15-853:Algorithms in the Real World

Parallelism: Lecture 1
Nested parallelism
Cost model
Parallel techniques and algorithms
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Parallelism is here... And Growing!

Number of Cores
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Outline

Concurrency vs. Parallelism
Quicksort example
Nested Parallelism
- fork-join and parallel loops
Cost model: work and span
Techniques:
- Using collections: inverted index
- Divide-and-conquer: merging, mergesort, kd-
trees, matrix multiply, matrix inversion, fft

- Contraction : quickselect, list ranking, graph
connectivity, suffix arrays
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Parallelism in "Real world" Problems

Optimization

N-body problems

Finite element analysis
Graphics

JPEG/MPEG compression
Sequence alignment
Rijndael encryption
Signal processing
Machine learning

Data mining
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Parallelism vs. Concurrency

Parallelism: using multiple processors/cores
running at the same time. Property of the machine
Concurrency: non-determinacy due fo interleaving
threads. Property of the application.

Concurrency
sequential concurrent
Traditional Traditional

=2l programming | OS

Deterministic | General
parallelism parallelism

Parallelism
parallel
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Nested Parallelism

nested parallelism =
arbitrary nesting of parallel loops + fork-join

- Assumes ho synchronization among parallel
tasks except at joint points.

- Deterministic if no race conditions

Advantages:
- Good schedulers are known

- Easy to understand, debug, and analyze
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Nested Parallelism: parallel loops

cilk for (i=0; i < n; i++) Cilk
B[i] = A[i]+1;

Microsoft TPL

Parallel.ForEach(A, x => x+1);

(CH# F#)
B={x+1:x in A} Nesl, Parallel Haskell
#pragma omp for OpenMP

for (i=0; i < n; i++)
B[i] = A[i] + 1;
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Nested Parallelism: fork-join

cobegin { Dates back to the 70s or
51; possibly 60s. Used in
S2;} dialects of Pascal

coinvoke(£f1,£2) Java fork-join framework

Parallel.invoke(£fl,£2) Microsoft TPL (C# F#)

#pragma omp sections
{
#pragma omp section OpenMP (C++, C, Fortran, ...)
S1;
#pragma omp section
S2;

} 15-853 Page9

Nested Parallelism: fork-join

spawn S1;

52; cilk, cilk+
sync;

(expl || exp2) Various functional

languages
plet
x = expl Various dialects of
y = exp2 ML and Lisp
in
exp3

15-853 Pagel0

Serial Parallel DAGs

Dependence graphs of nested parallel computations are

series parallel

Two tasks are parallel if not reachable from each other.

A data race occurs if two parallel tasks are involved in a
race if they access the same location and at least one

is a write.
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Cost Model

Compositional:

Work : total number of operations
- costs are added across parallel calls

Span : depth/critical path of the computation
- Maximum span is taken across forked calls

Parallelism = Work/Span

- Approximately # of processors that can be
effectively used.
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Combining costs

Combining for parallel for:
pfor (i=0; i<n; i++)
£(i);

n-l1

WpéXp(pfor )= EWexp (f(i) work
i=0

n-1 .
Dpexp (pfor ..) =max,., Dexp(f(l)) span
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Why Work and Span

Simple measures that give us a good sense of
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.
This is within a constant factor of optimal.
Goals in designing an algorithm

1. Work should be about the same as the
sequential running time. When it matches
asymptotically we say it is work efficient.

2. Parallelism (W/D) should be polynomial
O(n'?) is probably good enough
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Example: Quicksort

function quicksort(S) =
if (#S <= 1) then S

else let
a = S[rand(#S)];
S1 = {e in S | e < a}; .
S2 = {e in S | e = a}; Partition
S3 = {e in S | e > a}; .
R = {quicksort(v) : v in [S1, S3]}; Recursive
in R[0] ++ S2 ++ R[1]; calls

How much parallelism?
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Quicksort Complexity

Sequential Partition and appending

Parallel calls
aratiet cd Work = O(n log n)

(less than, ..) @

Span = O(n) Parallelism = O(log n)

Not a very good parallel algorithm
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Quicksort Complexity

Now lets assume the partitioning and appending can
be done with:

Work = O(n)
Span = O(log n)
but recursive calls are made sequentially.
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Quicksort Complexity

Parallel partition
Sequential calls

Work = O(n log n)

Span = O(n) Parallelism = O(log n)

Not a very good parallel algorithm
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Quicksort Complexity

Parallel partition Span = O(lg n)
Parallel calls

—_—

Work = O(n log n)

Span = O(lg2n)  Parallelism = O(n/log n)

A good parallel algorithm
15-853 *All randomized |
with high probability

Quicksort Complexity

Caveat: need to show that depth of recursion is
O(log n) with high probability
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Parallel selection

{e in S | e < a};

s = [2,1,4,0,3,1,5,7]
F=5<4 = [1,1,0,1,1,1,0,0]
I =addscan(F)= [0,1,2,2,3,4,5,5]

where F
R[I]=S =1[2,1,0,3,1]

Each element gets sum of
previous elements.

Seems sequential?
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Scan

[2,1,4,2,3,1,5,7]

sum /N /NLND NS
3/ 6./ 4,/ 12]

[0} 3.\ 9.\ 13]
sum LS XN
(2,/7,/12, 18]
interleave I | .
[0.2,3,7,9,12,13,18]

recurse
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Scan code

function addscan(A) =
if (#A <= 1) then [0]
else let
sums = {A[2*i] + A[2*i+1l] : i in [0:#a/2]};
evens = addscan (sums) ;
odds = {evens[i] + A[2*i] : i in [O:#a/2]};
in interleave (evens,odds) ;

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)
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Parallel Techniques

Some common themes in "Thinking Parallel”
1. Working with collections.
- map, selection, reduce, scan, collect
2. Divide-and-conquer
- Even more important than sequentially
- Merging, matrix multiply, FFT, ...
3. Contraction
- Solve single smaller problem
- List ranking, graph contraction
4. Randomization
- Symmetry breaking and random sampling
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Working with Collections

reduce @ [a, b, ¢, d, ...
—a®@b®@cOd+..

scan ® ident [a, b, ¢, d, ...
= [ident,a,a®b,a®b ®c, ..

sort compF A

collect [(2,a), (0,b), (2,¢), (3,d), (0.e), (2.f)]
= [(ol [ble])l (Zl[alclf])l (3l[d])]
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