15-853: Algorithms in the Real World

Linear and Integer Programming II

- Ellipsoid algorithm
- Interior point methods

15-853 Page1

Ellipsoid Algorithm

First polynomial-time algorithm for linear programming (Khachian 79)

Solves

find x subject to $Ax \le b$

i.e find a feasible solution

Run Time:

 $O(n^4L)$, where L = #bits to represent A and b

Problem in practice: always takes this much time.

15-853 Page2

Reduction from general case

To solve:

 $\underline{\text{maximize:}} \quad z = c^{\mathsf{T}} x$

subject to: $Ax \le b$, $x \ge 0$

Convert to:

 $\frac{\text{find:}}{\text{subject to:}}$ x, y $x \le b$,

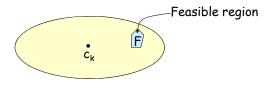
-x ≤ 0

-yA ≤ -c

-y ≤ 0

 $\text{-cx +by} \leq 0$

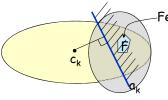
15-853 Page3


Ellipsoid Algorithm

Consider a sequence of smaller and smaller ellipsoids each with the feasible region inside.

For iteration k:

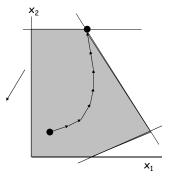
 c_k = center of E_k


Eventually c_k has to be inside of F, and we are done.

15-853

Ellipsoid Algorithm

To find the next smaller ellipsoid: find most violated constraint \mathbf{a}_k find smallest ellipsoid that includes constraint



-Feasible region

$$\frac{Vol(E_{k+1})}{Vol(E_k)} = \frac{1}{2^{1/(2n+1)}}$$

Page5

Interior Point Methods

Travel through the interior with a <u>combination</u> of

- 1. An <u>optimization</u> term (moves toward objective)
- A <u>centering</u> term (keeps away from boundary)

Used since 50s for nonlinear programming.

Karmakar proved a variant is **polynomial time** in 1984

Page6

Methods

15-853

Affine scaling: simplest, but no known time bounds

Potential reduction: O(nL) iterations Central trajectory: $O(n^{1/2} L)$ iterations

The time for each iteration involves solving a linear system so it takes polynomial time. The "real world" time depends heavily on the matrix structure.

15-853

Page7

Example times

15-853

	fuel	continent	car	initial
size (K)	13×31K	9×57K	43×107K	19x12K
non-zeros	186K	189K	183K	80K
iterations	66	64	53	58
time (sec)	2364	771	645	9252
Cholesky non-zeros	1.2M	.3M	.2M	6.7M

Central trajectory method (Lustic, Marsten, Shanno 94) Time depends on Cholesky non-zeros (i.e. the "fill")

15-853

Assumptions

We are trying to solve the problem: minimize $z = c^Tx$ subject to Ax = b $x \ge 0$

15-853 Page9

Outline

- 1. Centering Methods Overview
- 2. Picking a direction to move toward the optimal
- 3. Staying on the Ax = b hyperplane (projection)
- 4. General method
- 5. Example: Affine scaling
- 6. Example: potential reduction
- 7. Example: log barrier

Page10

Centering: option 1

The "analytical center":

Minimize: $y = -\sum_{i=1}^{n} \lg x_i$ y goes to ∞ as x approaches any boundary.

15-853 Page11

Centering: option 2

15-853

Elliptical Scaling:

$$\frac{{x_1}^2}{{c_1}^2} + \frac{{x_2}^2}{{c_2}^2} = 1$$

Dikin Ellipsoid

The idea is to bias spaced based on the ellipsoid. More on this later.

15-853 Page12

Finding the Optimal solution

Let's say f(x) is the combination of the "centering term" c(x) and the "optimization term" $z(x) = c^T x$.

We would like this to have the same minimum over the feasible region as z(x) but can otherwise be quite different.

In particular c(x) and hence f(x) need not be linear.

<u>Goal</u>: find the minimum of f(x) over the feasible region starting at some interior point x_0

Can do this by taking a sequence of steps toward the minimum.

How do we pick a direction for a step?

15-853 Page13

Picking a direction: steepest descent

Option 1: Find the steepest descent on x at x_0 by taking the gradient: $\nabla f(x_0)$

<u>Problem</u>: the gradient might be changing rapidly, so local steepest descent might not give us a good direction.

Any ideas for better selection of a direction?

Picking a direction: Newton's method

Consider the truncated taylor series:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

To find the $\underline{\text{minimum}}$ of f(x) take the derivative and set to 0.

$$0 = f'(x_0) + f''(x_0)(x - x_0)$$
$$x = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

In matrix form, for arbitrary dimension:

$$x = x_0 - (F(x))^{-1} \nabla f(x)^T \qquad F(x) = \nabla \times \nabla f(x)$$
Hessian

15-853

Page15

Next Step?

15-853

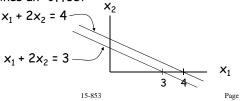
Now that we have a direction, what do we do?

15-853

Page16

Remaining on the support plane

Constraint: Ax = b


A is a $n \times (n + m)$ matrix.

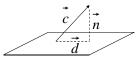
The equation describes an m dimensional hyperplane in a n+m dimensional space.

