10/21/10

15-853: Algorithms in the Real World

Locality I: Cache-aware algorithms
— Introduction
— Sorting
— List ranking
— B-trees
— Buffer trees

RAM Model

Standard theoretical model for analyzing
algorithms:

— Infinite memory size

— Uniform access cost

— Evaluate an algorithm by the number of
instructions executed

[CPU —— RAM

Real Machine Example

Pentium 4 « L2 cache
« CPU — size: 512KB
— ~0.2ns / instruction - line size: 128B
— 8 Registers — access time: 8ns
+ L1cache * Memory
— size: 8KB — access time: 150ns
— line size: 64B + Disc

— access time: Ins

— access time: ~4ms = 4x106ns

P

is important

A\ .
(\ Main
‘\C'ju/ 12 Memory

The cost of transferring data

= Design algorithms with
locality in mind

Disc

I/0 Model

Abstracts a single level of the memory hierarchy

 Fast memory (cache) of size M

* Accessing fast memory is free, but moving data
from slow memory is expensive

* Memory is grouped into size-B blocks of
contiguous data

B
[——
[cPU Fast ¢={_block = Slow

\,ﬁ " Memog Memory

——
B

+ Cost: the number of block transfers (or I/0s)
from slow memory to fast memory.

10/21/10

Notation Clarification

« M: the number of objects that fit in memory,
and

* B: the number of objects that fit in a block

+ So for word-size objects, and memory size
512KB, M= 128,000

Why a 2-Level Hierarchy?

+ It's simpler than considering the multilevel
hierarchy

+ Asingle level may dominate the runtime of
the application, so designing an algorithm for
that level may be sufficient

+ Considering a single level exposes the
algorithmic difficulties — generalizing to a
multilevel is often straightforward

+ We'll see cache-oblivious algorithms later as a
way of designing for multi-level hierarchies

What Improvement Do We Get?

Examples

— Adding all the elements in a size-N array (scanning)
— Sorting a size-N array

— Searching a size-N data set in a good data structure

Scanning O(N) O(N/B)

Sorting O(N log,N) O((N/B)log, (N/ B))
Searching ©(log,N) O(logzN)

Permuting O(N) O(min(N,sort(N))

— For 4-byte words on example Pentium 4
— B=32inL2-cache, B~ 2000 on disc
— log,B % 5 in L2-cache, log,B % 11 on disc

Sorting

Standard MergeSort algorithm:
« Split the array in half

* MergeSort each subarray

* Merge the sorted subarrays

* Number of computations is O(N logN) on an
N-element array

How does the standard algorithm behave in the
I/0 model?

10/21/10

Merging

block
B=4

' ' '
[1]3]8]15[20[22]25[26[30[45[52]63] J
AC X X

+

[2]4]6]7][10[24]29]33]34[36[37]39)
4 X X)

4

Y Y

Y
{ILI2|3|4|6|7|8| [T TT]

Y Y Y
[TTTTTTT]
X N

v} < X
4

+ A size-Narray occupies at most [N/ B]+1
blocks

+ Each block is loaded once during merge,
assuming memory size M > 38

MergeSort Analysis

+ Sorting in memory is free, so the base case is
5(M) = ©(M/B) to load a size-M array

« 5(N)=25(N/2) + ©(N/B)

= 5(N) = O((N/ B)(log(N/ M)+1))

N/2] J

I/0 Efficient MergeSort

+ Instead of doing a 2-way merge, do a O(M/ B)-
way merge

IOMergeSort:

« Split the array into ©(M/B) subarrays

+ IOMergeSort each subarray

+ Perform a ©(M/B)-way merge to combine the
subarrays

k-Way Merge
—
e —|
S —— Y

O ——

+ Assuming M/B > k+1, one block from each
array fits in memory

* Therefore, only load each block once
* Total cost is thus O(N/B)

10/21/10

IOMergeSort Analysis

+ Sorting in memory is free, so the base case is
5(M) = ©(M/B) to load a size-M array

« 5(N) = (M/B) S(NB/M) + 6(N/B)

= S(N) = O((N/ B)(log ,s(N/ M)+1))

MergeSort Comparison

Traditional MergeSort costs O((N/ B)log,(N/ B))
I/O0s on size-N array

« IOMergeSort is I/0 efficient, costing only
O((N/ B)log,s(N/ B))

+ The new algorithm saves O(log,(M/ B)) fraction

log/s(N/ ‘ N of I/0s.
N8] |]]
How significant is this savings?
e e e e e e e e 1 e e e e + Consider L2 cache to main memory on Pgnﬂum 4
0000 — M =128,000, B = 32, so log,(M/B) ~ 12x savings
M * Main memory to disc has even bigger savings.
List Ranking List ranking in I/0O model

 Given a linked list, calculate the rank of
(number of elements before) each element

start

* Trivial algorithm is O(N) computation steps

+ Assume list is stored in ~N/B blocks!

* May jump in memory a lot.

« Example: M/B =3, B= 2, least-recently-used
eviction

start

+ In general, each pointer can result in a new block
transfer, for O(N) I/0s

10/21/10

Why list ranking?

* Recovers locality in the list (can sort based on
the ranking)

start

Generalizes to trees via Euler tours

+ Useful for various forest/tree algorithms like
least common ancestors and tree contraction

+ Also used in graph algorithms like minimum
spanning tree and connected components

List ranking outline

1. Produce an independent set of ©(N) nodes
(if a node is in the set, its successor is not)

start
2. "Bridge out” independent set and solve

weighted problem recursively
2

List ranking outline

1

ENEME)E

1 Start

3. Merge in bridged-out nodes

EET T

1 start

List ranking: 1) independent set

+ Each node flips a coin {0,1}

* A node is in the independent set if it chooses
1 and its predecessor chooses O

+ Each node enters independent set with prob
.50 expected set size is O(N).

