15-853:Algorithms in the Real World

Parallelism: Lecture 3
Parallel techniques and algorithms
- Contraction

15-853 Pagel

Parallel Techniques

Some common themes in "Thinking Parallel”
1. Working with collections.
- map, selection, reduce, scan, collect
2. Divide-and-conquer
- Even more important than sequentially
- Merging, matrix multiply, FFT, ...
3. Contraction
- Solve single smaller problem
- List ranking, graph contraction, Huffman codes
4. Randomization
- Symmetry breaking and random sampling

15-853 Page2

Technique 3: Contraction

Consists of:

- Do some work to make a smaller problem

- Solve smaller problem recursively

- Use result to create solution of full problem
The code for scan was based on this, i.e.:

- Pairwise add neighbors in array

- Solve scan that is half as large

- Use results along with original values to
generate overall result

15-853 Page3

Contraction : Graph Connectivity

0

2 0 2 2
3 4 1 3 4 1
5 6 5 6
Form stars
relabel

2 2
I—¢ I '
1 6 1e—e6

contract
15-853 4

Graph Connectivity

Representing a graph as an edge list:

0 2

3
1 4

5 6

E=1[(0,1),(0,2),(1,0),(1,3),(1,5),(2,0),(2,3),
(3,1),(3,2),(3,4),(3,5),(3,6),(4,3),(4,6),
(5,1),(5,3),(5,6),(6,3),(6,4),(6,5)]

Here every edge is represented once in each

direction 15-853

Graph Connectivity

Use an array of pointers, one per vertex fo point fo parent
in connected tree. Initially everyone points to self.

0 2

1 4

5 6

L =1[0,1,2,3,4,5,6] (initially)
L=1[1,1,1,1,6,1,1] (possible final)

15-853 6

Graph Connectivity

5 6

Randomly flip coins

FL = {coinToss(.5) : x in [O0:#L]1};
FL = [0, 1, O, O, O, O, 1]

15-853 7

Graph Connectivity

0 2 0 2

1 3 4 1 3 4

5 6 5 6

Randomly flip coins Every edge link
ancomly Tiip com from black to red

FL = [0, 1, O, O, O, O, 1]
H= {(u,v) in E | not(Fl[u]) and Fl[v]}
H=1[(,1), (3,1), (5,1), (3,6), (4,6), (5,6)]

15-853 8

Graph Connectivity

0 2 0 2 2
1 3 4 1 3 4 |1
5 6 5 6
Every edge link "Hook"

Randomly flip coi
andomly flip coins from black to red

e
|

L=L<-H
L=191,1,2,1, 6, 1, 6]

15-853

= [(0,1), (3,1), (5,1), (3,6), (4,6), (5,6)]

Graph Connectivity

0 2 0 2 2

1 3 4 1 3 4 |1

5 6 5 6

Every edge link Relabel edges and

Randomly flip coins
from black to red remove seif edges

[
]

[1, 1, 2, 1, 6, 1, 6]
{(L[u] ,L[v]): (u,v) in E | L[u]\=L[v]}

E=[(1,2),(2,1),(2,1),(1,2),(1,6),(1,6),
(6,1),(1,6),(6,1)(6,1)]

=
I

10

Graph Connectivity

L = Vertex Labels, E = Edge List

function connectivity (L, E) =
if #E = 0 then L
else let
FL = {coinToss(.5) : x in [0:#L]};

H= {(u,v) in E | not(Fl[u]) and Fl[v]}
L =L<- H;
E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]};

in connectivity(L,E);

D = O(log n)
W = O(m log n)

15-853

List Ranking (again)

start

15-853 Pagel2

List Ranking

FL = {coinToss(.5)

: x in [0:#P]};
FL = [1, 0, O, 1, O, O, 1, O, 1,

1]

15-853 Pagel3

List Ranking

D = {FL[i] and not(FL[P[i]]) : i in [O0:#P]};
bD=1[1,0,60,1 0, 0, O, O, 1, 0]

15-853

Pagel4

List Ranking

D=[1 00,11, 0, O, O, O, 1,
NI = plusScan({not(x)
NI =

0]

: x in D});
(o, 0,1, 2, 2, 3, 4, 5, 6, 6]

15-853 Pagel5

List Ranking

—> remove
—> Add (shortcut)
61

NI =[O0, 0, 1, 2, 2, 3, 4, 5, 6,
if D[P[i]] then

(W[i] + W[P[i]], NI[P[P[i]]])
else (W[i],NI[P[i]])

15-853 Pagel6

List Ranking

4 5 6

1 2 3
‘

start

w= [ll 2’ 2[1I 1’ 2’ 1]

List Ranking

15-853 Pagel8

P=1[4, 5,60, 1, 6, 2, 6]
15-853 Pagel7
List Ranking
IR= 3 9 5 10 2 7 1
NI= O0 1 2 3 4 5 6

R=8 3 9 4 5 10 2 7 6 1

If D[i] then LR[NI[P[i]]]+W[i]
else LR[NI[i]]

1] B8 2] I

15-853 Pagel9

List Ranking

function listRank (W, P) =
if #P == 1 then [W[O0]]
else let
FL = {coinToss(.5) : i in [0:#P]};
D = {FL[i] and not(FL[P[i]]) : i in [O:#P]};
NI = plusScan({not(x) : x in D});

(W ,P’) = unzip {
if D[P[i]] then (W[i] + W[P[i]], NI[P[P[i]]])
else (W[i],NI[P[i]])
: i in [0:#P] | not(D[i])};
LR = listRank (W’ ,P’);
in {if D[i] then LR[NI[P[i]]]+W[i]
else LR[NI[i]]
: i in [0:#P1};

15-853 Page20

Greedy: Huffman Codes

Huffman Algorithm:
Each p in P is a probability and a tree
function Huffman(P) =
if (#P == 1) then return
else let
((pl,t1), (p2,t2) ,P’) = extract2mins (P)
pt = (pl+p2, newNode (tl, t2)
in Huffman (insert(pt,P’))

15-853 Page 21

Example
pla)=.1, p(b)=.2, p(c)=.2, p(d)=.5
call) ob(2) oc(2) ed(5)

(3) (1.0)
o/ \I
a(1) o b(2) é)\ﬂ d(.5)

Step 1 c(.2)

a=000, b=001, c=01, d=1

15-853 Page 22

Greedy: Huffman Codes

Huffman Algorithm:
How do we do it in parallel?

Function Huffman (P) =
if #P == 1 then return
else let
((pl,t1), (p2,t2) ,P’) = extract2mins (P)
pt = (pl+p2, newNode (tl, t2)
in Huffman (insert(pt,P))

15-853 Page 23

Primes Sieve

function primes(n) =
if n == 2 then [] int
else
let sqr primes = primes(ceil(sqrt(float(n))));
sieves = flatten{[2*p:n:p]: p in sqr_primes};
flags = dist(t,n) <- {(i,f): i in sieves};
in drop({i in [0:n]; flags | flags}, 2) ;

W(n) = O(nloglogn) D(n) = D(/n)+00ogn)
O(logn)

15-853 24

Parallel Techniques

Some common themes in “Thinking Parallel”
1. Working with collections.
- map, selection, reduce, scan, collect
2. Divide-and-conquer
- Even more important than sequentially
- Merging, matrix multiply, FFT, ...
3. Contraction
- Solve single smaller problem
- List ranking, graph contraction, Huffman codes
4. Randomization
- Symmetry breaking and random sampling

15-853 Page25

