
1	

Page1

15-853:Algorithms in the Real World
Parallelism: Lecture 1

Nested parallelism
Cost model
Parallel techniques and algorithms

15-853 2 Andrew Chien, 2008 15-853

3 15-853

Outline
Concurrency vs. Parallelism
Quicksort example
Nested Parallelism

 - fork-join and parallel loops
Cost model: work and span
Techniques:

–  Using collections: inverted index
–  Divide-and-conquer: merging, mergesort, kd-

trees, matrix multiply, matrix inversion, fft
–  Contraction : quickselect, list ranking, graph

connectivity, suffix arrays

Page4 15-853

2	

Parallelism in “Real world” Problems
Optimization
N-body problems
Finite element analysis
Graphics
JPEG/MPEG compression
Sequence alignment
Rijndael encryption
Signal processing
Machine learning
Data mining

Page5 15-853

Parallelism vs. Concurrency

Concurrency

sequential concurrent

Parallelism
serial Traditional

programming
Traditional
OS

parallel Deterministic
parallelism

General
parallelism

6

"   Parallelism: using multiple processors/cores
running at the same time. Property of the machine

"   Concurrency: non-determinacy due to interleaving
threads. Property of the application.

15-853

Nested Parallelism

 nested parallelism =
 arbitrary nesting of parallel loops + fork-join

–  Assumes no synchronization among parallel
tasks except at joint points.

–  Deterministic if no race conditions

Advantages:
–  Good schedulers are known
–  Easy to understand, debug, and analyze

Page7 15-853

Nested Parallelism: parallel loops
cilk_for (i=0; i < n; i++) !
 B[i] = A[i]+1;!

Parallel.ForEach(A, x => x+1);!

B = {x + 1 : x in A}!

#pragma omp for !
for (i=0; i < n; i++)  

B[i] = A[i] + 1;!

Page8

Cilk

Microsoft TPL
(C#,F#)

Nesl, Parallel Haskell

OpenMP

15-853

3	

Nested Parallelism: fork-join
cobegin { !
 S1;!
 S2;}!

coinvoke(f1,f2)!
Parallel.invoke(f1,f2)!

#pragma omp sections!
{ !
 #pragma omp section!
 S1;!
 #pragma omp section!
 S2;!
}! Page9

Dates back to the 70s or
possibly 60s. Used in
dialects of Pascal

Java fork-join framework
Microsoft TPL (C#,F#)

OpenMP (C++, C, Fortran, …)

15-853

Nested Parallelism: fork-join

Page10

spawn S1;!
S2;!
sync;!

(exp1 || exp2)!

plet!
 x = exp1!
 y = exp2!
in!
 exp3!

cilk, cilk+!

Various functional
languages!

Various dialects of
ML and Lisp!

15-853

Serial Parallel DAGs
Dependence graphs of nested parallel computations are

series parallel

Two tasks are parallel if not reachable from each other.
A data race occurs if two parallel tasks are involved in a

race if they access the same location and at least one
is a write.

Page11 15-853

Cost Model
Compositional:

Work : total number of operations
–  costs are added across parallel calls

Span : depth/critical path of the computation
–  Maximum span is taken across forked calls

Parallelism = Work/Span
–  Approximately # of processors that can be

effectively used.
Page12 15-853

4	

13

Combining for parallel for:
 pfor (i=0; i<n; i++)

 f(i);

€

Wpexp(pfor ...) = Wexp(f(i))
i=0

n−1

∑

€

Dpexp(pfor ...) = i=0
n−1max Dexp(f(i))

work

span

Combining costs

15-853 14

Simple measures that give us a good sense of
efficiency (work) and scalability (span).

Can schedule in O(W/P + D) time on P processors.
This is within a constant factor of optimal.
Goals in designing an algorithm

1.  Work should be about the same as the
sequential running time. When it matches
asymptotically we say it is work efficient.

2.  Parallelism (W/D) should be polynomial
O(n1/2) is probably good enough

Why Work and Span

15-853

15

Example: Quicksort
function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];

How much parallelism?

15-853

Partition

Recursive
calls

16

Quicksort Complexity

partition append

Span = O(n)

(less than, …)

Sequential Partition and appending
Parallel calls

Work = O(n log n)

Not a very good parallel algorithm

Parallelism = O(log n)

15-853 *All randomized
 with high probability

5	

Quicksort Complexity
Now lets assume the partitioning and appending can

be done with:
 Work = O(n)
 Span = O(log n)
but recursive calls are made sequentially.

15-853 Page17 18

Quicksort Complexity

Parallel partition
Sequential calls

Span = O(n)

Work = O(n log n)

Not a very good parallel algorithm

Parallelism = O(log n)

15-853 *All randomized
 with high probability

19

Quicksort Complexity

Span = O(lg2 n)

Parallel partition
Parallel calls

Work = O(n log n)

A good parallel algorithm

Span = O(lg n)

Parallelism = O(n/log n)

15-853 *All randomized
 with high probability

Quicksort Complexity
Caveat: need to show that depth of recursion is

O(log n) with high probability

15-853 Page20

6	

21

Parallel selection

 {e in S | e < a};

 S = [2, 1, 4, 0, 3, 1, 5, 7]
 F = S < 4 = [1, 1, 0, 1, 1, 1, 0, 0]
 I = addscan(F) = [0, 1, 2, 2, 3, 4, 5, 5]

 where F
 R[I] = S = [2, 1, 0, 3, 1]

Each element gets sum of
previous elements.
Seems sequential?

15-853 22

Scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]
sum

recurse
[0, 3, 9, 13]

[2, 7, 12, 18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18] [0, 2, 3, 7, 9, 12, 13, 18]

15-853

23

Scan code
function addscan(A) =
if (#A <= 1) then [0]
else let
 sums = {A[2*i] + A[2*i+1] : i in [0:#a/2]};
 evens = addscan(sums);
 odds = {evens[i] + A[2*i] : i in [0:#a/2]};
in interleave(evens,odds);

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)

15-853

Parallel Techniques
Some common themes in “Thinking Parallel”
1.  Working with collections.

–  map, selection, reduce, scan, collect
2.  Divide-and-conquer

–  Even more important than sequentially
–  Merging, matrix multiply, FFT, …

3.  Contraction
–  Solve single smaller problem
–  List ranking, graph contraction

4.  Randomization
–  Symmetry breaking and random sampling

15-853 Page24

7	

Working with Collections
reduce  [a, b, c, d, …
 = a  b  c  d + …

scan  ident [a, b, c, d, …
 = [ident, a, a  b, a  b  c, …

sort compF A

collect [(2,a), (0,b), (2,c), (3,d), (0,e), (2,f)]
 = [(0, [b,e]), (2,[a,c,f]), (3,[d])]

15-853 Page25

