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15-853:Algorithms in the Real World 

Linear and Integer Programming II 
–  Ellipsoid algorithm 
–  Interior point methods 
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Ellipsoid Algorithm 
First polynomial-time algorithm for linear 

programming (Khachian 79) 
Solves 
      find      x 
      subject to  Ax ≤ b 
i.e find a feasible solution 
Run Time: 

 O(n4L), where L = #bits to represent A and b 

Problem in practice: always takes this much time. 
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Reduction from general case 
To solve: 
      maximize:     z = cTx  
      subject to:   Ax ≤ b,     x ≥ 0 
Convert to: 
      find:            x, y  
      subject to:  Ax ≤ b, 
                          -x ≤ 0 
                        -yA ≤ –c 
                          -y ≤ 0 
                  -cx +by ≤ 0 

find:            x 
subject to:  Ax ≤ b, 
                 -cTx ≤ -z0 

    x ≥ 0 

OR 

Current “guess” of z. 
Binary search to converge 
on proper answer  
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Ellipsoid Algorithm 
Consider a sequence of smaller and smaller ellipsoids 

each with the feasible region inside. 
For iteration k: 

 ck = center of Ek 

Eventually ck has to be inside of F, and we are done. 

ck 

F 

Feasible region 
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Ellipsoid Algorithm 

 find smallest ellipsoid that includes constraint 

To find the next smaller ellipsoid: 
 find most violated constraint ak 

ck 

F 

Feasible region 

ak 
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Interior Point Methods 
Travel through the interior 

with a combination of 
1.  An optimization term 

(moves toward objective) 
2.  A centering term 

(keeps away from 
boundary) 

Used since 50s for nonlinear 
programming. 

Karmakar proved a variant is 
polynomial time in 1984 x1 

x2 

15-853 Page7 

Methods 
Affine scaling: simplest, but no known time bounds 
Potential reduction: O(nL) iterations  
Central trajectory: O(n1/2 L) iterations 

The time for each iteration involves solving a linear 
system so it takes polynomial time.   The “real 
world” time depends heavily on the matrix 
structure. 
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Example times 

Central trajectory method (Lustic, Marsten, Shanno 94) 
Time depends on Cholesky non-zeros (i.e. the “fill”) 

fuel continent car initial 
size (K) 13x31K 9x57K 43x107K 19x12K 

non-zeros 186K 189K 183K 80K 
iterations 66 64 53 58 
time (sec) 2364 771 645 9252 
Cholesky 
non-zeros 1.2M .3M .2M 6.7M 
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Assumptions 
We are trying to solve the standard-form problem: 
      minimize     z  = cTx 
      subject to  Ax = b 
                        x ≥ 0 
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Outline 
1.  Centering Methods Overview 
2.  Picking a direction to move toward the optimal 
3.  Staying on the Ax = b hyperplane (projection) 
4.  General method 
5.  Example: Affine scaling 
6.  Example: potential reduction 
7.  Example: log barrier 
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Centering: option 1 
The “analytical center”: 

Minimize: y = -∑i=1
n lg xi 

y goes to 1 as x approaches any boundary. 

x1 

x2 

x4 

x3 

x5 
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Centering: option 2 
Elliptical Scaling: 

(c1,c2) 
Dikin Ellipsoid 

The idea is to bias spaced based on the ellipsoid. 
More on this later. 
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Finding the Optimal solution 
Let’s say f(x) is the combination of the “centering 

term” c(x) and the “optimization term” z(x) = cT x.  
We would like this to have the same minimum over 

the feasible region as z(x) but can otherwise be 
quite different. 

In particular c(x) and hence f(x) need not be linear. 
Goal: find the minimum of f(x) over the feasible 

region starting at some interior point x0 

Can do this by taking a sequence of steps toward the 
minimum. 

How do we pick a direction for a step? 
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Picking a direction: steepest descent 
Option 1: Find the steepest descent on x at x0 by 

taking the gradient: 

Problem: the gradient might be changing rapidly, so 
local steepest descent might not give us a good 
direction. 
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Picking a direction: Newton’s method 

To find the minimum of f(x) take the derivative and 
set to 0. 

Consider the truncated taylor series: 

In matrix form, for arbitrary dimension: 

Hessian  

Next Step? 
Now that we have a direction, what do we do? 

The direction may move away from feasible solutions. 
We need to adjust the direction to force Ax=b to 
hold.   
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Remaining on the support plane 
Constraint:  Ax = b      
A is an m × (n+m) matrix. 
The equation describes an n-dimensional hyperplane 

in an (n+m)-dimensional space. 
The hyperplane basis is the null space of A 
      A = defines the “slope” 
      b = defines an “offset” x2 

x1 
3 

x1 + 2x2 = 3 

x1 + 2x2 = 4 

4 
15-853 Page18 

Projection 
Need to project our direction onto the plane defined 

by the null space of A. 

