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15-853:Algorithms in the Real Worldg

Linear and Integer Programming II
– Ellipsoid algorithm
– Interior point methods
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Ellipsoid Algorithm
First polynomial-time algorithm for linear 

programming (Khachian 79)
Solves

find x
subject to  Ax ≤ b

i.e find a feasible solution
Run Time:

O(n4L), where L = #bits to represent A and b
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( L), L p

Problem in practice: always takes this much time.

Reduction from general case
To solve:

maximize: z = cTx 
bj t t A  b       0subject to: Ax ≤ b,     x ≥ 0

Convert to:
find: x, y 
subject to: Ax ≤ b,

-x ≤ 0
-yA ≤ –c
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y
-y ≤ 0

-cx +by ≤ 0

Ellipsoid Algorithm
Consider a sequence of smaller and smaller ellipsoids 

each with the feasible region inside.
For iteration k:

ck = center of Ek

Eventually ck has to be inside of F, and we are done.

Feasible region
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Ellipsoid Algorithm
To find the next smaller ellipsoid:

find most violated constraint ak

find smallest ellipsoid that includes constraint
k

Feasible region
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Interior Point Methods
Travel through the interior 

with a combination of
x2

1. An optimization term
(moves toward objective)

2. A centering term
(keeps away from 
boundary)

Used since 50s for nonlinear 
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f
programming.

Karmakar proved a variant is 
polynomial time in 1984x1

Methods
Affine scaling: simplest, but no known time bounds
Potential reduction: O(nL) iterations 
Central trajectory: O(n1/2 L) iterations

The time for each iteration involves solving a linear 
system so it takes polynomial time.   The “real 
world” time depends heavily on the matrix 
structure
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structure.

Example times

fuel continent car initial
size (K) 13x31K 9x57K 43x107K 19x12Ks ze (K) 3x3 K 9x57K 3x 07K 9x K

non-zeros 186K 189K 183K 80K
iterations 66 64 53 58
time (sec) 2364 771 645 9252
Cholesky 
non-zeros 1.2M .3M .2M 6.7M
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Central trajectory method (Lustic, Marsten, Shanno 94)
Time depends on Cholesky non-zeros (i.e. the “fill”)
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Assumptions
We are trying to solve the problem:

minimize     z  = cTx
subject to  Ax = b

x ≥ 0
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Outline
1. Centering Methods Overview
2. Picking a direction to move toward the optimalg p
3. Staying on the Ax = b hyperplane (projection)
4. General method
5. Example: Affine scaling
6. Example: potential reduction
7. Example: log barrier
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Centering: option 1
The “analytical center”:

Minimize: y = -Σi=1
n lg xiy i 1 g i

y goes to ∞ as x approaches any boundary.

x1 x4

x5
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Centering: option 2
Elliptical Scaling:

(c1,c2)
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Dikin Ellipsoid
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The idea is to bias spaced based on the ellipsoid.
More on this later.
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Finding the Optimal solution
Let’s say f(x) is the combination of the “centering 

term” c(x) and the “optimization term” z(x) = cT x. 
We would like this to have the same minimum over 

the feasible region as z(x) but can otherwise be 
quite different.

In particular c(x) and hence f(x) need not be linear.
Goal: find the minimum of f(x) over the feasible 

region starting at some interior point x0
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g g m p 0

Can do this by taking a sequence of steps toward the 
minimum.

How do we pick a direction for a step?

Picking a direction: steepest descent
Option 1: Find the steepest descent on x at x0 by 

taking the gradient: )( 0xf∇

Problem: the gradient might be changing rapidly, so 
local steepest descent might not give us a good 
direction.

Any ideas for better selection of a direction? 
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Picking a direction: Newton’s method
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Consider the truncated taylor series:

To find the minimum of f(x) take the derivative and 
set to 0.
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)( 0xf
In matrix form, for arbitrary dimension:

TxfxFxx )())(( 1
0 ∇−= − )()( xfxF ∇×∇=

Hessian 

Next Step?
Now that we have a direction, what do we do?
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Remaining on the support plane
Constraint: Ax = b     
A is a n x (n + m) matrix.
The equation describes an m dimensional hyperplane 

in a n+m dimensional space.
The hyperplane basis is the null space of A

A = defines the “slope”
b = defines an “offset” x2x1 + 2x2 = 4
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x1
3

x1 + 2x2 = 3
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Projection
Need to project our direction onto the plane defined 

by the null space of A.
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We want to calculate Pc

Calculating Pc
Pc = (I – AT(AAT)-1A)c = c – ATw
where ATw = AT(AAT)-1Ac 
giving  AATw = AAT(AAT)-1Ac = Ac

so all we need to do is solve for w in: AATw = Ac

This can be solved with a sparse solver as described 
i  th  h t  l t
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in the graph separator lectures.
This is the workhorse of the interior-point methods.
Note that AAT will be more dense than A.

