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15-853:Algorithms in the Real World

Clustering: Lectures 1 and 2

Given a set of objects and a similarity (or distance) 
measure among the objects, cluster into groups of 
similar (close) objects

Also called:
• Unsupervised learning
• Classification
• Typology
• Numerical taxonomy
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Applications
Biology: Multiple allignments, evolutionary trees
Business: Market research, risk analysis
Liberal arts: Classifying painters, writers, musicians
Sociology: personality types, classifying criminals, 

classifying survey results.
Computer Science: compression, information 

retrieval, text mining, image segmentation, 
recommender systems, anomaly detection
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Types of clustering
Hard vs. soft
Hierarchical vs flat
Distance vs similarity based

Distance metrics:
– Euclidean, Minkowski, Hamming, Edit, …

Similarity measures:
– Cosine, Kernel functions, or Sij= (1 + dij)
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Main Approaches
Centroid based: K-means
Distribution/Model-based (EM)
Mixture of gaussians
Spectral
Agglomerate
Density based 
Neural nets
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Examples
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K-means
K-clustering: given a metric space (X,d), and a point 

set ! ⊂ # partition S into k sets $%, $',⋯ , $)

Cost: * $ = ∑%)-./012 ∑3145 6(8, 9)'

Goal: minimize the cost
Problem is NP-hard.    Can find approximations.
Typically looking for an approximation.
Related to expectation-maximization, mixture of 

gaussians, and k-median.
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K-means
Dedines Voronoi Cells:
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Lloyds algorithm for K-means
A greedy local search algorithm:

Start with a set of centers: c1, c2, …, ck in X
Repeat until “convergence”:

– Assign each x in S to nearest center
– Update location of each center to minimize sum 

of distances to points assigned to it

Will converge but perhaps slowly and perhaps to a 
local minimum

Often tried with many starting sets
Often dimensionality reduction is applied first15-853 Page 9

K-means++
Picks the starting set more intelligently:

Pick a center uniformly at random from X and add to 
centers Y (initially empty)

For k-1 steps:
– For each x in X calculate min distance d(x)

from points in Y
– Pick an x in X with probability proportional to 

d(x)2 and add to Y
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K-means++

Gives an 8(ln k + 2) approximation even without Lloyds
Using Lloyds will only improve the result.
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Expectation Maximization (EM)
K-means is a special case.

Start with an arbitrary set of clusters defined by 
parameters: p1, p2, …, pk

Repeat until “convergence”:
– Expectation: Assign each x in S to cluster that 

best matches parameters.
This can be a probabilistic (soft) assignment

– Maximization: Update parameters to best fit 
the assignment.

Coverges to a local maximal likelihood estimator.
15-853 Page 12



4

EM: mixture of gaussians
Here the parameters are (anisotropic) Gaussians.  

The parameters form a matrix
Can deal with elongated

structures.
More generally can be any

parameterized model of
the data 

Useful if you know what
form the clusters will
have.
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Spectral Clustering
Input is a similarity graph (often sparse)

– Cosine measure (x dot y)/(||x|| ||y||)
– K-nearest neighbor graph

Uses Eigenvectors of the Graph Laplacian
– If W is the weight matrix
– and D is a diagonal matrix summing each row
– L = D – W    (often normalized)
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Spectral Clustering
Used in two possible ways:

– Divisive hierarchical clustering
Use second eigenvector to split in two
Recurse on the parts

– K-clustering
Use first l eigenvectors as a reduced 
dimensional space
Use k-means on the result
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The Eigenvectors
First is trivial (all 1s) with eigenvalue 0 (if normalized)
The second gives information about how well the graph 

can be separated.
Cheeger constant :   

E(A,V\A)/|A| for any A, |A| < |V|/2
A measure of how well graph separates 
Related to expander graphs (do not separate)
Related to second eigenvalue.
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This uses number of shared nearest neighbors as the 
weight.   Note this is very similar to SVD since the 
number of shared neighbors is AAT
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Agglomerate Clustering
Hierarchical: bottom up
Assuming a distance measure

Initially one group per object: G = P

While |G| > 1
find ”closest” pair in G and join pair into group

Algorithms vary depending on distance between 
groups.
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Agglomerate: Distances
Choice 1: min distance (single linkage)

Choice 2: max distance (complete linkage)

Choice 3: centroid distance
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Min Spanning Tree

Agglomerate: Distances
Choice 4: average distance 

Choice 5: Min sum of squares (Ward’s method)
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Heap-based Algorithm
Initialize KD-Tree with elements
Initialize heap with best match for each element
Repeat {

Remove best pair <A,B> from heap
If A and B are active clusters {

Create new cluster C = A+B
Update KD-Tree, removing A and B and inserting C
Use KD-Tree to find best match for C and insert into 
heap

} else if A is active cluster {
Use KD-Tree to find best match for A and insert into 
heap}

} until only one active cluster left

Walter, Bala, Kulkarni, Pingali
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Heap-based Algorithm Example
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Main Approaches
Centroid based: K-means
Distribution/Model-based (EM)
Mixture of gaussians
Spectral
Agglomerate
Density based 
Neural nets
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Examples
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