15-853:Algorithms in the Real World

Clustering: Lectures 1 and 2
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Given a set of objects and a similarity (or distance)
measure among the objects, cluster into groups of
similar (close) objects

Also called:
. Unsul.ae'rws'ed learning DDDDD =
« Classification o3P o "ok
* Typology . ", " o
* Numerical tfaxonomy o oL
=" =
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Applications

Biology: Multiple allignments, evolutionary trees

Business: Market research, risk analysis

Liberal arts: Classifying painters, writers, musicians

Sociology: personality types, classifying criminals,
classifying survey results.

Computer Science: compression, information
retrieval, text mining, image segmentation,
recommender systems, anomaly detection
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Types of clustering

Hard vs. soft
Hierarchical vs flat
Distance vs similarity based

Distance meftrics:

- Euclidean, Minkowski, Hamming, Edit, ...
Similarity measures:

- Cosine, Kernel functions, or S;;= (1 + d;)
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Main Approaches

Centroid based: K-means
Distribution/Model-based (EM)
Mixture of gaussians

Spectral

Agglomerate

Density based

Neural nets
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Meanshift

K-means

K-clustering: given a metric space (X,d), and a point
set S c X partition S into k sets C;,C,, -+, Cy

Cost: ¢(C) = lec Mmincex erci d(c,x)?

Goal: minimize the cost
Problem is NP-hard. Can find approximations.
Typically looking for an approximation.

Related to expectation-maximization, mixture of
gaussians, and k-median.
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K-means

Dedines Voronoi Cells:
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Lloyds algorithm for K-means

A greedy local search algorithm:

Start with a set of centers: cl, c2, ..., ck in X
Repeat until "convergence":
- Assign each x in S to nearest center

- Update location of each center to minimize sum
of distances to points assigned to it

Will converge but perhaps slowly and perhaps to a
local minimum

Often tried with many starting sets
Often dimensionality reduction is applied first o

K-means++

Picks the starting set more intelligently:

Pick a center uniformly at random from X and add to
centers Y (initially empty)
For k-1 steps:
- For each x in X calculate min distance d(x)
from points in 'Y

- Pick an x in X with probability proportional to
d(x)2and add to Y
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Gives an 8(In k + 2) approximation even without Lloyds
Using Lloyds will only improve the result.
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Expectation Maximization (EM)

K-means is a special case.

Start with an arbitrary set of clusters defined by
parameters: p1, p2, ..., pk
Repeat until "convergence”:
- Expectation: Assign each x in S to cluster that
best matches parameters.
This can be a probabilistic (soft) assignment
- Maximization: Update parameters to best fit
the assignment.

Coverges to a local maximg] likelihood estimator.
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EM: mixture of gaussians

Here the parameters are (anisotropic) Gaussians.
The parameters form a matrix

Can deal with elongated
structures.

More generally can be any
parameterized model of
the data

Useful if you know what
form the clusters will

Spectral Clustering

Input is a similarity graph (often sparse)
- Cosine measure (x dot y)/(||x|| |lyll)
- K-nearest neighbor graph
Uses Eigenvectors of the Graph Laplacian
- If W is the weight matrix
- and D is a diagonal matrix summing each row
-L=D-W (often normalized)
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GFT Example
WGraph Laplacian
vy
;s vs G = {V.E} with unitary weights
U] U3 X °
~—Y, D = diag(degree(vy) ... degree(v,))
% Uie 1". L:=D-W
¢ Symmetric
I * Off-diagonal entries non-positive
* Rows sum up to zero
* Has a complete set of orthonormal
W C eigenvectors: L = yAx”

0=X <A < < Ano1

Z. Li, Adv. Mulimedia Communciation, 2016

Fall UMKC p32

Spectral Clustering

Used in two possible ways:

- Divisive hierarchical clustering
Use second eigenvector to split in two
Recurse on the parts

- K-clustering
Use first | eigenvectors as a reduced
dimensional space
Use k-means on the result
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The Eigenvectors

First is trivial (all 1s) with eigenvalue O (if normalized)

The second gives information about how well the graph
can be separated.

Cheeger constant :
E(AV\A)/|A| forany A, |A| < |V|/2
A measure of how well graph separates
Related to expander graphs (do not separate)
Related to second eigenvalue.
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This uses number of shared nearest neighbors as the
weight. Note this is very similar to SVD since the
number of shared neighbors is AAT
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Compound Aggregations R15

TN

Agglomerate Clustering

Hierarchical: bottom up
Assuming a distance measure

Initially one group per object: G = P

While |6] > 1
find "closest” pair in G and join pair into group

Algorithms vary depending on distance between
groups.
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Hierarchical Clustering

Agglomerative EIVIE
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Agglomerate: Distances

Choice 1: min distance (single linkage)

Min Spanning Tree

Choice 2: max distance (complete linkage)

Choice 3: centroid distance
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Agglomerate: Distances

Choice 4: average distance

==

Choice 5: Min sum of squares (Ward's method)

@ @ SS(G) = 2|1_G|erc,y66 d(x' y)z

§8(G12) — 55(G1) = 5S(G2)
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Heap-based Algorithm

Initialize KD-Tree with elements
Initialize heap with best match for each element
Repeat {
Remove best pair <A,B> from heap
If A and B are active clusters {
Create new cluster C = A+B
Update KD-Tree, removing A and B and inserting C

Use KD-Tree to find best match for € and insert into
heap

}else if A is active cluster {

Use KD-Tree to find best match for A and insert into
heap}

} until only one active cluster left

Walter, Bala, Kulkarni, Pingali

Heap-based Algorithm Example
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Heap-based Algorithm Example
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Heap-based Algorithm Example
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Heap-based Algorithm Example
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Main Approaches

Centroid based: K-means
Distribution/Model-based (EM)
Mixture of gaussians

Spectral

Agglomerate

Density based

Neural nets
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