We want to calculate Pc 

d = c – n 
   = c – AT(AAT)-1Ac 
   = (I – AT(AAT)-1A)c 
   = Pc 

P = (I – AT(AAT)-1A) = the “projection matrix” 
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Calculating Pc 
Pc = (I – AT(AAT)-1A)c = c – ATw 
where ATw = AT(AAT)-1Ac  
giving  AATw = AAT(AAT)-1Ac = Ac 

so all we need to do is solve for w in: AATw = Ac 

This can be solved with a sparse solver. 

This is the workhorse of the interior-point methods. 
Note that AAT will be more dense than A. 
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Next step? 
We now have a direction c and its projection d onto 

the constraint plane defined by Ax = b. 
What do we do now? 

To decide how far to go we can find the minimum of 
f(x) along the line defined by d.  Not too hard if 
f(x) is reasonably nice (e.g. has one minimum along 
the line). 

Alternatively we can go some fraction of the way to 
the boundary (e.g. 90%)  
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General Interior Point Method 
Pick start x0 
Factor AAT 

Repeat until done (within some threshold) 
–  decide on function  to optimize f(x) 

(might be the same for all iterations) 
–  select direction d based on f(x) 

(e.g., with Newton’s method) 
–  project d onto null space of A  

(using factored AAT and solving a linear system) 
–  decide how far to go along that direction 

Caveat: every method is slightly different 
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Affine Scaling Method 
A biased steepest descent. 
On each iteration solve: 
      minimize     cTy 
      subject to  Ay = 0 
                        yD-2y ≤ 1 

Note that:  
1.  y is in the null space of A and can therefore be 

used as the direction d. 
2.  we are optimizing in the desired direction cT 

What does the Dikin Ellipsoid do for us? 

Dikin ellipsoid 
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Affine Scaling 

Intuition by picture: 

x 
c’ 

y 

c’ = Pc 

Ax = b is a slice 
of the ellipsoid 

Note that y is biased away from the boundary 

Dikin ellipsoid 
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How to compute 
By substitution of variables:  y = Dy’ 
      minimize:     cTDy’ 
      subject to:  ADy’ = 0 
                          y’DTD-2 Dy’ ≤ 1  (y’y’ ≤ 1)    
The sphere y’y’ ≤ 1 is unbiased. 
So we project the direction cTD =Dc onto the 

nullspace of B = AD: 
  y’ = (I – BT(BBT)-1B)Dc 

and  
  y = Dy’ = D (I – BT(BBT)-1B)Dc 

As before, solve for w in BBTw = BDc and 
  y = D(Dc – BTw) = D2(c – ATw) 
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Affine Interior Point Method 
Pick start x0 
Symbolically factor AAT 

Repeat until done (within some threshold) 
–  B = A Di  
–  Solve BBTw = BDc for w  (use symbolically 

factored AAT…same non-zero structure) 
–  d = Di(Dic – BTw) 
–  move in direction d a fraction α of the way to 

the boundary (something like α = .96 is used in 
practice)  

Note that Di changes on each iteration since it 
depends on xi  
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Central Trajectory (log barrier) 
Dates back to 50s for nonlinear problems. 
On step i: 
1.  minimize: cx - µk ∑j=1

n ln(xj) 
   s.t. Ax = b, x ≥ 0 

2.  select: µk+1 ≤ µk 

Each minimization can be done with a constrained 
Newton step. 

 µk needs to approach zero to terminate. 

A primal-dual version using higher order 
approximations is currently the best interior-
point method in practice. 
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Potential Reduction Method 
minimize:     z  = q ln(cTx – by) - ∑j=1

n ln(xj) 
subject to:  Ax = b 
                   x ≥ 0 
                   yA + s = 0   (dual problem) 
                   s ≥ 0 
First term of z is the optimization term 
The second term of z is the centering term. 
The objective function is not linear.  Use hill climbing 

or “Newton Step” to optimize. 
(cTx – by) goes to 0 near the solution 

15-853 Page28 

Summary of Algorithms 
1.  Actual algorithms used in practice are very 

sophisticated 
2.  Practice matches theory reasonably well 
3.  Interior-point methods dominate when 

A.  Large n 
B.  Small Cholesky factors (i.e. low fill) 
C.  Highly degenerate 

4.  Simplex dominates when starting from a previous 
solution very close to the final solution 

5.  Ellipsoid algorithm not currently practical 
6.  Large problems can take hours or days to solve. 

Parallelism is very important. 


