
10/21/10 

1 

15-853: Algorithms in the Real World

Locality I: Cache-aware algorithms
–  Introduction
–  Sorting
–  List ranking
–  B-trees
–  Buffer trees

RAM Model

 Standard theoretical model for analyzing
algorithms:
–  Infinite memory size
–  Uniform access cost
–  Evaluate an algorithm by the number of

instructions executed

CPU RAM

Real Machine Example
Pentium 4
•  CPU

–  ~ 0.2ns / instruction
–  8 Registers

•  L1 cache
–  size: 8KB
–  line size: 64B
–  access time: 1ns

•  L2 cache
–  size: 512KB
–  line size: 128B
–  access time: 8ns

•  Memory
–  access time: 150ns

•  Disc
–  access time: ~4ms = 4x106ns

CPU L1 L2 Main
Memory Disc

The cost of transferring data
is important
⇒  Design algorithms with

locality in mind

I/O Model
Abstracts a single level of the memory hierarchy
•  Fast memory (cache) of size M
•  Accessing fast memory is free, but moving data

from slow memory is expensive
•  Memory is grouped into size-B blocks of

contiguous data

Fast
Memory

block

M/B

B

B

CPU Slow
Memory

•  Cost: the number of block transfers (or I/Os)
from slow memory to fast memory.

10/21/10 

2 

Notation Clarification

•  M: the number of objects that fit in memory,
and

•  B: the number of objects that fit in a block
•  So for word-size objects, and memory size

512KB, M = 128,000

Why a 2-Level Hierarchy?

•  It’s simpler than considering the multilevel
hierarchy

•  A single level may dominate the runtime of
the application, so designing an algorithm for
that level may be sufficient

•  Considering a single level exposes the
algorithmic difficulties — generalizing to a
multilevel is often straightforward

•  We’ll see cache-oblivious algorithms later as a
way of designing for multi-level hierarchies

What Improvement Do We Get?
 Examples
–  Adding all the elements in a size-N array (scanning)
–  Sorting a size-N array
–  Searching a size-N data set in a good data structure

Problem RAM Algorithm I/O Algorithm
Scanning Θ(N) Θ(N/B)
Sorting Θ(N log2N) Θ((N/B)logM/B(N/B))
Searching Θ(log2N) Θ(logBN)
Permuting Θ(N) Θ(min(N,sort(N))

–  For 4-byte words on example Pentium 4
–  B ≈ 32 in L2-cache, B ≈ 2000 on disc
–  log2B ≈ 5 in L2-cache, log2B ≈ 11 on disc

Sorting

Standard MergeSort algorithm:
•  Split the array in half
•  MergeSort each subarray
•  Merge the sorted subarrays
•  Number of computations is O(N logN) on an

N-element array

How does the standard algorithm behave in the
I/O model?

10/21/10 

3 

Merging

•  A size-N array occupies at most N/B+1
blocks

•  Each block is loaded once during merge,
assuming memory size M ≥ 3B

1 3 8 15 20 22 25 26 30 45 52 63

2 4 6 7 10 24 29 33 34 36 37 39

block

B = 4
+

1 2 3 4 6 7 8

MergeSort Analysis
•  Sorting in memory is free, so the base case is

S(M) = Θ(M/B) to load a size-M array
•  S(N) = 2S(N/2) + Θ(N/B)
⇒ S(N) = Θ((N/B)(log2(N/M)+1))

M
2M

N/2

N log2(N/M)

…
 

I/O Efficient MergeSort

•  Instead of doing a 2-way merge, do a Θ(M/B)-
way merge

IOMergeSort:
•  Split the array into Θ(M/B) subarrays
•  IOMergeSort each subarray
•  Perform a Θ(M/B)-way merge to combine the

subarrays

k-Way Merge

•  Assuming M/B ≥ k+1, one block from each
array fits in memory

•  Therefore, only load each block once
•  Total cost is thus Θ(N/B)

k

10/21/10 

4 

IOMergeSort Analysis
•  Sorting in memory is free, so the base case is

S(M) = Θ(M/B) to load a size-M array
•  S(N) = (M/B) S(NB/M) + Θ(N/B)
⇒ S(N) = Θ((N/B)(logM/B(N/M)+1))

M2/B

N/(M/B)

N logM/B(N/M)

M

…
 

MergeSort Comparison

Traditional MergeSort costs Θ((N/B)log2(N/B))
I/Os on size-N array

•  IOMergeSort is I/O efficient, costing only
Θ((N/B)logM/B(N/B))

•  The new algorithm saves Θ(log2(M/B)) fraction
of I/Os.

