
15-853 Page1

15-853:Algorithms in the Real World

Graph Separators
– Introduction
– Applications

15-853 Page2

Edge Separators

7
8

3

4

0
1

2

5

6

An edge separator :
a set of edges E’ ⊆ E
which partitions V into
V1 and V2

Criteria:
|V1|, |V2| balanced
|E’| is small

V1

V2

E’

15-853 Page3

Vertex Separators

7
8

3

4

0
1

2

5

6

An vertex separator :
a set of vertices V’ ⊆ V
which partitions V into
V1 and V2

Criteria:
|V1|, |V2| balanced
|V’| is small

V1
V2

15-853 Page4

Compared with Min-cut

s

t

Min-cut: as in the min-
cut, max-flow theorem.

Min-cut has no balance
criteria.

Min-cut typically has a
source (s) and sink (t).

Min-cut tends to find
unbalanced cuts.

V1

V2

E’

15-853 Page5

Other names

Sometimes referred to as
– graph partitioning (probably more

common than “graph separators”)
– graph bisectors
– graph bifurcators
– balanced or normalized graph cuts

15-853 Page6

Recursive Separation

15-853 Page7

Recursive Separation

7
8

3

4

0
1

2

5
6

8

1
2

5
6

7

3

4

0

2

68

1

57
4

3

0

3 0 7 4

8
5

1 8 5 2 6

15-853 Page8

What graphs have small
separators?

Planar graphs: O(n1/2) vertex separators
2d meshes, constant genus, excluded minors

Almost planar graphs:
the internet, power networks, road networks

Circuits
need to be laid out without too many crossings

Social network graphs:
phone-call graphs, link structure of the web,
citation graphs, “friends graphs”

3d-grids and meshes: O(n2/3)

15-853 Page9

What graphs don’t have small
separators

Hypercubes:
O(n) edge separators
O(n/(log n)1/2) vertex separators

Butterfly networks:
O(n/log n) separators

Expander graphs:
Graphs such that for any U ⊆ V, s.t. |U| ≤ α |V|,
|neighbors(U)| ≥ β |U|. (α < 1, β > 0)
random graphs are expanders, with high probability

It is exactly the fact that they don’t have small
separators that make these graphs useful.

15-853 Page10

Applications of Separators

15-853 Page11

Applications of Separators
Circuit Layout (from 1960s)
VLSI layout
Solving linear systems

(nested dissection)
n3/2 time for planar graphs

Partitioning for parallel algorithms
Approximations to NP hard problems

TSP, maximum-independent-set
Compact Routing and Shortest-paths
Clustering and machine learning
Machine vision

Out of core algorithms
Register allocation

Shortest Paths
Graph compression
Graph embeddings

15-853 Page12

Available Software
METIS: U. Minnesota
PARTY: University of Paderborn
CHACO: Sandia national labs
JOSTLE: U. Greenwich
SCOTCH: U. Bordeaux
GNU: Popinet

Benchmarks:
• Graph Partitioning Archive

15-853 Page13

Different Balance Criteria
Bisectors: 50/50
Constant fraction cuts: e.g. 1/3, 2/3
Trading off cut size for balance (vertex separators):

min cut criteria:

min quotient separator:

All versions are NP-hard

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊂ 21'

'
min

VV
V

VV

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⊂),min(

'
min

21' VV
V

VV

|E’|

|E’|

flux
isoperimetric
number

edge

= sparsity

15-853 Page14

Other Variants of Separators
k-Partitioning:

Might be done with recursive partitioning, but
direct solution can give better answers.

Weighted:
Weights on edges (cut size), vertices (balance)

Hypergraphs:
Each edge can have more than 2 end points
common in VLSI circuits

Multiconstraint:
Trying to balance different values at the same
time.

15-853 Page15

Asymptotics
If S is a class of graphs closed under the

subgraph relation, then
Definition: S satisfies an f(n) vertex-

separator theorem if there are constants
α < 1 and β > 0 so that for every G∈S
there exists a vertex cut set V’ ⊆ V, with
1. |V’| ≤ β f(|G|) cut size
2. |V1| ≤ α |G|, |V2| ≤ α |G| balance

Similar definition for edge separators.

15-853 Page16

Edge vs. Vertex separators
If a class of graphs satisfies an f(n) edge-separator

theorem then it satisfies an f(n) vertex-separator.
The other way is not true (unless degree is bounded)

|E’| = n/2

15-853 Page17

Separator Trees

7
8

3

4

0
1

2

5
6

8

1
2

5
6

7

3

4

0

2

68

1

57
4

3

0

3 0 7 4

8
5

1 8 5 2 6

15-853 Page18

Separator Trees
Theorem: For S satisfying an (α,β) n1-ε edge separator

theorem, we can generate a perfectly balanced
separator tree with separator size
|C| ≤ k β f(|G|).

