
Algorithms and Applications (15-499) Solutions for Assignment # 2

Problem 1
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Now, if � has an odd prime factor, then corresponding to that factor 
 � , the term 
 �$ %" in the above
product is even, and consequently, ��� ��� is even. Similarly, if � is a power of 2, with the corresponding& ��'(" , then the term ) ���*� � is even, so �+� ��� is even.

Thus the only number � for which ��� ��� is odd is 2. The value of ��� ��� in this case is 1. ( ��� " is also
a valid answer, because ��� ��� can be defined to be 1.)
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which is an integer. Thus ���;, ��G ����- � .

C. Let H be a generator for the group IKJ�ML . Recall that the group is cyclic. Then, consider the mappingN �OH1P �Q�SR . Clearly,
N

maps elements of I J�ML to integers between T and "�U , that is, elements of the
additive group I �WV . The mapping is one-to-one and onto, because H is a generator and the group is
cyclic; the reverse map is given by

N � � � RX�<� H1P .
Let Y be the group operation for IQJ�ML . Now, for two elements H P and H[Z , we have H P Y\H[Z �
H1P D Z^]`_�a�bdc �ML@e by definition. But, ��� "gf �:� "�U . So, HXP^Y\H Z � H[P D Zh]`_�a �WV . Thus we haveN �OH P Y<H[Z ��� N � Rjilk�� . This proves that the two groups IQJ�ML and I �WV are isomorphic.

Problem 2

The protocol is given as follows: Alice flips a fair coin and obtains outcome m+n . She uses a bit commitment
scheme to commit to the bit m n and sends the certificate to Bob. Bob then flips a fair coin and obtains
outcome m
o . He sends this to Alice. Alice then reveals her bit m n and proves that this is indeed the bit that
she had commited to. Both then compute the result m � m n^p m
o .

Note that if both parties are honest, then since m n and m!o are uniform random bits, their xor is also a
uniform random bit, and the protocol succeeds.

Suppose Alice is dishonest while Bob is honest. Assuming that the bit commitment protocol works,
Alice cannot influence the outcome after seeing Bob’s bit, because she is already committed to m n . Thus
m n is independent of m$o . Even if m n is not a fair coin flip (e.g. say it is always 1), the probability that m is 1
is still T �/q , because m$o is a fair coin flip.

Similarly, if Bob is dishonest, while Alice is honest, then m+o is independent of m n , because after the first
step, Bob has no idea about Alice’s bit. Thus as before, m is 1 with probability T �/q , and the protocol succeeds.

An “almost” solution:
Several people used the following scheme in their solutions: Both Alice and Bob know a one-way hash
function. Alice picks a number from the domain of this function, hashes it and sends the value to Bob. Bob
divides the domain into two equal parts and discloses this partition to Alice. Call these sets r�s and r � .
Alice then reveals her secret number. If this falls in r s , the two go to the ballet, otherwise they go to the
boxing match. Although this solution seems to be correct, it has a subtle loophole. Depending on the hashed
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value of Alice’s secret number, although Bob may not be able to figure out the number, he may be able to
determine that the number falls within some large set. This will help him increase the probability of his win.
In general the security would depend on the specific hash function used.

Problem 3

A. The protocol proceeds in three stages. Alice, Bob and Carol first pick random elements R , k and � .
Then, Alice sends H P���� � � to Bob, Bob sends H1Z ��� � � to Carol, and Carol sends H�� ��� � �
to Alice. In the next round, Alice sends H	� P
��� � � to Bob, Bob sends H P Z ��� � � to Carol, and
Carol sends H Z�� ��� � � to Alice. Finally, the three players compute H P Z�� ��� � � and use that as the
common secret. This scheme is as secure as the Diffie Hellman scheme for two parties.

B. Both the parties digitally sign their message. In other words, Alice sends �OH!P �
����� �OH[P �@� to Bob,
where � n is Alice’s private key. Bob sends �OHXZ �
����� �OH[Z �@� to Alice, where � o is his private key. The
two parties can verify the sender of the respective messages and thus Mallory cannot impersonate
either of them.

Problem 4

A. Knowing � � and ��� , Eve first computes � and � such that ��� � i ����� � " . She can do this by using
Euclid’s algorithm. Then she computes - � � C -��� � - ��� � C -�� ��! ��� � ��� - .

B. We can assume that " n , " o and "$# are coprime, otherwise Eve can factor them and obtain the
message - . Now we have - n � -&% ��� � "=n , - o � -&% ��� � " o , and - # � -&% ��� � " # .
Applying the chinese remainder theorem, Eve can compute - % ��� � " n "=o'"(# , because " n , " o
and "$# are pairwise coprime. Now, - ) �+*-, �." n � " o � "$# � . So, -&%/)0" n " o1"$# , and -&%
��� � " n " o1"$# is simply - % . Eve simply takes the cube root of this number and obtains the message
- .

Problem 5

For each pair �32 �
4 � , Bob can compute the message - � 56 ��� ��� � ��m7% i ) m i " � . This can be done by

writing a simple program that computes the inverse of 2 modulo m8% i ) m i " , and then computes the product

4 C �32 � � � �@� ��� � ��m7% i ) m i " � .
The question, however, provides us a “trapdoor” that greatly simplifies the calculation, and enables us

to find the solution by hand. Recall that m is a generator of the group. For any polynomial 2 in the group,
we can easily compute R such that m P � 2 ��� � ��m % i ) m i " � . The respective values are displayed in the
table below. Now, for each pair �32 �
4 � , we first read off the corresponding R � and R � from the table. Then,
the decoded message is simply 4 2

� �@� � m!P ! � �@� P � ]`_�a � V . We compute R �  "�" R � ��� � ) U and read off
the corresponding letter from the table below. This gives us the message: GALOISFIELD.
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A " 26
B ) 13
C m 1
D " i m 18
E ) i m 11
F ) m 14
G " i ) m 24
H ) i ) m 5
I m � 2

J " i m � 7
K ) i m � 3
L m i m � 19
M " i m i m � 22
N ) i m i m � 8
O ) m i m � 12
P " i ) m i m � 10
Q ) i ) m i m � 4
R ) m � 15

S " i ) m � 16
T ) i ) m � 20
U m i ) m � 25
V " i m i ) m � 17
W ) i m i ) m � 23
X ) m i ) m � 6
Y " i ) m i ) m � 21
Z ) i ) m i ) m � 9

Figure 1: Polynomials and their corresponding logs to base m modulo m % i ) m i " .
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