
Algorithms in the Real World (15-853) Solutions for Assignment # 3

Problem 1

A. Let n =
∏i=l

i=1 p
ki
i , where p1, . . . , pl are the prime factors of n. Then, by definition, we have

φ(n) =
∏i=l

i=1 p
ki−1
i (pi − 1).

Now, if n has an odd prime factor, then corresponding to that factor pi, the term pi − 1 in
the above product is even, and consequently, φ(n) is even. Similarly, if n is a power of 2, with
the corresponding ki > 1, then the term 2ki−1 is even, so φ(n) is even.

Thus the only number n for which φ(n) is odd is 2. The value of φ(n) in this case is 1. (n = 1
is also a valid answer, because φ(n) can be defined to be 1.)

B. Let d =
∏i=l

i=1 p
ki
i . Then, m =

∏i=l′

i=1 p
k′i
i with k′i ≥ ki ,∀i ≤ l. Now we have φ(d) =∏i=l

i=1 p
ki−1
i (pi − 1), and φ(m) =

∏i=l′

i=1 p
k′i−1
i (pi − 1). Then, φ(m)/φ(d) =

∏i=l
i=1 p

k′i−ki
i ×∏i=l′

i=l+1 p
ki−1
i (pi − 1), which is an integer. Thus φ(d)|φ(m).

Problem 2

A. We first compute (xSGP + e)P−1 (note P−1 = P T ). This gives xSG+ eP T ; note that there
are still t bit errors in this message. Therefore, xSG is a codeword of G with at most t errors,
and we know we can recover it in polynomial time. Finally, as S is invertible we can compute
S−1 and compute x = xSS−1 in polynomial time.

B. First generate all 2k messages. Next, ‘encrypt’ each message and combine it with each possible
n-bit vector with weight t. Finally, map each encoded message back to the original message
that generated it. Lookups can be done in time proportional to the message size. The table
would require O(2k

(
n
t

)
nk) space.

C. The initial code can correct 50-bit errors. As we only care about correcting up to 10 bit-errors
we can use the extra 40 bits to add an n-bit noise vector with weight 40. The maximum
combined errors is at most 50, so we can still recover the message.

D. An advantage of the cryptosystem is that it has an error-correcting mechanism built into
it, which as we saw in part (c) we can combine with the encryption. Another advantage is
that the McEliece crypsosystem is a candidate for post-quantum cryptography. A possible
disadvantage is the size of the obejcts required to encrypt and decrypt messages (both the
private and public keys are large matrices).

Problem 3

A. Knowing e1 and e2, Eve first computes r and s such that re1 + se2 = 1. She can do this by
using Euclid’s algorithm. Then she computes mr

1 ×ms
2 = mre1 ×mse2 mod n = m.

1



B. We can assume that NA, NB and NC are coprime, otherwise Eve can factor them and obtain
the message m. Now we have mA = m3 mod NA, mB = m3 mod NB, and mC = m3

mod NC . Applying the chinese remainder theorem, Eve can compute m3 mod NANBNC ,
because NA, NB and NC are pairwise coprime. Now, m < min(NA, NB, NC). So, m3 <
NANBNC , and m3 mod NANBNC is simply m3. Eve simply takes the cube root of this
number and obtains the message m.

2



Problem 4

For each pair (y, z), Bob can compute the message m = z
y11

mod (x3 + 2x+ 1). This can be done

by writing a simple program that computes the inverse of y modulo x3 +2x+1, and then computes
the product z × (y−1)11 mod (x3 + 2x+ 1).

A 1 26
B 2 13
C x 1
D 1 + x 18
E 2 + x 11
F 2x 14
G 1 + 2x 24
H 2 + 2x 5
I x2 2

J 1 + x2 7
K 2 + x2 3
L x+ x2 19
M 1 + x+ x2 22
N 2 + x+ x2 8
O 2x+ x2 12
P 1 + 2x+ x2 10
Q 2 + 2x+ x2 4
R 2x2 15

S 1 + 2x2 16
T 2 + 2x2 20
U x+ 2x2 25
V 1 + x+ 2x2 17
W 2 + x+ 2x2 23
X 2x+ 2x2 6
Y 1 + 2x+ 2x2 21
Z 2 + 2x+ 2x2 9

Figure 1: Polynomials and their corresponding logs to base x modulo x3 + 2x+ 1.

The question, however, provides us a “trapdoor” that greatly simplifies the calculation, and
enables us to find the solution by hand. Recall that x is a generator of the group. For any
polynomial y in the group, we can easily compute a such that xa = y mod (x3 + 2x + 1). The
respective values are displayed in the table on the next page. Now, for each pair (y, z), we first
read off the corresponding a1 and a2 from the table. Then, the decoded message is simply zy−11 =
xa2−11a1 mod 26. We compute a2 − 11a1 mod 26 and read off the corresponding letter from the
table below. This gives us the message: GALOISFIELD.

Problem 5

Roughly. Randomly pick an number x in Zn (if gcd(x, n) > 1 then you have factored n). Calculate
y = x2 (mod n). Use the square root routine to calculate the square root z of y. If z 6= ±x then
keep x and z, else pick another random number and repeat. With probability 1/2 we will succeed
on each trial so after a polylogarithmic number of trials the probability of failure is 1/nk. Once
we have found z 6= ±x which are both square roots of y we have x2 = z2 (mod n) so x2 − z2 = 0
(mod n) and (x − z)(x + z) = 0 (mod n) so (x − z) or (x + z) must not be relatively prime to n
and we can find a factor using gcd(n, x− z) and gcd(n, x+ z).

3


