15-853:Algorithms in the Real World

Data Compression: Lecture 3.0

15-853 Page 1

Summary so far

Model generates probabilities, Coder uses them

Probabilities are related to information. The more
you know, the less info a message will give.

More “skew” in probabilities gives lower Entropy H
and therefore better compression

Context can help “skew” probabilities (lower H)

Average length /, for optimal prefix code bound by
H<l <H+1

Huffman codes are optimal prefix codes

Arithmetic codes allow “blending” among messages

15-853 Page 2

Encoding: Model and Coder

Codewoyd

Compress
Static Part {p(S) |S GS}
Dynamic
Part
Message
s €S

The Static part of the model is fixed

The Dynamic part is based on previous messages

Wl ~ 1y(s)
= -log p(s)

The “optimality” of the code is relative to the probabilities.
If they are not accurate, the code is not going to be efficient

15-853

Page 3

Decoding: Model and Decoder

Uncompress

(p(s) | s esp [l Static Part

Codeword —

Dynamic
Part

Message
s eS

The probabilities {p(s) | s €S} generated by the model need to
be the same as generated in the encoder.

Note: consecutive “messages” can be from a different message
sets, and the probability distribution can change

15-853 Page 4

Codes with Dynamic Probabilities

Huffman codes:
Need to generate a new tree for new probabilities.

Small changes in probability, typically make small
changes to the Huffman tree.

“Adaptive Huffman codes” update the tree without
having to completely recalculate it.

Used frequently in practice
Arithmetic codes:

Need to recalculate the f(m) values based on current
probabilities.

Can be done with a balanced tree.

15-853 Page 5

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding

‘ Applications of Probability Coding: PPM + others

- Transform coding: move to front, run-length, ...

- Context coding: fixed context, partial matching
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 6

Applications of Probability Coding

How do we generate the probabilities?

Using character frequencies directly does not work
very well (e.g. 4.5 bits/char for text).

Technique 1: transforming the data

- Run length coding (ITU Fax standard)

- Move-to-front coding (Used in Burrows-Wheeler)

- Residual coding (JPEG LS)

- FFT, Cosine transforms, Wavelets (JPEG, ...)
Technique 2: using conditional probabilities

- Fixed context (JBIG..almost)

- Partial matching (PPM)

15-853 Page 7

Run Length Coding

Code by specifying message value followed by the
number of repeated values:

e.g. abbbaacccca => (a,1),(b,3).(a,2),(c,4).(a,1)

The characters and counts can be coded based on
frequency.

This allows for small number of bits overhead for low
counts such as 1.

15-853 Page 8

Facsimile TTU T4 (Group 3)

Standard used by all home Fax Machines

ITU = International Telecommunications Standard

Run length encodes sequences of black+white pixels
Fixed Huffman Code for all documents. e.g.

Run length White Black

1 000111 010
2 0111 11
10 00111 0000100

Since alternate black and white, no need for values.

15-853 Page 9

Facsimile TTU T4 (Group 3)

Transform: (run length)
- input : binary string

- output : interleaving of run lengths of black and
white pixels

Probabilities: (on the output of the transform)

Static probabilities of each run length based on
large set of test documents.

Coding: Huffman coding

15-853 Page 10

Move to Front Coding

Transforms message sequence into sequence of
integers, that can then be probability coded

Takes advantage of temporal locality

Start with values in a total order: e.g.: [a,b,c d,...]
For each message

- output the position in the order

- move to the front of the order.

e.g.: ¢ => output: 3, new order: [c,ab,de,..]
a => output: 2, new order: [a,c,bde,..]

Probability code the output.

The hope is that there is a bias for small humbers.

15-853 Page 11

BZIP

Transform 1: (Burrows Wheeler) - covered later
- input : character string (block)
- output : reordered character string
Transform 2: (move to front)
- input : character string
- output : MTF numbering
Transform 3: (run length)
- input : MTF numbering
- output : sequence of run lengths
Probabilities: (on run lengths)
Dynamic based on counts for each block.

Coding: Originally arithmetic, but changed to

Huffman in bzip2 due to patent concerns
5-

Page 12

Residual Coding

Typically used for message values that represent
some sort of amplitude:
e.g. gray-level in an image, or amplitude in audio.

Basic Idea: guess next value based on current
context. Output difference between guess and
actual value. Use probability code on the output.

Consider compressing a stock value over time.

15-853 Page 13

JPEG-LS

JPEG Lossless (not to be confused with lossless JPEG)

Codes in Raster Order. Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.
Works in two stages

15-853 Page 14

JPEG LS. Stage 1

Uses the following equation:

‘min(N,W) if NW > max(N,W)
max(N,W) if NW <min(N, W)
N+W-—NW otherwise

Averages neighbors and captures edges. e.qg.

i

P =

15-853

Page 15

JPEG LS: Stage 2

Uses 3 gradients: W-NW, NW-N, N-NE
Classifies each into one of 9 categories.

This gives 93=729 contexts, of which only 365 are
needed because of symmetry.

Each context has a bias term that is used to adjust
the previous prediction

After correction, the residual between guessed and
actual value is found and coded using a Golomb-like
code. (Golomb codes are similar to Gamma codes)

Bottom line: guess can be arbitrarily complicated,
but orthogonal to the coding itself

15-853 Page 16

JPEG LS

Transform: (residual)
- input : gray-level image (8 bits/pixel)
- output : difference from guess at each pixel

Probabilities: (on the differences)

Static probabilities based on golomb code ---
something like p(n) = ¢/n?.

Coding: Golomb code

15-853 Page 17

Using Conditional Probabilities: PPM

Use previous k characters as the context.
- Makes use of conditional probabilities

Base probabilities on counts:
e.g. if seen th 12 times followed by e 7 times, then
the conditional probability p(ef/th) = 7/12.

Need to keep k small so that dictionary does not get
too large (typically less than 8).

Note that 8-gram Entropy of English is about
2.3bits/char while PPM does as well as 1.3bits/char

15-853 Page 18

PPM: Partial Matching

Problem: What do we do if we have not seen the
context followed by the character before?

- Cannot code O probabilities!

The key idea of PPM is to reduce context size if
previous match has not been seen.

- If character has not been seen before with
current context of size 3, try context of size
2, and then context of size 1, and then no
context

Keep statistics for each context size < k

15-853 Page 19

PPM: Changing between context

How do we tell the decoder to use a smaller context?

Send an escape message. Each escape tells the
decoder to reduce the size of the context by 1.

The escape can be viewed as special character, but
needs to be assigned a probability.

- Different variants of PPM use different
heuristics for the probability.

15-853 Page 20

PPM: Example Contexts

Context Counts Context Counts Context Counts
Empty A =4 A C 3 AC B =1
B =2 $ 1 C =2
C =5 B A =2 s =2
S =3 s =1 BA cC =1
C A =1 s =1
B = 2 CA c =1
C =2 s =1
$ 3 CB A =2
s =1
cC A =1
B =1
$ = 2
String = ACCBACCACBA k=2

15-853

Page 21

PPM: Other important optimizations

If context has not been seen before, automatically
escape (no need for an escape symbol since
decoder knows previous contexts)

Can exclude certain possibilities when switching down
a context. This can save 20% in final lengthl!

It is critical to use arithmetic codes since the
probabilities are small.

15-853 Page 22