Proof: by picture |C| = β n1-ε(1 + α + α2 + …) = β n1-ε(1/1-α)

15-853 Page19

Algorithms for Partitioning
All are either heuristics or approximations

– Kernighan-Lin (heuristic)
– Planar graph separators

(finds O(n1/2) separators)
– Geometric separators

(finds O(n(d-1)/d) separators in Rd)
– Spectral (finds O(n(d-1)/d) separators in Rd)
– Flow/LP-based techniques

(give log(n) approximations)
– Multilevel recursive bisection

(heuristic, currently most practical)

15-853 Page20

Kernighan-Lin Heuristic

Local heuristic for edge-separators based on “hill
climbing”. Will most likely end in a local-minima.

Two versions:
Original K-L: takes n2 time per step
Fiduccia-Mattheyses: takes n time per step

15-853 Page21

High-level description for both
Start with an initial cut that partitions the vertices

into two equal size sets V1 and V2

Want to swap two equal sized sets
X ⊂ A and Y ⊂ B to reduce the cut size.

Note that finding the optimal subsets X and Y solves
the optimal separator problem, so it is NP hard.

We want some heuristic that might help.

A B
YX

C

15-853 Page22

Some Terminology
C(A,B) : the weighted cut

between A and B
I(v) : the number of edges

incident on v that stay
within the partition

E(v) : the number of edges
incident on v that go to the
other partition

D(v) : E(v) - I(v)
D(u,v) : D(u) + D(v) - 2 w(u,v)

the gain for swapping u and v

A

B

C
v

u

15-853 Page23

Kernighan-Lin improvement step
KL(G,A0,B0)

∀ u ∈ A0, v ∈ B0
put (u,v) in a PQ based on D(u,v)

for k = 1 to |V|/2
(u,v) = max(PQ)
(Ak,Bk) = (Ak-1,Bk-1) swap (u,v)
delete u and v entries from PQ
update D on neighbors (and PQ)

select Ak,Bk with best Ck

Note that can take backward steps
(“gain” D(u,v) can be negative).

A

B

C
v

u

15-853 Page24

Fiduccia-Mattheyses improvement step

FM(G,A0,B0)
∀ u ∈ A0 put u in PQA based on D(u)
∀ v ∈ B0 put v in PQB based on D(v)
for k = 1 to |V|/2
u = max(PQA)
put u on B side and update D
v = max(PQb)
put v on A side and update D

select Ak,Bk with best Ck

A

B

C
v

u

15-853 Page25

Two examples of KL or FM
Consider following graphs with initial cut given in red.

15-853 Page26

A Bad Example for KL or FM
Consider following graph with initial cut given in red.

KL (or FM) will start on one side of the grid (e.g. the
blue pair) and flip pairs over moving across the grid
until the whole thing is flipped.

After one round the graph will look identical?

2 2 2
1 1 1

2

15-853 Page27

Boundary Kernighan-Lin (or FM)
Instead of putting all pairs (u,v) in Q (or all u and v in

Q for FM), just consider the boundary vertices
(i.e. vertices adjacent to a vertex in the other
partition).

Note that vertices might not originally be boundaries
but become boundaries.

In practice for reasonable initial cuts this can speed
up KL by a large factor, but won’t necessarily find
the same solution as KL.

15-853 Page28

Performance in Practice

In general the algorithms do very well at smoothing a
cut that is approximately correct.

Works best for graphs with reasonably high degree.

Used by most separator packages either
1. to smooth final results
2. to smooth partial results during the algorithm

15-853 Page29

Separators Outline
Introduction:

Algorithms:
– Kernighan Lin
– BFS and PFS
– Multilevel
– Spectral

15-853 Page30

Breadth-First Search Separators

1 2 3
4

5
6

Run BFS and as soon as
you have included half
the vertices return
that as the partition.

Won’t necessarily be
50/50, but can
arbitrarily split
vertices in middle level.

Used as substep in Lipton-
Tarjan planar
separators.

In practiced does not
work well on its own.

15-853 Page31

Picking the Start Vertex

1. Try a few random starts and select best partition
found

2. Start at an “extreme” point.
Do an initial DFS starting at any point and select
a vertex from the last level to start with.

3. If multiple extreme points, try a few of them.

15-853 Page32

Priority-First Search Separators

11

6

9

7

10

8

3

4

5

2

1

Prioritize the vertices
based on their gain (as
defined in KL) with the
current set.

Search until you have half
the vertices.

15-853 Page33

Multilevel Graph Partitioning
Suggested by many researchers around the same

time (early 1990s).
Packages that use it:

– METIS
– Jostle
– TSL (GNU)
– Chaco

Best packages in practice (for now), but not yet
properly analyzed in terms of theory.

Mostly applied to edge separators.

15-853 Page34

High-Level Algorithm Outline
MultilevelPartition(G)

If G is small, do something brute force
Else

Coarsen the graph into G’ (Coarsen)
A’,B’ = MultilevelPartition(G’)
Expand graph back to G and project the

partitions A’ and B’ onto A and B
Refine the partition A,B and return result

Many choices on how to do underlined parts

15-853 Page35

MGP as Bubble Diagram

G

Coarsen
Expand, Project
and Refine

“Brute Force”

15-853 Page36

How to Coarsen
Goal is to pick a sample G’ such that when we find its

partition it will help us find the partition of G.
Possibilities?

