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15-853: Algorithms in the Real World 

Locality I: Cache-aware algorithms 
–  Introduction 
–  Sorting  
–  List ranking 
–  B-trees 
–  Buffer trees 

RAM Model  

 Standard theoretical model for analyzing 
algorithms: 
–  Infinite memory size 
–  Uniform access cost 
–  Evaluate an algorithm by the number of 

instructions executed 

CPU RAM 

Real Machine Example 
Pentium 4 
•  CPU 

–  ~ 0.2ns / instruction  
–  8 Registers 

•  L1 cache 
–  size: 8KB 
–  line size: 64B 
–  access time: 1ns 

•  L2 cache 
–  size: 512KB 
–  line size: 128B 
–  access time: 8ns 

•  Memory  
–  access time: 150ns 

•  Disc 
–  access time: ~4ms = 4x106ns 

CPU L1 L2 Main 
Memory Disc 

The cost of transferring data 
is important 
⇒  Design algorithms with 

locality in mind 

I/O Model 
Abstracts a single level of the memory hierarchy 
•  Fast memory (cache) of size M 
•  Accessing fast memory is free, but moving data 

from slow memory is expensive 
•  Memory is grouped into size-B blocks of 

contiguous data 

Fast 
Memory 

block 

M/B 

B 

B 

CPU Slow 
Memory 

•  Cost: the number of block transfers (or I/Os) 
from slow memory to fast memory. 
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Notation Clarification 

•  M: the number of objects that fit in memory, 
and  

•  B: the number of objects that fit in a block 
•  So for word-size objects, and memory size 

512KB, M = 128,000 

Why a 2-Level Hierarchy? 

•  It’s simpler than considering the multilevel 
hierarchy 

•  A single level may dominate the runtime of 
the application, so designing an algorithm for 
that level may be sufficient 

•  Considering a single level exposes the 
algorithmic difficulties — generalizing to a 
multilevel is often straightforward 

•  We’ll see cache-oblivious algorithms later as a 
way of designing for multi-level hierarchies 

What Improvement Do We Get? 
 Examples  
–  Adding all the elements in a size-N array (scanning) 
–  Sorting a size-N array 
–  Searching a size-N data set in a good data structure 

Problem RAM Algorithm I/O Algorithm 
Scanning Θ(N) Θ(N/B) 
Sorting Θ(N log2N) Θ((N/B)logM/B(N/B)) 
Searching Θ(log2N) Θ(logBN) 
Permuting Θ(N) Θ(min(N,sort(N)) 

–  For 4-byte words on example Pentium 4 
–  B ≈ 32 in L2-cache, B ≈ 2000 on disc 
–  log2B ≈ 5 in L2-cache, log2B ≈ 11 on disc  

Sorting 

Standard MergeSort algorithm: 
•  Split the array in half 
•  MergeSort each subarray 
•  Merge the sorted subarrays 
•  Number of computations is O(N logN) on an 

N-element array 

How does the standard algorithm behave in the 
I/O model? 
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Merging 

•  A size-N array occupies at most N/B+1 
blocks  

•  Each block is loaded once during merge, 
assuming memory size M ≥ 3B 

1 3 8 15 20 22 25 26 30 45 52 63 

2 4 6 7 10 24 29 33 34 36 37 39 

block 

B = 4 
+ 

1 2 3 4 6 7 8 

MergeSort Analysis 
•  Sorting in memory is free, so the base case is 

S(M) = Θ(M/B) to load a size-M array 
•  S(N) = 2S(N/2) + Θ(N/B) 
⇒ S(N) = Θ((N/B)(log2(N/M)+1)) 

M 
2M 

N/2 

N log2(N/M) 

…
 

I/O Efficient MergeSort 

•  Instead of doing a 2-way merge, do a Θ(M/B)-
way merge 

IOMergeSort: 
•  Split the array into Θ(M/B) subarrays 
•  IOMergeSort each subarray 
•  Perform a Θ(M/B)-way merge to combine the 

subarrays 

k-Way Merge 

•  Assuming M/B ≥ k+1, one block from each 
array fits in memory 

•  Therefore, only load each block once 
•  Total cost is thus Θ(N/B) 

k 
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IOMergeSort Analysis 
•  Sorting in memory is free, so the base case is 

S(M) = Θ(M/B) to load a size-M array 
•  S(N) = (M/B) S(NB/M) + Θ(N/B) 
⇒ S(N) = Θ((N/B)(logM/B(N/M)+1)) 

M2/B 

N/(M/B) 

N logM/B(N/M) 

M 

…
 

MergeSort Comparison 

Traditional MergeSort costs Θ((N/B)log2(N/B))  
I/Os on size-N array  

•  IOMergeSort is I/O efficient, costing only 
Θ((N/B)logM/B(N/B)) 

•  The new algorithm saves Θ(log2(M/B)) fraction 
of I/Os.  