How significant is this savings?
•  Consider L2 cache to main memory on Pentium 4

–  M = 128,000, B = 32, so log2(M/B) ≈ 12x savings
•  Main memory to disc has even bigger savings.

List Ranking

•  Given a linked list, calculate the rank of
(number of elements before) each element

2 7 1 6 5 0 8 3 4

start

9

•  Trivial algorithm is O(N) computation steps

List ranking in I/O model
•  Assume list is stored in ~N/B blocks!
•  May jump in memory a lot.
•  Example: M/B = 3, B = 2, least-recently-used

eviction

2 7 1 6 5 0 8 3 4

start

9

•  In general, each pointer can result in a new block
transfer, for O(N) I/Os

10/21/10 

5 

Why list ranking?

•  Recovers locality in the list (can sort based on
the ranking)
0 1 2 3 4 5 6 7 8 9

start

Generalizes to trees via Euler tours
•  Useful for various forest/tree algorithms like

least common ancestors and tree contraction
•  Also used in graph algorithms like minimum

spanning tree and connected components

List ranking outline
1.  Produce an independent set of Θ(N) nodes

(if a node is in the set, its successor is not)

2.  “Bridge out” independent set and solve
weighted problem recursively

start

7 1 5 0 3

start

9

2
2

2 2

1

List ranking outline

3.  Merge in bridged-out nodes

7 1 5 0 3

start

9

1

1

2 7 1 6 5 0 8 3 4

start

9

1

1

List ranking: 1) independent set

•  Each node flips a coin {0,1}
•  A node is in the independent set if it chooses

1 and its predecessor chooses 0

•  Each node enters independent set with prob
¼, so expected set size is Θ(N).

1 0 0 1 0 0 1 0 1

start

1

10/21/10 

6 

List ranking: 1) independent set

Identifying independent-set nodes efficiently:
•  Sort by successor address

1a 0b 0c 1d 0e 0f 1g 0h 1i

start

1j

1a 0b 0c 1d 0e 0f 1g 0h 1i

start

1j

•  After sort, requires O(scan(N))=O(N/B)
block transfers

List ranking: 2) bridging out

•  Sort by successor address twice

a b c d e f g h i

start

j

a b c d e f g h i

start

j

a b c d e f g h i j

start

List ranking: 2) bridging out

•  If middle node is in
independent set, “splice” it out

•  Gives a list of new pointers
•  Sort back to original order and

scan to integrate pointer
updates

a b c

c d f

e f j

x

y
x+y

a b c d e

a b c d e

old 

update 

List ranking: 2) bridging out

Scans and sorts to compress and remove
independent set nodes (homework)

a b c d e f g h i

start

j

b c e f h

start

j

2

2

2

2
1

2

1

10/21/10 

7 

List ranking: 3) merge in

Uses sorts and scans (homework)

7 1 5 0 3

start

9

1

1

2 7 1 6 5 0 8 3 4

start

9

1

1

List ranking analysis

1.  Produce an independent set of Θ(N) nodes
(keep retrying until random set is good enough)

2.  “Bridge out” and solve recursively
3.  Merge-in bridged-out nodes

All steps use a constant number of sorts and scans,
so expected cost is O(sort(N)) = O((N/B) logM/B
(N/B)) I/Os at this level of recursion

Gives recurrence R(N) = R(N/c) + O(sort(N))
 = O(sort(N))

B-Trees
A B-tree is a type of search tree ((a,b)-tree)

designed for good memory performance
•  Common approach for storing searchable, ordered

data, e.g., databases, filesystems.
Operations
•  Updates: Insert/Delete
•  Queries

–  Search: is the element there
–  Successor/Predecessor: find the nearest key
–  Range query: return all objects with keys within a range
–  …

B-tree/(2,3)-tree
•  Objects stored in leaves
•  Leaves all have same depth
•  Root has at most B children
•  Other internal nodes have

between B/2 and B children
18 35

6 10

1 2 4

6 8

10 12 15

25

18 21 25 28

43 50

35 37

43 45

50 51 53

B

10/21/10 

8 

B-tree search
•  Compare search key against

partitioning keys and move to
proper child.

