
Algorithms and Applications (15-499) Solutions for Assignment # 1b

Problem 1 – Original version

A. The escape count for context ��� is 2. Thus the probability of occurence of � followed by context ��� is�� . The number of bits taken to encode � is
���	��

�����

.

B. Since the algorithm has not yet seen a � following context ��� , we first output an escape character to
move from � ���

to � ���
. This takes

���	���
bits. Similarly, we output an escape character for the

transition � ���
to � ���

, using another
���	���

bits (corresponding to the escape count for context�). Finally, at level � ���
, we encode an escape character using

���	� � �� bits, and then encode � using���	���	�
bits. The total amount of information encoded is

���	���"!#���	���$!%���	�'&(�)�+*,�+-.!#���	���	�0/21435�	�6�
bits.

The changes made to the dictionary are:

7 Context ��� : counts � ���,8 � �9�,8 � �:�,8<;=���
.

7 Context � : counts � �2�48?>"���48 � �:�,8<;@���
.

7 Context empty : counts � �A��8?>B���48 � �A��8 � �:�,8<;=�A�
.

C. If we use exclusion, for the context � , we already know from the previous step, that the following
character is not � . Thus we can use an escape count of

�
and a total count of

�
instead of

�
and C

respectively. This increases the probability of the next character beign a � at this stage, and so we
need only

���	���
bits to encode the esacpe, as opposed to

���	�D�
for the previous part. Likewise, for

� ���
, we know that the following character cannot be � ,

>
or � , thus we do not need to encode the

escape at all!

The total number of bits required is
���	���"!%���	���"!%���	�D�	�E/ C 35F	�6�

.

D. Encoding � requires
���	���=�:�,35F	G	F

bits. Encoding � requires
���	���"!%���	�H�)�+*,�$!I���	�D�	�E��G435�	�6�

bits.

Problem 1 – Modified version

A. The escape count for context � >
is 1. Thus the probability of occurence of � followed by context ��� is�

. The number of bits taken to encode � is
���	�
 �E�:�

.

B. Since the algorithm has not yet seen a � following context � >
, we first output an escape character to

move from � ���
to � ���

. This takes
���	���

bits. Similarly, we output an escape character for the
transition � ���

to � ���
, using another

���	���
bits (corresponding to the escape count for context�). Finally, at level � ���

, we encode an escape character using
���	� � �� bits, and then encode � using���	���	�

bits. The total amount of information encoded is
���	���"!#���	���$!%���	�'&(�)�+*,�+-.!#���	���	�0/2G43 C �	1

bits.

The changes made to the dictionary are:

7 Context � >
: counts � �:�,8 � �:�,8<;E���

.
7 Context

>
: counts � �:�,8 � �:�,8<;@���

.
7 Context empty : counts � �A��8?>B���48 � �A��8 � �:�,8<;=�A�

.

1

C. If we use exclusion, for the context
>
, we already know from the previous step, that the following

character is not � . Thus we do not need to encode the escape at all! Likewise, for � ���
, we know

that the following character cannot be � . Thus we can use an escape count of
�

and a total count of
G

instead of
�

and
�)�

respectively. This increases the probability of the next character being a � at this
stage, and so we need only

���	���
bits to encode the esacpe, as opposed to

���	�"�)�+*,�
for the previous

part.

The total number of bits required is
���	���"!%�$!I���	� �H!%���	���	�E/ � 35F	�6�

.

D. Encoding � requires
���	�D�@�:�

bit. Encoding � requires
���	�D�B!%���	�H�)�+*,�$!%���	���	�=� � 3 C �	1 bits.

Problem 2

A. LZ77 first encodes the triple
& ��� ��� � -

for the first character. Since the lookahead buffer is unbounded,
the next match is ��� �

bits long (���	� �
starting at the first character matches �
��� �

starting at the
second character). Thus the next triple output by LZ77 is

&(��� �
� ��� � -
. This is the entire encoding of

the string. The first triple roughly takes
�'! ���	� ���� bits to encode. The second triple takes

�
bits for

the
�
,
���	� ���� for the character � and roughly

� ���	� � bits to encode ��� �
. Thus the total number of

bits taken is � & ���	� � !#���	� ���� - .
B. LZW also starts with the encoding of character � for the first two characters. At this point, it makes

a new entry into the dictionary, corresponding to the substring �4� . It encodes the next two characters
using this new entry, and at the same time makes the entry �4��� into the dictionary.

Proceeding similarly, at the � th step, the algorithm has the entries � � �
 � � � ��������� �	� in the dictionary.
The algorithm encodes the next � bits using the dictionary entry corresponding to � � and makes a new
entry for the substring ����� �

. The total number of entries made in this manner are given by � where �
is a solution to the following equations:

� !#�"!#�B!������,! �

��

�
��!%�"!#�$!������6!�& ��� � -
�� �

We get that � � � &! � -
. Assume that new entries in the dictionary start at the position � . Then, the

� -th tuple output by the program encodes the position � ! � in the dictionary. Assuming that gamma
codes are used, this takes roughly � & ���	� �� � ! ���	�H& � ! � - - bits. Thus the total number of bits used is
given by ��"$#%

�&" � �
& ���	� �

')(!%���	�H& � ! � - - � � & � & ���	� �
')(!%���	� � - -

.