How significant is this savings? 
•  Consider L2 cache to main memory on Pentium 4 

–  M = 128,000, B = 32, so log2(M/B) ≈ 12x savings 
•  Main memory to disc has even bigger savings.  

List Ranking 

•  Given a linked list, calculate the rank of 
(number of elements before) each element 

2 7 1 6 5 0 8 3 4 

start 

9 

•  Trivial algorithm is O(N) computation steps 

List ranking in I/O model 
•  Assume list is stored in ~N/B blocks! 
•  May jump in memory a lot. 
•  Example: M/B = 3, B = 2, least-recently-used 

eviction 

2 7 1 6 5 0 8 3 4 

start 

9 

•  In general, each pointer can result in a new block 
transfer, for O(N) I/Os 



10/21/10 

5 

Why list ranking? 

•  Recovers locality in the list (can sort based on 
the ranking) 
0 1 2 3 4 5 6 7 8 9 

start 

Generalizes to trees via Euler tours 
•  Useful for various forest/tree algorithms like 

least common ancestors and tree contraction 
•  Also used in graph algorithms like minimum 

spanning tree and connected components 

List ranking outline 
1.  Produce an independent set of Θ(N) nodes 

(if a node is in the set, its successor is not) 

2.  “Bridge out” independent set and solve 
weighted problem recursively  

start 

7 1 5 0 3 

start 

9 

2 
2 

2 2 

1 

List ranking outline 

3.  Merge in bridged-out nodes 

7 1 5 0 3 

start 

9 

1 

1 

2 7 1 6 5 0 8 3 4 

start 

9 

1 

1 

List ranking: 1) independent set 

•  Each node flips a coin {0,1} 
•  A node is in the independent set if it chooses 

1 and its predecessor chooses 0 

•  Each node enters independent set with prob 
¼, so expected set size is Θ(N). 

1 0 0 1 0 0 1 0 1 

start 

1 
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List ranking: 1) independent set 

Identifying independent-set nodes efficiently: 
•  Sort by successor address 

1a 0b 0c 1d 0e 0f 1g 0h 1i 

start 

1j 

1a 0b 0c 1d 0e 0f 1g 0h 1i 

start 

1j 

•  After sort, requires O(scan(N ))=O(N/B) 
block transfers 

List ranking: 2) bridging out 

•  Sort by successor address twice 

a b c d e f g h i 

start 

j 

a b c d e f g h i 

start 

j 

a b c d e f g h i j 

start 

List ranking: 2) bridging out 

•  If middle node is in 
independent set, “splice” it out 

•  Gives a list of new pointers 
•  Sort back to original order and 

scan to integrate pointer 
updates 

a b c 

c d f 

e f j 

x 

y 
x+y 

a b c d e 

a b c d e 

old 

update 

List ranking: 2) bridging out 

Scans and sorts to compress and remove 
independent set nodes (homework) 

a b c d e f g h i 

start 

j 

b c e f h 

start 

j 

2 

2 

2 

2 
1 

2 

1 
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List ranking: 3) merge in 

Uses sorts and scans (homework) 

7 1 5 0 3 

start 

9 

1 

1 

2 7 1 6 5 0 8 3 4 

start 

9 

1 

1 

List ranking analysis 

1.  Produce an independent set of Θ(N) nodes 
(keep retrying until random set is good enough) 

2.  “Bridge out” and solve recursively  
3.  Merge-in bridged-out nodes 

All steps use a constant number of sorts and scans, 
so expected cost is O(sort(N)) = O((N/B) logM/B 
(N/B)) I/Os at this level of recursion 

Gives recurrence R(N) = R(N/c) + O(sort(N)) 
    = O(sort(N)) 

B-Trees 
A B-tree is a type of search tree ((a,b)-tree) 

designed for good memory performance 
•  Common approach for storing searchable, ordered 

data, e.g., databases, filesystems. 
Operations 
•  Updates: Insert/Delete 
•  Queries 

–  Search: is the element there 
–  Successor/Predecessor: find the nearest key 
–  Range query: return all objects with keys within a range 
–  … 

B-tree/(2,3)-tree 
•  Objects stored in leaves 
•  Leaves all have same depth 
•  Root has at most B children 
•  Other internal nodes have 

between B/2 and B children 
18 35 

6 10 

1 2 4 

6 8 

10 12 15 

25 

18 21 25 28 

43 50 

35 37 

43 45 

50 51 53 

B 
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B-tree search 
•  Compare search key against 

partitioning keys and move to 
proper child. 