The hyperplane basis is the null space of A

A = defines the "slope"

b = defines an "offset"

Projection


Need to project our direction onto the plane defined by the null space of A.

$$\vec{d} = \vec{c} - \vec{n}$$

$$= c - A^T (AA^T)^{-1} Ac$$

$$= (I - A^T (AA^T)^{-1} A)c$$

$$= Pc$$

$$P = \left(I - A^T \left(AA^T\right)^{-1}A\right) = \text{ the "projection matrix"}$$

We want to calculate Pc

Page18

Calculating Pc

Pc = $(I - A^{T}(AA^{T})^{-1}A)c = \underline{c - A^{T}w}$ where $A^{T}w = A^{T}(AA^{T})^{-1}Ac$ giving $AA^{T}w = AA^{T}(AA^{T})^{-1}Ac = Ac$

so all we need to do is solve for w in: $AA^Tw = Ac$

This can be solved with a sparse solver as described in the graph separator lectures.

This is the workhorse of the interior-point methods. Note that AA^{T} will be more dense than A.

15-853 Page19

Next step?

We now have a direction c and its projection d onto the constraint plane defined by Ax = b.

What do we do now?

To decide how far to go we can find the minimum of f(x) along the line defined by d. Not too hard if f(x) is reasonably nice (e.g. has one minimum along the line).

Alternatively we can go some fraction of the way to the boundary (e.g. 90%)

15-853 Page20

General Interior Point Method

Pick start x_0 Factor AA^T

Repeat until done (within some threshold)

- decide on function to optimize f(x) (might be the same for all iterations)
- select direction d based on f(x) (e.g. with Newton's method)
- project d onto null space of A (using factored AA^{T} and solving a linear system)
- decide how far to go along that direction

Caveat: every method is slightly different

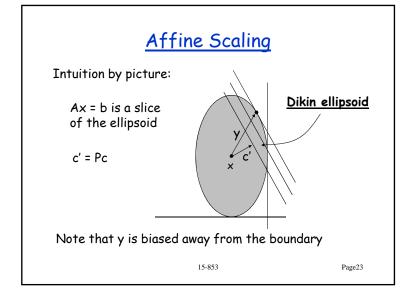
15-853

Page21

Affine Scaling Method

A biased steepest descent.

On each iteration solve:


$$D = \begin{bmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \\ & & \ddots \end{bmatrix}$$

<u>Dikin ellipsoid</u> –

Note that:

- 1. y is in the null space of A and can therefore be used as the direction d.
- 2. we are optimizing in the desired direction c^{T} What does the Dikin Ellipsoid do for us?

15-853 Page22

How to compute

By substitution of variables: y = Dy'

 $\underline{\mathbf{minimize:}} \quad \mathsf{c}^\mathsf{T}\mathsf{D}\mathsf{y}'$

subject to: ADy' = 0

 $y'D^{\dagger}D^{-2}Dy' \le 1 \ (y'y' \le 1)$

The sphere $y^\prime y^\prime \leq 1$ is unbiased.

So we project the direction c^TD =Dc onto the nullspace of B = AD:

 $y' = (I - B^T(BB^T)^{-1}B)Dc$

and

 $y = Dy' = D (I - B^T(BB^T)^{-1}B)Dc$

As before, solve for w in $BB^Tw = BDc$ and

 $y = D(Dc - B^Tw) = D^2(c - A^Tw)$

-853

Affine Interior Point Method

Pick start x_0

Symbolically factor AA^{T}

Repeat until done (within some threshold)

- B = A D;
- Solve BB^Tw = BDc for w (use symbolically factored AA^T...same non-zero structure)
- $d = D_i(D_ic B^Tw)$
- move in direction d a fraction α of the way to the boundary (something like α = .96 is used in practice)

Note that D_i changes on each iteration since it depends on \mathbf{x}_i

15-853 Page25

Potential Reduction Method

minimize: $z = q \ln(c^Tx - by) - \sum_{j=1}^n \ln(x_j)$ subject to: Ax = b $x \ge 0$ yA + s = 0 (dual problem) s > 0

First term of z is the **optimization** term
The second term of z is the **centering** term.

The objective function is **not** linear. Use hill climbing or "Newton Step" to optimize.

 $(c^Tx - by)$ goes to 0 near the solution

15-853 Page26

Central Trajectory (log barrier)

Dates back to 50s for nonlinear problems.

<u>On step i</u>:

- 1. <u>minimize</u>: $cx \mu_k \sum_{j=1}^{n} \ln(x_j)$, s.t. Ax = b, x > 0
- 2. select: $\mu_{k+1} \leq \mu_k$

Each minimization can be done with a constrained Newton step.

 $\mu_{\textbf{k}}$ needs to approach zero to terminate.

A primal-dual version using higher order approximations is currently the best interior-point method in practice.

15-853 Page27

Summary of Algorithms

- Actual algorithms used in practice are very sophisticated
- 2. Practice matches theory reasonably well
- 3. Interior-point methods dominate when
 - A. Large n
 - B. Small Cholesky factors (i.e. low fill)
 - C. Highly degenerate
- 4. Simplex dominates when starting from a previous solution very close to the final solution
- 5. Ellipsoid algorithm not currently practical
- Large problems can take hours or days to solve. Parallelism is very important.

15-853 Page28