Algorithms and Applications (15-499) Solutions for Assignment # 3

Problem 1

We solve this problem as a dynamic program. We will maintain and fill a 3-dimensional array wv of
size ningm, where n; = |S1|, ng = |S2|, and m = |T'|. Let iw(z,y, z) be 1 if there is an occurence of
Si[z..n1] and Sa[y..n9] interwoven in T'[z..m], possibly with spaces, and 0 otherwise. We compute
the value of iw(z,y, z) recursively. The solution is given by the value of iw(1,1,1).

0 if z>m

iw(z +1,y,2+ 1)+ iw(z,y+ 1,2+ 1) if Si[z] = T[2] and Saly] = T'[#]
iw(z,y,z) =< iw(z+1,y,z+1) if S1[z] = T'[2] and Ss[y] # T[]

iw(z,y+1,2+1) if S1[z] # T'[2] and Saly] = T[]

iw(z,y,z + 1) if Si[z] # T'[2] and Saly] # T'[#]

Here, “4+” denotes logical OR. The algorithm takes O(ninom) time.

Problem 2

We use a modification of the usual dynamic program for edit distance. We denote by RM (i, j) the

Row Minimum, or the minimum edit distance over all columns < j for the row i. That is, RM(i,j) =

minjy <; W (i, j'). Likewise we define the Column Minimum to be CM (3, j) = miny<; W (#', 7).
Now, the recurrences are given by:

W(i—1,5-1)
W(Ei—1,5)+1
Wi(i,j—1)+1
M(i,j — k) + &
M —k,) +k

Q =

Problem 3

We construct a graph on m + 1 vertices. Each strint S; has a vertex V; corresponding to it. In
addition there is a special vertex V). There is a directed edge between every ordered pair of vertices.
An edge directed from V; to Vj carries a weight equal to the length of S; minus the length of the
longest prefix of §; that is a suffix of S;. This edge signifies the increase in length when S; is
appended to S; with the maximum overlap possible.

An edge directed from Vj to V; has length |S;|, and an edge directed from V; to Vj has length 0.

Now consider a directed tour of this graph that starts and ends at the node Vy. This tour
defined a superstring containing each of the strings S;, that can be constructed by appending the

strings in the order in which they occur in the tour to each other, with the maximum overlap
possible. The edge lengths are defined such that the length of this tour is exactly the length of the
corresponding superstring. Thus the shortest superstring problem is exactly the problem of finding
a shortest directed tour of this graph, or the directed-TSP.

The shortest superstring problem can be shown to be NP-hard via a reduction from TSP, or
vertex cover. Details can be found in Maier and Storer, “A note on the complexity of the superstring
problem”, Report No. 223, 1977, Computer Science Laboratory, Princeton University.

Problem 4

Proof of Lemma: A string of length ¢ has exactly ¢ — k + 1 k-tuples, one starting at each
position, except for the last kK — 1 positions. Each individual character is contained in k of these k-
tuples. Thus, [mismatches invalidate a total of at most [k k-tuples (mismatches near the boundary
invalidate fewer tuples). All the remaining k-tuples match. So the two strings have at least
t—k+1—1k=t—(l+1)k+1 k-tuples in common.

Using this lemma, and given a value of k, we can determine the number of k-tuples in each
string in the database that match the given query. Strings that have very few matches can be
eliminated right away, reducing the search space considerably.

Problem 6

A. We first compute the best local alignment score (and its position) using the O(n + m) space
solution (without keeping track of the actual alignment). For this we need to modify the
recursion of the dynamic program to compute the best local alignment rather than the edit
distance of the entire string. Then, knowing the position of the best local alignment, we run
Hirshberg’s algorithm on the corresponding substrings that give the best local alignment.

B. We need to show that for any Si, So and S3, D(S1,852) < D(S1,8S3) + D(S2,S3). We have
D(81,82) = 32 6(S1ld], Safi]) < >2:{0(S1[1], Ssli]) + 6(Sa[i], Ssli])} = D(S1,53) + D(S2, 53).
The inequality follows from the fact that § satisfies the triangle inequality.

In order to find the approximately best solution, we use the following algorithm. For every
Si, we compute E(S;), and pick the one with minimum cost.

Let T be the optimal solution and S; be the string minimizing D(T, S;). We will show that
E(S;) < 2E(T). Then, since we pick the string with the minimum FE, our cost is at most
2E(T), and we are done.

We have D(T,S;) < D(T,S;)Vj, be definition. Using triangle inequality, D(S;,S;) <
D(S;,T) + D(S;,T) < 2D(S;,T). Summing over all j, we get E(S;) < 2E(T).

