
Algorithms in the Real World (15-853), Spring 2018
Project Proposal Due: Tuesday, April 3
Project Due: Thursday, May 3

This assignment is a programming project. The goal is to implement an algorithm related to the
algorithms we have discussed in class. You should work on your own or in groups of two. You
need to submit working code that can be readily compiled (use a makefile or a build system) and
a writeup describing algorithm details, any serious difficulties you came across, any optimizations
you implemented, and some timings. The report should be 5-10 pages including any tables and
figures. If you use any code or code snippets from elsewhere they need to be cited in the report.
The project cannot be anything you are using or have used for another class. If it is related to your
research it cannot be something you are doing anyway, but trying some variant or new algorithm
for a research problem is fine, and even encouraged.
The project proposal is due Tuesday April 3, and the project is due Thursday, May 3. The project
proposal should be a paragraph or two overview of what you plan to do.
Here are a list of possible projects, as ideas. You are not restricted to this list.

1. A parallel version of the PPM algorithm for text compression. The algorithm does not need
to generate exactly the same compressed file as the sequential algorithm. For example you
can batch the updates. You don’t need to implement your own arithmetic coder.

2. Generate Huffman Trees in parallel.

3. A parallel version of Burrows Wheeler compression.

4. Implement an I/O efficient sort and run it on data that does not fit in memory. Use this to
implement list-ranking or some other pointer-based algorithm.

5. Examine the I/O efficiency of an algorithm for something else we’ve talked about in class
(empirically and/or theoretically), and try to come up with a more I/O efficient version.

6. Implement the connectivity algorithm described in lectures, and compare it with other ap-
proaches to parallel connectivity.

7. Implement a graph compression algorithm. Ligra contains several existing compression for-
mats based on difference-encoding and run-length encoding; one could try taking advantage
of SIMD. See this library.

8. Compare the performance and compression-quality of different graph reordering algorithms
on real-world inputs, e.g. Distributed Balanced Partitioning via Linear Embedding or Com-
pressing Graphs and Indexes with Recursive Graph Bisection.

9. Implement and evaluate an interesting parallel graph algorithm on large real-world graphs
(should be more involved than just coding up a parallel graph-traversal algorithm).

1

http://www.cs.cmu.edu/~scandal/alg/connectivity.html
http://www.cs.cmu.edu/~scandal/alg/connectivity.html
https://github.com/jshun/ligra
https://github.com/lemire/simdcomp
https://dl.acm.org/citation.cfm?id=2835829
https://ldhulipala.github.io/papers/RecursiveBisection.pdf
https://ldhulipala.github.io/papers/RecursiveBisection.pdf


10. Using the Fast Johnson-Lindenstrauss Transform to speed up dimension reduction. (There
are newer papers on sparse J-L transforms, many by Jelani Nelson and his co-authors. One
can compare these approaches.)

2