•  Cost is O(height * node size) 

Search for 21 

18 35 

6 10 

1 2 4 

6 8 

10 12 15 

25 

18 21 25 28 

43 50 

35 37 

43 45 

50 51 53 

B-tree insert 
•  Search for where the key 

should go. 
•  If there’s room, put it in 

Insert 23 

18 35 

6 10 

1 2 4 

6 8 

10 12 15 

25 

18 21 25 28 

43 50 

35 37 

43 45 

50 51 53 23 

B-tree insert 
•  Search for where the key 

should go. 
•  If there’s no room, split the 

node 
•  Splits may propagate up tree 

Insert 24 

18 35 

6 10 

1 2 4 

6 8 

10 12 15 

25 

18 21 25 28 

43 50 

35 37 

43 45 

50 51 53 23 

23 24 

25 23 

B-tree inserts 

•  Splits divide the objects / child pointers as 
evenly as possible.  

•  If the root splits, add a new parent (this is 
when the height of the tree increases) 

•  Deletes are a bit more complicated, but 
similar — if a node drops below B/2 children, 
it is merged or rebalanced with some 
neighbors.  



10/21/10 

9 

B-tree analysis 

Search 
•  All nodes (except root) have at least Ω(B) 

children ⇒ height of tree is O(logBN)  
•  Each node fits in a block 
•  Total search cost is O(logBN) block transfers. 

B-tree analysis 
Insert (and delete): 
•  Every split of a leaf results in an insert into a 

height-1 node.   
•  In general, a height-h split causes a height-(h+1) 

insert.  
•  There must be Ω(B) inserts in a node before it 

splits again. 
•  An insert therefore pays for ∑(1/B)h = O(1/B) 

splits, each costing O(1) block transfers.  
•  Searching and updating the keys along the root-

to-leaf path dominates for O(logBN) block 
transfers 

Sorting with a search tree? 

Consider the following RAM sort algorithm: 
1.  Build a balanced search tree 
2.  Repeatedly delete the minimum element from 

the tree 
Runtime is O(N logN) 

Does this same algorithm work in the I/O 
model? 

•  Just using a B-tree is O(N logB N) which is 
much worse than O((N/B) logM/B(N/B))  

Buffer tree 

Somewhat like a B-tree: 
•  when nodes gain too many children, they split 

evenly, using a similar split method 
•  all leaves are at the same depth 
Unlike a B-tree: 
•  queries are not answered online (they are 

reported in batches) 
•  internal nodes have Θ(M/B) children 
•  nodes have buffers of size Θ(M)  
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Buffer-tree insert 

•  Start at root. Add item to end of buffer. 
•  If buffer is not full, done. 
•  Otherwise, partition the buffer and send 

elements down to children. 

… 

Insert 
buffer 

buffer buffer 

M 

M/B 

Buffer-tree insert  

Analysis ideas: 
•  Inserting into a buffer costs O(1+k/B) for k elements 

inserted 
•  On overflow, partitioning costs O(M/B) to load entire 

buffer. Then M/B “scans” are performed, costing 
O(#Arrays + total size/B) = O(M/B + M/B) 

•  Flushing buffer downwards therefore costs O(M/B), 
moving Ω(M) elements, for a cost of O(1/B) each per level 

•  An element may be moved down at each height, costing a 
total of O((1/B) height) = O((1/B)logM/B(N/B)) per element 

… 

Insert 
buffer 

buffer buffer 

M 

M/B 

height 
O(logM/B(N/B)) 

I/O Priority Queue 
Supporting Insert and Extract-Min (no Decrease-

Key here) 
•  Keep a buffer of Θ(M) smallest elements in 

memory 
•  Use a buffer tree for remaining elements. 
•  While smallest-element buffer is too full, insert 1 

(maximum) element into buffer tree 
•  If smallest-element buffer is empty, flush 

leftmost path in buffer tree and delete the 
leftmost leafs 

•  Total cost is O((N/B) logM/B(N/B)) for N ops. 
•  Yields optimal sort. 

Buffer-tree variations 

•  To support deletions, updates, and other 
queries, insert records in the tree for each 
operation, associated with timestamps.   

•  As records with the same key collide, merge 
them as appropriate. 

Examples of applications: 
•  DAG shortest paths 
•  Circuit evaluation 
•  Computational geometry applications 


