Problem 1

The distance between any two code words is at least 2 . This is because, no two code words can have a distance of 1 . For contradiction assume that the codewords $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ have distance 1 . Then $u_{i}=v_{i}$ for all i except some i_{0}. But $\sum_{i} u_{i}=0=\sum_{i} v_{i}$, which implies that $u_{i_{0}}=v_{i_{0}}$, leading to a contradiction.

This implies that the code can detect one error but cannot correct any errors.
In order to compute the rate, we first count the number of valid codewords. This can be done by recursion. Let $n(a, b)$ be the number of sequences over $\{-2, \cdots, 2\}^{a}$ that sum to b. Then, $n(a, b)=n(a-1, b-2)+n(a-1, b-1)+n(a-1, b)+n(a-1, b+1)+n(a-1, b+2) . n(0, i)=1$ for all $i \in\{-2, \cdots, 2\}$. Solving this recurrence using a smal program gives $n(5,0)=381$.

The total number of sequences are 5^{5}. Thus the rate of encoding is $\frac{\log 381}{\log 5^{5}}=0.739$.

Problem 2

A. The check bit is given by the equation $2(1)+3(3)+4(2)+7(8)+9(9)+10(x)=0(\bmod 11)$, or $2+10 x=0(\bmod 11)$. We get $x=2$.
B. Let the original codeword be $u_{1} \cdots u_{10}$, and the transposed numerals be at positions j and k respectively, $j \neq k$. That is, $u_{i}^{\prime}=u_{i}$ for all $i \neq j, k, u_{j}^{\prime}=u_{k}$, and $u_{k}^{\prime}=u_{j}$. By definition we have, $\sum_{i} i u_{i}=0(\bmod 11)$.
Assume that the transposition is not detected. Then, $\sum_{i} i u_{i}^{\prime}=0(\bmod 11)$. Thus, $\sum_{i} i u_{i}=$ $\sum_{i} i u_{i}^{\prime}(\bmod 11)$, or, $j u_{j}+k u_{k}=j u_{k}+k u_{j}(\bmod 11)$. This implies, $(j-k) u_{j}=(j-k) u_{k}$ $\bmod 11$. But, $j-k \neq 0(\bmod 11)$. Thus, we must have $u_{j}=u_{k}(\bmod 11)$, or, $u_{j}=u_{k}$ because both the numbers are less than 11. Thus the two numbers are the same and no transposition took place!
C. The missing bit is given by the equation $2(1)+3(3)+4(2)+5(8)+6(x)+7(7)+8(9)+9(6)+$ $10(10)=0(\bmod 11)$, or, $4+6 x=0(\bmod 11)$. We get $x=3$.

Problem 3

Code C_{1} is generated by the polynomial $g_{1}(x)$. Thus it is also generated by any polynomial that is a multiple of $g_{1}(x)$. In order to generate $C_{1} \cup C_{2}$, we need to use a polynomial that is a multiple of both g_{1} and g_{2}. The smallest such code is given by the least common multiple of g_{1} and g_{2}.

Likewise, $C_{1} \cap C_{2}$ is generated by the greatest common divisor of g_{1} and g_{2}.

Problem 4

We divide the message into sequences of length 16 bits each. Let these sequences be $S_{1} S_{2} S_{3} \cdots$. Then, we encode $S_{1} S_{5} S_{9} \cdots$ using the $\operatorname{RS}(255,223)$ encoder. Likewise we encode $S_{2} S_{6} S_{10} \cdots$, $S_{3} S_{7} S_{11} \cdots$, and $S_{4} S_{8} S_{12} \cdots$ using the $\operatorname{RS}(255,223)$ encoder. Clearly the rate is preserved. Furthermore, note that, any consecutive bit errors containing up to 64 bits are divide over the four
sequences, such that each sequence contains at most 16 of them consecutively. Thus this code can correct up to 64 consecutive bit errors.

