
15-853 Page 1

15-853:Algorithms in the Real World

Data Compression: Lecture 3.0

15-853 Page 2

Summary so far
Model generates probabilities, Coder uses them
Probabilities are related to information. The more

you know, the less info a message will give.
More “skew” in probabilities gives lower Entropy H

and therefore better compression
Context can help “skew” probabilities (lower H)
Average length la for optimal prefix code bound by

Huffman codes are optimal prefix codes
Arithmetic codes allow “blending” among messages

H l Ha£ < +1

15-853 Page 3

Encoding: Model and Coder

The Static part of the model is fixed
The Dynamic part is based on previous messages
The “optimality” of the code is relative to the probabilities.
If they are not accurate, the code is not going to be efficient

Dynamic
Part

Static Part

Coder

Message
s ÎS

Codeword

Model

{p(s) | s ÎS}

Compress

|w| » iM(s)
= -log p(s)

15-853 Page 4

Decoding: Model and Decoder

The probabilities {p(s) | s ÎS} generated by the model need to
be the same as generated in the encoder.

Note: consecutive “messages” can be from a different message
sets, and the probability distribution can change

Decoder

Message
s ÎS

Codeword
Dynamic

Part

Static Part

Model

{p(s) | s ÎS}

Uncompress

15-853 Page 5

Codes with Dynamic Probabilities
Huffman codes:
Need to generate a new tree for new probabilities.
Small changes in probability, typically make small

changes to the Huffman tree.
“Adaptive Huffman codes” update the tree without

having to completely recalculate it.
Used frequently in practice
Arithmetic codes:
Need to recalculate the f(m) values based on current

probabilities.
Can be done with a balanced tree.

15-853 Page 6

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others

– Transform coding: move to front, run-length, …
– Context coding: fixed context, partial matching

Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 7

Applications of Probability Coding
How do we generate the probabilities?
Using character frequencies directly does not work

very well (e.g. 4.5 bits/char for text).
Technique 1: transforming the data

– Run length coding (ITU Fax standard)
– Move-to-front coding (Used in Burrows-Wheeler)
– Residual coding (JPEG LS)
– FFT, Cosine transforms, Wavelets (JPEG, …)

Technique 2: using conditional probabilities
– Fixed context (JBIG…almost)
– Partial matching (PPM)

15-853 Page 8

Run Length Coding
Code by specifying message value followed by the

number of repeated values:
e.g. abbbaacccca => (a,1),(b,3),(a,2),(c,4),(a,1)
The characters and counts can be coded based on

frequency.
This allows for small number of bits overhead for low

counts such as 1.

15-853 Page 9

Facsimile ITU T4 (Group 3)
Standard used by all home Fax Machines
ITU = International Telecommunications Standard
Run length encodes sequences of black+white pixels

Fixed Huffman Code for all documents. e.g.

Since alternate black and white, no need for values.

Run length White Black
1 000111 010
2 0111 11
10 00111 0000100

15-853 Page 10

Facsimile ITU T4 (Group 3)
Transform: (run length)

– input : binary string
– output : interleaving of run lengths of black and

white pixels

Probabilities: (on the output of the transform)
Static probabilities of each run length based on

large set of test documents.

Coding: Huffman coding

15-853 Page 11

Move to Front Coding
Transforms message sequence into sequence of

integers, that can then be probability coded
Takes advantage of temporal locality

Start with values in a total order: e.g.: [a,b,c,d,…]
For each message

– output the position in the order
– move to the front of the order.
e.g.: c => output: 3, new order: [c,a,b,d,e,…]

a => output: 2, new order: [a,c,b,d,e,…]
Probability code the output.

The hope is that there is a bias for small numbers.

15-853 Page 12

BZIP
Transform 1: (Burrows Wheeler) – covered later

– input : character string (block)
– output : reordered character string

Transform 2: (move to front)
– input : character string
– output : MTF numbering

Transform 3: (run length)
– input : MTF numbering
– output : sequence of run lengths

Probabilities: (on run lengths)
Dynamic based on counts for each block.
Coding: Originally arithmetic, but changed to

Huffman in bzip2 due to patent concerns

15-853 Page 13

Residual Coding
Typically used for message values that represent

some sort of amplitude:
e.g. gray-level in an image, or amplitude in audio.

Basic Idea: guess next value based on current
context. Output difference between guess and
actual value. Use probability code on the output.

Consider compressing a stock value over time.

15-853 Page 14

JPEG-LS
JPEG Lossless (not to be confused with lossless JPEG)

Codes in Raster Order. Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.
Works in two stages

NW

W

N NE

*

15-853 Page 15

JPEG LS: Stage 1
Uses the following equation:

Averages neighbors and captures edges. e.g.

P
N W NW N W
N W NW N W

N W NW
=

³
<

+ -

ì

í
ï

î
ï

min(,) max(,)
max(,) min(,)

if
if
otherwise

40

40

3 *

3

30

20

40 *

30

3

40

3 *

40

15-853 Page 16

JPEG LS: Stage 2
Uses 3 gradients: W-NW, NW-N, N-NE
Classifies each into one of 9 categories.
This gives 93=729 contexts, of which only 365 are

needed because of symmetry.
Each context has a bias term that is used to adjust

the previous prediction
After correction, the residual between guessed and

actual value is found and coded using a Golomb-like
code. (Golomb codes are similar to Gamma codes)

Bottom line: guess can be arbitrarily complicated,
but orthogonal to the coding itself

15-853 Page 17

JPEG LS
Transform: (residual)

– input : gray-level image (8 bits/pixel)
– output : difference from guess at each pixel

Probabilities: (on the differences)
Static probabilities based on golomb code ---

something like p(n) = c/n2.

Coding: Golomb code

15-853 Page 18

Using Conditional Probabilities: PPM
Use previous k characters as the context.

– Makes use of conditional probabilities

Base probabilities on counts:
e.g. if seen th 12 times followed by e 7 times, then
the conditional probability p(e|th) = 7/12.

Need to keep k small so that dictionary does not get
too large (typically less than 8).

Note that 8-gram Entropy of English is about
2.3bits/char while PPM does as well as 1.3bits/char

15-853 Page 19

PPM: Partial Matching
Problem: What do we do if we have not seen the

context followed by the character before?
– Cannot code 0 probabilities!

The key idea of PPM is to reduce context size if
previous match has not been seen.
– If character has not been seen before with

current context of size 3, try context of size
2, and then context of size 1, and then no
context

Keep statistics for each context size < k

15-853 Page 20

PPM: Changing between context
How do we tell the decoder to use a smaller context?
Send an escape message. Each escape tells the

decoder to reduce the size of the context by 1.
The escape can be viewed as special character, but

needs to be assigned a probability.
– Different variants of PPM use different

heuristics for the probability.

15-853 Page 21

PPM: Example Contexts
Context Counts Context Counts Context Counts
Empty A = 4

B = 2

C = 5

$ = 3

A

B

C

C = 3

$ = 1

A = 2

$ = 1

A = 1

B = 2

C = 2

$ = 3

AC

BA

CA

CB

CC

B = 1

C = 2

$ = 2

C = 1

$ = 1

C = 1

$ = 1

A = 2

$ = 1

A = 1

B = 1

$ = 2

String = ACCBACCACBA k = 2

15-853 Page 22

PPM: Other important optimizations
If context has not been seen before, automatically

escape (no need for an escape symbol since
decoder knows previous contexts)

Can exclude certain possibilities when switching down
a context. This can save 20% in final length!

It is critical to use arithmetic codes since the
probabilities are small.