Next step?
We now have a direction c and its projection  d onto 

the constraint plane defined by Ax = b.
What do we do now?

To decide how far to go we can find the minimum of 
f(x) along the line defined by d.  Not too hard if 
f(x) is reasonably nice (e.g. has one minimum along 
the line).

Alternatively we can go some fraction of the way to 
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Alternatively we can go some fraction of the way to 
the boundary (e.g. 90%) 
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General Interior Point Method
Pick start x0
Factor AAT

Repeat until done (within some threshold)
– decide on function  to optimize f(x)

(might be the same for all iterations)
– select direction d based on f(x)

(e.g. with Newton’s method)
– project d onto null space of A 

( i  f t d AAT d l i   li  t )
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(using factored AAT and solving a linear system)
– decide how far to go along that direction

Caveat: every method is slightly different

Affine Scaling Method
A biased steepest descent.
On each iteration solve:
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minimize     cTy
subject to  Ay = 0

yD-2y ≤ 1

Note that: 
1. y is in the null space of A and can therefore be 
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Dikin ellipsoid
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. y p f f
used as the direction d.

2. we are optimizing in the desired direction cT

What does the Dikin Ellipsoid do for us?

Affine Scaling
Intuition by picture:

Diki  lli id

x
c’

y

c’ = Pc

Ax = b is a slice
of the ellipsoid

Dikin ellipsoid
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Note that y is biased away from the boundary

How to compute
By substitution of variables:  y = Dy’

minimize: cTDy’
subject to: ADy’ = 0

y’DTD-2 Dy’ ≤ 1  (y’y’ ≤ 1)   
The sphere y’y’ ≤ 1 is unbiased.
So we project the direction cTD =Dc onto the 

nullspace of B = AD:
y’ = (I – BT(BBT)-1B)Dc
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y
and 

y = Dy’ = D (I – BT(BBT)-1B)Dc
As before, solve for w in BBTw = BDc and

y = D(Dc – BTw) = D2(c – ATw)
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Affine Interior Point Method
Pick start x0
Symbolically factor AAT

Repeat until done (within some threshold)
– B = A Di
– Solve BBTw = BDc for w  (use symbolically 

factored AAT…same non-zero structure)
– d = Di(Dic – BTw)
– move in direction d a fraction α of the way to 
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y
the boundary (something like α = .96 is used in 
practice) 

Note that Di changes on each iteration since it 
depends on xi

Potential Reduction Method
minimize:     z  = q ln(cTx – by) - Σj=1

n ln(xj)
subject to:  Ax = bj

x ≥ 0
yA + s = 0   (dual problem)
s ≥ 0

First term of z is the optimization term
The second term of z is the centering term.
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The objective function is not linear.  Use hill climbing 
or “Newton Step” to optimize.

(cTx – by) goes to 0 near the solution

Central Trajectory (log barrier)
Dates back to 50s for nonlinear problems.
On step i:
1. minimize: cx - μk ∑j=1

n ln(xj), s.t. Ax = b, x > 0
2. select: μk+1 ≤ μk

Each minimization can be done with a constrained 
Newton step.

μk needs to approach zero to terminate.
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A primal-dual version using higher order 
approximations is currently the best interior-
point method in practice.

Summary of Algorithms
1. Actual algorithms used in practice are very 

sophisticated
2 P ti  t h  th  bl  ll2. Practice matches theory reasonably well
3. Interior-point methods dominate when

A. Large n
B. Small Cholesky factors (i.e. low fill)
C. Highly degenerate

4. Simplex dominates when starting from a previous 
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p p
solution very close to the final solution

5. Ellipsoid algorithm not currently practical
6. Large problems can take hours or days to solve. 

Parallelism is very important.


