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15-853:Algorithms in the Real World 
Parallelism: Lecture 1 

Nested parallelism 
Cost model 
Parallel techniques and algorithms 
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Outline 
Concurrency vs. Parallelism 
Quicksort example 
Nested Parallelism 

 - fork-join and parallel loops 
Cost model: work and span 
Techniques: 

–  Using collections: inverted index 
–  Divide-and-conquer: merging,  mergesort, kd-

trees, matrix multiply, matrix inversion, fft 
–  Contraction : quickselect, list ranking, graph 

connectivity, suffix arrays 
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Parallelism in “Real world” Problems 
Optimization 
N-body problems 
Finite element analysis  
Graphics 
JPEG/MPEG compression 
Sequence alignment 
Rijndael encryption 
Signal processing 
Machine learning 
Data mining 
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Parallelism vs. Concurrency 

Concurrency 

sequential concurrent 

Parallelism 
serial Traditional 

programming 
Traditional 
OS 

parallel Deterministic 
parallelism 

General 
parallelism 
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"   Parallelism: using multiple processors/cores 
running at the same time. Property of the machine 

"   Concurrency: non-determinacy due to interleaving 
threads.  Property of the application. 
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Nested Parallelism 

  nested parallelism = 
    arbitrary nesting of parallel loops + fork-join 

–  Assumes no synchronization among parallel 
tasks except at joint points. 

–  Deterministic if no race conditions 

Advantages:  
–  Good schedulers are known 
–  Easy to understand, debug, and analyze 
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Nested Parallelism: parallel loops 
cilk_for (i=0; i < n; i++) !
   B[i] = A[i]+1;!

Parallel.ForEach(A, x => x+1);!

B = {x + 1 : x in A}!

#pragma omp for !
for (i=0; i < n; i++)  

B[i] = A[i] + 1;!

Page8 

Cilk 

Microsoft TPL 
(C#,F#) 

Nesl, Parallel Haskell 

OpenMP 
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Nested Parallelism: fork-join 
cobegin { !
  S1;!
  S2;}!

coinvoke(f1,f2)!
Parallel.invoke(f1,f2)!

#pragma omp sections!
{ !
  #pragma omp section!
  S1;!
  #pragma omp section!
  S2;!
}! Page9 

Dates back to the 70s or 
possibly 60s.  Used in 
dialects of Pascal 

Java fork-join framework 
Microsoft TPL (C#,F#) 

OpenMP (C++, C, Fortran, …) 
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Nested Parallelism: fork-join 
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spawn S1;!
S2;!
sync;!

(exp1 || exp2)!

plet!
  x = exp1!
  y = exp2!
in!
  exp3!

cilk, cilk+!

Various functional 
languages!

Various dialects of 
ML and Lisp!
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Serial Parallel DAGs 
Dependence graphs of nested parallel computations are 

series parallel 

Two tasks are parallel if not reachable from each other. 
A data race occurs if two parallel tasks are involved in a 

race if they access the same location and at least one 
is a write. 
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Cost Model 
Compositional: 

Work : total number of operations 
–   costs are added across parallel calls 

Span : depth/critical path of the computation 
–  Maximum span is taken across forked calls 

Parallelism = Work/Span 
–  Approximately # of processors that can be 

effectively used. 
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Combining for parallel for: 
       pfor (i=0; i<n; i++) 

         f(i); 

€ 

Wpexp(pfor ...) = Wexp(f(i))
i=0

n−1

∑

€ 

Dpexp(pfor ...) = i=0
n−1max Dexp(f(i))

work 

span 

Combining costs 
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Simple measures that give us a good sense of 
efficiency (work) and scalability (span). 

Can schedule in O(W/P + D) time on P processors. 
This is within a constant factor of optimal. 
Goals in designing an algorithm 

1.  Work should be about the same as the 
sequential running time.  When it matches 
asymptotically we say it is work efficient. 

2.  Parallelism (W/D) should be polynomial  
O(n1/2) is probably good enough 

Why Work and Span 
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Example: Quicksort 
function quicksort(S) = 
if (#S <= 1) then S 
else let 
  a = S[rand(#S)]; 
  S1 = {e in S | e < a}; 
  S2 = {e in S | e = a}; 
  S3 = {e in S | e > a}; 
  R = {quicksort(v) : v in [S1, S3]}; 
in R[0] ++ S2 ++ R[1]; 

How much parallelism? 
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Partition 

Recursive 
calls 
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Quicksort Complexity  

partition append 

Span = O(n) 

(less than, …) 

Sequential Partition and appending 
Parallel calls 

Work = O(n log n) 

Not a very good parallel algorithm 

Parallelism = O(log n) 

15-853 *All randomized 
  with high probability 
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Quicksort Complexity 
Now lets assume the partitioning and appending can 

be done with: 
   Work = O(n) 
   Span = O(log n) 
but recursive calls are made sequentially. 
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Quicksort Complexity 

Parallel partition 
Sequential calls  

Span = O(n) 

Work = O(n log n) 

Not a very good parallel algorithm 

Parallelism = O(log n) 

15-853 *All randomized 
  with high probability 
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Quicksort Complexity 

Span = O(lg2 n) 

Parallel partition 
Parallel calls 

Work = O(n log n) 

A good parallel algorithm 

Span = O(lg n) 

Parallelism = O(n/log n) 

15-853 *All randomized 
  with high probability 

Quicksort Complexity 
Caveat: need to show that depth of recursion is  

O(log n) with high probability 
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Parallel selection 

           {e in S | e < a}; 

   S                    =  [2, 1, 4, 0, 3, 1, 5, 7] 
   F = S < 4        =  [1, 1, 0, 1, 1, 1, 0, 0] 
   I = addscan(F) =  [0, 1, 2, 2, 3, 4, 5, 5] 

   where  F 
        R[I] = S      = [2, 1, 0, 3, 1] 

Each element gets sum of 
previous elements. 
Seems sequential? 
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Scan 

[2, 1, 4, 2, 3, 1, 5, 7] 

[3,    6,     4,    12] 
sum 

recurse 
[0,    3,     9,    13] 

[2,    7,    12,   18] 
sum 

interleave 
[0, 2, 3, 7, 9, 12, 13, 18] [0, 2, 3, 7, 9, 12, 13, 18] 
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Scan code 
function addscan(A) = 
if (#A <= 1) then [0] 
else let 
  sums = {A[2*i] + A[2*i+1] : i in [0:#a/2]}; 
  evens = addscan(sums); 
  odds = {evens[i] + A[2*i] : i in [0:#a/2]}; 
in interleave(evens,odds); 

W(n) = W(n/2) + O(n) = O(n) 
D(n) = D(n/2) + O(1) = O(log n) 
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Parallel Techniques 
Some common themes in “Thinking Parallel” 
1.  Working with collections. 

–  map, selection, reduce, scan, collect 
2.  Divide-and-conquer 

–  Even more important than sequentially 
–  Merging, matrix multiply, FFT, … 

3.  Contraction 
–  Solve single smaller problem 
–  List ranking, graph contraction 

4.  Randomization 
–  Symmetry breaking and random sampling 
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Working with Collections 
reduce  [a, b, c, d, … 
   = a  b  c  d + … 

scan  ident [a, b, c, d, … 
  = [ident, a, a  b, a  b  c, … 

sort compF A 

collect [(2,a), (0,b), (2,c), (3,d), (0,e), (2,f)] 
  = [(0, [b,e]), (2,[a,c,f]), (3,[d])] 
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