•  Cost is O(height * node size)

Search for 21

18 35

6 10

1 2 4

6 8

10 12 15

25

18 21 25 28

43 50

35 37

43 45

50 51 53

B-tree insert
•  Search for where the key

should go.
•  If there’s room, put it in

Insert 23

18 35

6 10

1 2 4

6 8

10 12 15

25

18 21 25 28

43 50

35 37

43 45

50 51 53 23

B-tree insert
•  Search for where the key

should go.
•  If there’s no room, split the

node
•  Splits may propagate up tree

Insert 24

18 35

6 10

1 2 4

6 8

10 12 15

25

18 21 25 28

43 50

35 37

43 45

50 51 53 23

23 24

25 23

B-tree inserts

•  Splits divide the objects / child pointers as
evenly as possible.

•  If the root splits, add a new parent (this is
when the height of the tree increases)

•  Deletes are a bit more complicated, but
similar — if a node drops below B/2 children,
it is merged or rebalanced with some
neighbors.

10/21/10 

9 

B-tree analysis

Search
•  All nodes (except root) have at least Ω(B)

children ⇒ height of tree is O(logBN)
•  Each node fits in a block
•  Total search cost is O(logBN) block transfers.

B-tree analysis
Insert (and delete):
•  Every split of a leaf results in an insert into a

height-1 node.
•  In general, a height-h split causes a height-(h+1)

insert.
•  There must be Ω(B) inserts in a node before it

splits again.
•  An insert therefore pays for ∑(1/B)h = O(1/B)

splits, each costing O(1) block transfers.
•  Searching and updating the keys along the root-

to-leaf path dominates for O(logBN) block
transfers

Sorting with a search tree?

Consider the following RAM sort algorithm:
1.  Build a balanced search tree
2.  Repeatedly delete the minimum element from

the tree
Runtime is O(N logN)

Does this same algorithm work in the I/O
model?

•  Just using a B-tree is O(N logB N) which is
much worse than O((N/B) logM/B(N/B))

Buffer tree

Somewhat like a B-tree:
•  when nodes gain too many children, they split

evenly, using a similar split method
•  all leaves are at the same depth
Unlike a B-tree:
•  queries are not answered online (they are

reported in batches)
•  internal nodes have Θ(M/B) children
•  nodes have buffers of size Θ(M)

10/21/10 

10 

Buffer-tree insert

•  Start at root. Add item to end of buffer.
•  If buffer is not full, done.
•  Otherwise, partition the buffer and send

elements down to children.

… 

Insert
buffer

buffer buffer

M

M/B

Buffer-tree insert

Analysis ideas:
•  Inserting into a buffer costs O(1+k/B) for k elements

inserted
•  On overflow, partitioning costs O(M/B) to load entire

buffer. Then M/B “scans” are performed, costing
O(#Arrays + total size/B) = O(M/B + M/B)

•  Flushing buffer downwards therefore costs O(M/B),
moving Ω(M) elements, for a cost of O(1/B) each per level

•  An element may be moved down at each height, costing a
total of O((1/B) height) = O((1/B)logM/B(N/B)) per element

… 

Insert
buffer

buffer buffer

M

M/B

height
O(logM/B(N/B))

I/O Priority Queue
Supporting Insert and Extract-Min (no Decrease-

Key here)
•  Keep a buffer of Θ(M) smallest elements in

memory
•  Use a buffer tree for remaining elements.
•  While smallest-element buffer is too full, insert 1

(maximum) element into buffer tree
•  If smallest-element buffer is empty, flush

leftmost path in buffer tree and delete the
leftmost leafs

•  Total cost is O((N/B) logM/B(N/B)) for N ops.
•  Yields optimal sort.

Buffer-tree variations

•  To support deletions, updates, and other
queries, insert records in the tree for each
operation, associated with timestamps.

•  As records with the same key collide, merge
them as appropriate.

Examples of applications:
•  DAG shortest paths
•  Circuit evaluation
•  Computational geometry applications

