Problem 1: Number Theory basics (20)
A. For what values of n is $\phi(n)$ odd?
B. Show that if $d \mid m$ (i.e. d divides m), then $\phi(d) \mid \phi(m)$.
C. A group $\left(G_{1}, *\right)$ is isomorphic to a group $\left(G_{2},+\right)$ if there exists a one-to-one and onto function $f: G_{1} \rightarrow G_{2}$, such that for every $a, b \in G_{1}, f(a * b)=f(a)+f(b)$.
Show that the multiplicative group Z_{17}^{*} is isomorphic to the additive group Z_{16}. Note that you don't need to do this using brute force by filling in a 16×16 table.

Problem 2: Coin flipping over the phone (20)
Consider the following problem. Alice and Bob are talking on the phone and want to decide whether they should go to the opera or the fight. Unable to arrive at a decision, they decide to flip a coin. However, they do not trust each other. Help Alice and Bob determine the outcome of a fair coin flip (heads with probability 0.5), without having to meet in person. Prove that the outcome is random even if one of the two is dishonest, while the other is honest. (Hint: Use bit-commitment.)

Problem 3: Diffie-Hellman (20)
A. Extend the Diffie-Hellman scheme to enable three parties to share a single secret.
B. Briefly explain how the Diffie-Hellman scheme can be made robust against person-in-themiddle attacks.

Problem 4: RSA (20)
The following two questions exhibit what are called a protocol failures. They shows how one can break a cryptosystem if the cryptosystem is used carelessly.
You can solve either one of the two questions. Solving both is extra credit.
A. Joe Hacker decides that he wants to have two public-private key pairs to be used with RSAhe feels that two is more prestigious than one. In his infinite wisdom, he decides to use a common value for $n=p q$ and selects two separate encryption exponents e_{1} and e_{2}, giving two distinct decryption keys d_{1} and d_{2}. He makes e_{1}, e_{2} and n public. You can assume that e_{1} and e_{2} are relatively prime.
Assume Alice and Bob send the same secret plaintext message m to Joe one encrypted with e_{1} and the other with e_{2}. Suppose that Eve is eavesdropping on the conversation and gets the two encrypted messages. Show how she can use these to reconstruct the original message m. Hint, for any positive integers a and b, the extended Euclid's algorithm finds integers r and s such that $r a+s b=\operatorname{gcd}(a, b)$.
B. This problem shows why it is unsafe to use a very small public key in RSA. Suppose Alice, Bob and Carol have the following RSA public keys- $\left(3, N_{A}\right),\left(3, N_{B}\right)$, and $\left(3, N_{C}\right)$ respectively. Joe sends the message m to each one of them, encrypted using their respective public keys. Suppose that Eve is eavesdropping on the conversation and gets the three encrypted messages. Show how she can use these to reconstruct the original message m.

Problem 5: El-Gamal (20)
We give an example of the ELGamal Cryptosystem implemented in $\operatorname{GF}\left(3^{3}\right)$ using $x^{3}+2 x^{2}+1$ as the irreducible polynomial. We can associate the 26 letters of the alphabet with the 26 nonzero field elements, and thus encrypt ordinary text. The associations are given on below. Suppose Bob uses the polynomial x as the generator (g in the notes) and uses 11 as the random power (x in the notes, and a in the slides). Show how Bob will decrypt the following string of ciphertext:
$(K, H)(P, X)(N, K)(H, R)(T, F)(V, Y)(E, H)(F, A)(T, W)(J, D)(U, J)$

I would advise writing a small program for this. Although it might be quicker to do by hand, it would be quite tedious. Also writing a program will help you understand how to implement the Galois Field operations.

A	1	J	$1+x^{2}$		
B	2	K	$2+x^{2}$	$1+2 x^{2}$	
C	x	L	$x+x^{2}$	T	$2+2 x^{2}$
D	$1+x$	M	$1+x+x^{2}$	U	$x+2 x^{2}$
E	$2+x$	N	$2+x+x^{2}$	V	$1+x+2 x^{2}$
F	$2 x$	O	$2 x+x^{2}$	W	$2+x+2 x^{2}$
G $1+2 x$	P	$1+2 x+x^{2}$	X	$2 x+2 x^{2}$	
H $2+2 x$	Q	$2+2 x+x^{2}$	Y	$1+2 x+2 x^{2}$	
I x^{2}	R	$2 x^{2}$	Z	$2+2 x+2 x^{2}$	