10/21/10

Identifying independent-set nodes efficiently:

List ranking: 1) independent set

E!II 2 | o=] | lor |} BN) [onl] I (a1

start

——

« Sort by successor address

e

+ After sort, requires O(scan(N))=O(N/ B)

block transfers

List ranking: 2) bridging out

+ Sort by successor address twice

[

'@ 701 B O

Ce]

|

e
Eal lll 3l
<\

start

(] [
E
4

2\

KN

o e e i

start

List ranking: 2) bridging out

+ If middle node is in
independent set, “splice” it out

+ Gives a list of new pointers

+ Sort back to original order and
scan to integrate pointer
updates

)

/
NN

N updatem@\n]@j

------- >

List ranking: 2) bridging out

Scans and sorts to compress and remove
independent set nodes (homework)
1

2 "l!!!l.. ,
HIIBII
2

10/21/10

List ranking: 3) merge in

start

1 Uses sorts and scans (homework)

VTR

List ranking analysis

1. Produce an independent set of O(N) nodes
(keep retrying until random set is good enough)

2. "Bridge out" and solve recursively

3. Merge-in bridged-out nodes

All steps use a constant number of sorts and scans,

so expected cost is O(sort(N)) = O((N/B) logy, s
(N/B)) I/0s at this level of recursion

Gives recurrence R(N) = R(N/c) + O(sort(N))
= O(sort(N))

B-Trees

A B-tree is a type of search tree ((a,b)-tree)
designed for good memory performance

+ Common approach for storing searchable, ordered
data, e.g., databases, filesystems.

Operations

+ Updates: Insert/Delete

* Queries
— Search: is the element there
— Successor/Predecessor: find the nearest key
— Range query: return all objects with keys within a range

B-tree/(2,3)-tree

+ Objects stored in leaves
* Leaves all have same depth
* Root has at most B children

» Other internal nodes have
between B/2 and B children

[25]28] | [35]37]]|[50]5]53]

10/21/10

B-tree search

+ Compare search key against
partitioning keys and move to
proper child.

* Cost is O(height * node size)

Search for 21

B-tree insert

+ Search for where the key
should go.

+ If there's room, put it in

Insert 23

[25]28] | [35]37] ||[0]51]53]

[25]28] | [35]37]]|[50]51]53]

[43]ss] |

[43]ss] |

B-tree insert

+ Search for where the key
should go.

 If there's no room, split the
node

+ Splits may propagate up tree

Insert 24

B-tree inserts

+ Splits divide the objects / child pointers as
evenly as possible.

« If the root splits, add a new parent (this is
when the height of the tree increases)

+ Deletes are a bit more complicated, but
similar — if a node drops below B/2 children,
it is merged or rebalanced with some
neighbors.

10/21/10

B-tree analysis

Search

+ All nodes (except root) have at least (2(B)
children = height of tree is O(log,N)

+ Each node fits in a block
+ Total search cost is O(logzN) block transfers.

B-free analysis

Inser"r (and delete):
+ Every sThT of a leaf results in an insert into a
height-1 node.

+ Ingeneral, a height-A split causes a height-(A+1)
insert.

* There must be ()(B) inserts in a node before it
splits again.

« Aninsert therefore (5: s for ¥ (1/B)"= O(1/B)
splits, each costing (1\6 block transfers.

+ Searching and updating the keys alon The root-
to-leaf path dominates for O(log,N) bl
transfers

Sorting with a search tree?

Consider the following RAM sort algorithm:
1. Build a balanced search tree

2. Repeatedly delete the minimum element from
the tree

Runtime is O(N logN)

Does this same algorithm work in the I/0
model?

+ Just using a B-tree is O(N logg N) which is
much worse than O((N/ B) IogM,B(N/B))

Buffer tree

Somewhat like a B-tree:

+ when nodes gain foo many children, they split
evenly, using a similar split method

+ all leaves are at the same depth
Unlike a B-tree:

* queries are not answered online (they are
reported in batches)

* internal nodes have ©(M/ B) children
* nodes have buffers of size O(M)

10/21/10

Buffer-tree insert

Insert []

puffer buffer

/ \‘ M/B

+ Start at root. Add item to end of buffer.
« If buffer is not full, done.

+ Otherwise, partition the buffer and send
elements down to children.

Buffer-tree insert
M

Insert[]

buffer
[T
height

buffeq buf%er‘ log 5N/ B))
/ \ [

Analysis ideas: M8

+ Inserting into a buffer costs O(1+k/B) for kelements
inserted

» On overflow, partitioning costs O(M/B) to load entire
buffer. Then M/B “scans" are performed, costing
O(#Arrays + total size/B) = O(M/B+ M/B)

* Flushing buffer downwards therefore costs O(M/B),
moving (2(M) elements, for a cost of O(1/B) each per level

» An element may be moved down at each heigh‘r, costing a
total of O((1/B) height) = O((1/B)log,, s(N/B)) per element

I/0 Priority Queue

Supporting Insert and Extract-Min (no Decrease-
Key here)

* Keep a buffer of O(M) smallest elements in
memory

+ Use a buffer tree for remaining elements.

* While smallest-element buffer is too full, insert 1
(maximum) element into buffer tree

« If smallest-element buffer is empty, flush
leftmost path in buffer tree and delete the
leftmost leafs

+ Total cost is O((N/B) log,5(N/ B)) for N ops.

+ Yields optimal sort.

Buffer-tree variations

* To support deletions, updates, and other
queries, insert records in the tree for each
operation, associated with timestamps.

+ As records with the same key collide, merge
them as appropriate.

Examples of applications:

+ DAG shortest paths

« Circuit evaluation

+ Computational geometry applications

10