Note that LZW takes almost a factor of
 � more bits than LZ77 to encode the same string. LZ77

with an unbounded lookahead buffer is known to produce an optimal encoding, but is impractical with
respect to the time taken to encode the string.

Problem 3

A. For a character ��*�+ , and , *.-/# , let ' & �10 , -
denote the probability that some occurence of , in the

string is followed by the character � . Also let '3254)� & � - denote the � -character substring preceding � in+ .
2

Then, the � th order conditional entropy of + is given by � # & + - � ��������� ���	� ' & �50 '3254 � & � - -A�
� �
	��
������������� ����� ������� " 	 ���	� ' & �50 , -�� � �
	������������
��������� 	!� ���	� ' & �50 , -

.

But, � ���������"������	#� ���	� ' & �50 , -
is simply the total number of bits used to encode +"$ � � & , -

using single
character probabilities. This is equal to 0 +%$ � � & , - 0 �'& & +"$ � � & , - -

by the definition of ��& .

Thus we have � # & + - � �
	������ 0 +%$ � � & , - 0 � & & +"$ � � & , - -
.

B. Since BW sorts strings from right to left, all strings containing some , * - # as their suffix are
adjacent in the sorted list. Consequently, all characters following some occurence of , in + appear
together in the sorted list. For example, for , � + � in the string (� + + � + + � '5' � , the rotated string+ � '5' ��(� + + � immediately precedes ' ��(� + + � + + � , and so the characters + and ' appear consecutively in
the sorted list.

C. Let us number the � s and
>
s in order of their appearance in the string. Then, the substring correspond-

ing to � � is � & > � -
 & > > , that corresponding to �

is

& > � -
 & > > � , while, that corresponding to � � (�*) �
)

is
& > � -

 � � > > �4� & > � - � � � > . Similarly, the substring preceding

> � (�,+ �,�
) is � & > � -
 & � � > > �4� & > � - � � �

, that
corresponding to

>
 � is
> �4� & > � -
 & , and that corresponding to

>

is �4� & > � -
 & > .

Sorting these, we get the sequence
> � >
 3 3 3 >
 � �
 � � 3 3 3 �

 >

 � � , or

>
 � �
 � > � .

The above string contains
�	� � s and

�	� >
s, so Arithmetic encoding assigns each character a proba-

bility of
� 35F

. Each character takes
�

bit to encode, resulting in an encoding of approximately
�	�

bits
(ignoring the bits required to encode the actual characters).

D. MTF transforms the string
>
 � �
 � > � (obtained in the previous part) to

� �
 & � �
 & �	�
. The probability

for character
�

is
� &� � , while that for character

�
is

�� � . Thus the number of bits taken by Arithmetic
Encoding to encode this string is roughly

�+� ���	�'�,3���!I� ���	�$�	�$/��,�
.

E. Let � be any arbitrary number.

Let - # �.- , � ������� � ,0/21 be sorted in lexicographic order from right to left. From part (b) we know
that for any , � *.- # , 3 & +"$ � � & , � - - is a substring of +54 for some permutation 3 . Since

- , � 1 are sorted,
part (b) implies that + 4 � 3 � & +"$ � � & , � - - 3
 & +"$ � � & ,
 - -)����� 36/ & +%$ � & ,0/ - - for appropriate permutations
3 � ������� � 37/ .
Let + � � 3 � & +%$ � � & , � - - . From [Manzini’99], we know that the number of bits taken by MTF to
encode +�4 is at most � � � 0 + � 0 � & & + � - . But, 0 + � 0 � 0 +%$ � � & , � - 0 , and, � & & + � - � � & & +"$ � � & , � - - , because
permutation does not effect the zeroth order entropy of a string. So we get that the number of bits
taken to encode +�4 is at most

� %
�
0 +"$ � � & , � - 0 � & & +%$ � � & , � - - � � %

	���� �
0 +"$ � � & , - 0 � & & +%$ � � & , - -�� � � # & + -

where the last equality follows from part (a).

Problem 4

A. Recall that we can find the Harr transform by taking averages and differences iteratively. The coeffi-
cients corresponding to � �98 are given by differences computed on vector � at the

& � � � - -th stage. The
first few components of the vector � at the

& � ��� - -th stage contain averages of groups of
� # � � � �

ele-
ments of the original function. Thus the difference between two consecutive such elements is

� # � � � �
.

So the coefficient of � �:8 is
� *,�<;�� # � � � � ��� # � � �
 .

3

Similarly, the constant component is simply the average of all the elements, which is equal to
�
� � � �1� � �
 �

�1� �

.

So we get � &��
- � �1� �
 ! � ���3# � 8��
�� � � � # � � �
 � �98 &�� -
.

Similarly, solving for the second function, we get that � &��
- � �� ! �� � &�& ! �� � � & ! �
 �
 � .
B. From the second equation, we get

�
 � �
	 � ���

 � � � !�
 � !#�

� �
Using this, we can compute all the even components. Then, we can compute the odd components, by
using the following (derived from the first equation):

�
 ��� � ��
 � ! � �

 � ! �
 ��� �� �

4