15-853 Page37

Random Sampling

Pick a random subset
of the vertices.

Remove the unchosen
vertices and their
incident edges

15-853 Page38

Random Sampling

Pick a random subset
of the vertices.

Remove the unchosen
vertices and their
incident edges

Graph falls apart if it
is not dense enough.

15-853 Page39

Maximal Matchings
A maximal matching is a pairing of neighbors so that

no unpaired vertex can be paired with an unpaired
neighbor.

The idea is to contract pairs into a single vertex.

15-853 Page40

A Maximal Matching

Can be found in linear time greedily.

15-853 Page41

A side note

Compared to a maximum matching: a pairing such
that the number of covered nodes is maximum

15-853 Page42

Coarsening

15-853 Page43

Collapsing and Weights

New vertices become
weighted by sum of
weights of their
pair.

New edges (u,v)
become weighted by
sum of weights of
multiple edges (u,v)

We therefore have to
solve the weighted
problem.

1
2

2
1

Why care about weights?

15-853 Page44

Heuristics for finding the Matching
Random : randomly select edges.
Prioritized: the edges are prioritized by weight.

Visit vertices in random order, but pick highest
priority edge first.
– Heaviest first: Why might this be a good

heuristic?
– Lightest first: Why might this be a good

heuristic?
Highly connected components: (or heavy clique

matching). Looks not only at two vertices but the
connectivity of their own structure.

15-853 Page45

Finding the Cut on the
Coarsened Graph

15-853 Page46

Exanding and “Projecting”

15-853 Page47

e.g. by using
Kernighan-Lin

Refining

15-853 Page48

After Refinement

15-853 Page49

METIS
Coarsening: “Heavy Edge” maximal matching.

Base case: Priority-first search based on gain.
Randomly select 4 starting points and pick best
cut.

Smoothing: Boundary Kernighan-Lin

Has many other options. e.g., Multiway separators.

15-853 Page50

Separators Outline
Introduction:

Algorithms:
– Kernighan Lin
– BFS and PFS
– Multilevel
– Spectral

15-853 Page51

Spectral Separators
Based on the second eigenvector of the “Laplacian”

matrix for the graph.

Let A be the adjacency matrix for G.
Let D be a diagonal matrix with degree of each

vertex.
The Laplacian matrix is defined as L = D-A

15-853 Page52

Laplacian Matrix: Example

Note that each row sums to 0.

3

1 2

4

5
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−−

−−
−
−−−

=

31011
13101

01201
10010
11103

L

15-853 Page53

Fiedler Vectors

Eigenvalues λ1≤ λ2 ≤ λ3 ≤ ... ≤ λn, real, non-negative.

Find eigenvector corresponding to the second
smallest eigenvalue: L x2 = λ2 x2

This is called the Fiedler vector.

What is true about the first eigenvector?

15-853 Page54

Modes of Vibration

(Picture from Jim Demmel’s CS267 course at Berkeley.)

x2

15-853 Page55

Fiedler Vector: Example

Note that each row sums to 0.
If graph is not connected, what is the second

eigenvalue?

3

1 2

4

5 ⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−−

−−
−
−−−

=

31011
13101

01201
10010
11103

L

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

=

13.
26.
44.

81.
26.

2x

22 83. xLx =

15-853 Page56

Finding the Separator
Sort Fiedler vector by value, and split in half.

3

1 2

4

5
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

=

13.
26.
44.

81.
26.

2x

sorted vertices: [3, 1, 4, 5, 2]

15-853 Page57

Power Method
Iterative method for finding first few eigenvectors.
Every vector is a linear combination of its eigenvectors

e1, e2, …
Consider: p0 = a1 e1 + a2 e2 + …
Iterating pi+1 = Api until it settles will give the principal

eigenvector (largest magnitude eigenvalue) since
pi = λ1

i a1 e1 + λ2
i a2 e2 + …

(Assuming all ai are about the same magnitude)
The more spread in first two eigenvalues, the faster it

will settle (related to the rapid mixing of expander
graphs)

15-853 Page58

The second eigenvector
Assuming we have the principal eigenvector, after

each iteration remove the component that is
aligned with the principal eigenvector.

ni = A pi-1

pi = ni – (e1 • ni)e1 (assuming e1 is normalized)

Now
pi = λ2

i a2 e2 + λ3
i a3 e3 + …

Can use random vector for initial p0

15-853 Page59

Power method for Laplacian
To apply the power method we have to shift the

eigenvalues, since we are interested in eigenvector
with eigenvalue closest to zero.

How do we shift eigenvalues by a constant amount?

Lanczos’ algorithm is faster in practice if starting
from scratch, but if you have an approximate
solution, the power method works very well.

15-853 Page60

Multilevel Spectral
MultilevelFiedler(G)

If G is small, do something brute force
Else

Coarsen the graph into G’
e’2 = MultilevelFiedler(G’)
Expand graph back to G and project e’2 onto e2
Refine e2 using power method and return

To project, you can just copy the values in location i
of e’2 into both vertices i expands into.

This idea is used by Chaco.

