1 0 0 0 0 1 11-byte 
header

#blocks (max value is 2^6)#bytes/gap data blocks

https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true
https://learning-modules.mit.edu/service/materials/groups/182272/files/68861bf7-1549-4838-86db-a6dd79b30819/link?errorRedirect=/materials/index.html&download=true
https://ldhulipala.github.io/papers/Ligra+.pdf


Reordering graphs for locality

What is locality?

Adjacency matrix plots:

initial order: looks bad

slightly better order

another order; is this better?

lots of empty cells, is this even better?

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

https://ldhulipala.github.io/papers/RecursiveBisection.pdf


Reordering graphs for locality

What is locality?

I don’t really know how to define it. Maybe you know. 

Here’s one idea:  
• Measure the number of bits needed to difference encode all 

adjacency lists, and just call this locality 
• Measure is known in literature as “log-gap cost“



Reordering graphs for locality

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

Fix some order, �

Log-gap cost

Problem: find     minimizing�
�

v�V

f�(v, out(v))

Cost of an adjlist, f�(v, out(v)) =

deg(v)�1�

i=1

log |�(vi+1) � �(vi)|

Related to Minimum Linear Arrangement (MLA), which comes up in 
VLSI design

min
�

�

(u,v)�E

|�(u) � �(v)|

This problem is NP-hard
Finding the best ordering for difference-coding is hard

https://ldhulipala.github.io/papers/RecursiveBisection.pdf


Reordering graphs for locality

[2] Identifying and Filtering Near-Duplicate Documents 

Shingling

Originally purpose: detecting duplicate documents 
• Compute a “fingerprint” of a vertex 
• Order vertices that have similar fingerprints together

[1] On Compressing Social Networks 

J(A, B) =
|A � B|
|A � B|Jaccard coefficient:

Pick a hash function    (see [2] for necessary properties) f

Mf (A) = arg min
a�A

(f(a))

P [Mf (A) = Mf (B)] =
|A � B|
|A � B| = J(A, B)

Vertices with the same shingle likely to have high Jaccard similarity

http://cs.brown.edu/courses/cs253/papers/nearduplicate.pdf
http://cs.brown.edu/courses/cs253/papers/nearduplicate.pdf
https://www.eecs.harvard.edu/~michaelm/postscripts/kdd2009.pdf
http://cs.brown.edu/courses/cs253/papers/nearduplicate.pdf


Reordering graphs for locality

Recursive bisection

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

https://ldhulipala.github.io/papers/RecursiveBisection.pdf


Reordering graphs for locality

Recursive bisection

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

https://ldhulipala.github.io/papers/RecursiveBisection.pdf


Reordering graphs for locality

Recursive bisection

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

https://ldhulipala.github.io/papers/RecursiveBisection.pdf


Reordering graphs for locality

Algorithm: Bisection

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

• Initialize bisection randomly 
• While not converged 

• swap two vertices that improve the optimization goal

Kernighan-Lin Heuristic

https://ldhulipala.github.io/papers/RecursiveBisection.pdf
https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm


Reordering graphs for locality

Source: Compressing Graphs and Indexes with Recursive Graph Bisection

Experimental results

spy plots for FB-NewOrlean

Edges on facebook: ~8bits/edge

https://ldhulipala.github.io/papers/RecursiveBisection.pdf


Highly compressible graph families

• Succinct data-structure: uses space that is “close” to 
information theoretic lower bound 

• Classic results: planar graphs can be represented in O(n) bits 
• Similar results for constant genus graphs 

• Graphs that admit an          -separator theorem in          bits 

Source: Compact Representations of Separable Graphs

�(Z) Z + o(Z)lower bound: succinct:

O(nc) O(n)

https://www.cs.cmu.edu/~guyb/papers/BBK03.pdf


Conclusion: challenges in graph algorithms

• Compressed representations important (memory isn’t free) 
• Efficient representations important 

• Tradeoffs between space-efficiency and fast decoding 
• Formats should be amenable to parallelization

Real world graphs are highly compressible!

• Web graphs in a few bits/edge 
• Social networks: no simple (lex) order with high locality 
• Special graph families are highly compressible 
• RW-graphs have much smaller separators than expected*

*Source: Compact Representations of Separable Graphs

https://www.cs.cmu.edu/~guyb/papers/BBK03.pdf

