15-853:Algorithms in the Real World

Graph Separators
- Introduction
- Applications

15-853 Pagel

Edge Separators

An edge separator:
a set of edges E'c E
which partitions V into
V,and V,

Criteria:
|V,|, |V,| balanced
|E'| is small

15-853 Page2

Vertex Separators

An vertex separator:
a set of vertices V' c V
which partitions V into
V,and V,

Criteria:
|V,|, |V,| balanced
V'] is small

15-853 Page3

Compared with Min-cut

Min-cut: as in the min-
cut, max-flow theorem.

Min-cut has no balance
criteria.

Min-cut typically has a
source (s) and sink (1).

Min-cut tends to find
unbalanced cuts.

15-853 Page4

Other names

Sometimes referred to as

- graph partitioning (probably more
common than "graph separators”)

- graph bisectors
- graph bifurcators
- balanced or normalized graph cuts

15-853 Page5

Recursive Separation

(>
)

o/. \:J A

N o0 ole

15-853 Page6

Recursive Separation

What graphs have small
separators?

Planar graphs: O(n!/?) vertex separators

2d meshes, constant genus, excluded minors
Almost planar graphs:

the internet, power networks, road networks
Circuits

need to be laid out without too many crossings
Social network graphs:

phone-call graphs, link structure of the web,
citation graphs, "friends graphs”
3d-grids and meshes: O(n?/3)

15-853 Page8

What graphs don't have small
separators

Hypercubes:

O(n) edge separators
O(n/(log n)!/?) vertex separators

Butterfly networks:
O(n/log n) separators
Expander graphs:
Graphs such that forany Uc V, s.t. [U| <a |V],
|neighbors(U)| > B |U|. (o<1, p>0)
random graphs are expanders, with high probability

It is exactly the fact that they don't have small
separators that make these graphs useful.

15-853 Page9

Applications of Separators

15-853 Pagel0

Applications of Separators

Circuit Layout (from 1960s) Out of core algorithms

VLSTI layout Register allocation
Solving linear systems Shortest Paths
(nested dissection) Graph compression
n3/2 time for planar graphs Graph embeddings

Partitioning for parallel algorithms
Approximations to NP hard problems
TSP, maximum-independent-set
Compact Routing and Shortest-paths

Clustering and machine learning

Machine vision
15-853 Pagell

Available Software

METIS: U. Minnesota

PARTY: University of Paderborn
CHACQ: Sandia national labs
JOSTLE: U. Greenwich
SCOTCH: U. Bordeaux

GNU: Popinet

Benchmarks:
* Graph Partitioning Archive

15-853 Pagel2

Different Balance Criteria

Bisectors: 50/50
Constant fraction cuts: e.g. 1/3,2/3 ¢dge
Trading off cut size for balance M separators):

flux

min . . .
V'CVE‘V]_H\/Z‘) - lnsuorgﬁn;l:ne’rmc

minl — vy = sparsity
viev(min(Vy)V,))

min cut criteria:

All versions are NP-hard

15-853 Pagel3

Other Variants of Separators

k-Partitioning:
Might be done with recursive partitioning, but
direct solution can give better answers.

Weighted:
Weights on edges (cut size), vertices (balance)
Hypergraphs:
Each edge can have more than 2 end points
common in VLSI circuits
Multiconstraint:

Trying to balance different values at the same
time.

15-853

Pagel4d

Asymptotics

If S is aclass of graphs closed under the
subgraph relation, then

Definition: S satisfies an f(n) vertex-
separator theorem if there are constants
a < 1and >0 so that for every GeS
there exists a vertex cut set V' < V, with

1. V] <Bf(6&]) cut size
2. |\Vil <a |G|, |V, <a |G| balance

Similar definition for edge separators.

15-853 Pagel5

Edge vs. Vertex separators

If a class of graphs satisfies an f(n) edge-separator
theorem then it satisfies an f(n) vertex-separator.

The other way is not true (unless degree is bounded)

15-853 Pagel6

Separator Trees

Separator Trees

Theorem: For S satisfying an (o) n'"¢ edge separator
theorem, we can generate a perfectly balanced
separator tree with separator size

ICl <k B f(l&]).
Proof. by picture [C| =B nl¢(1+a+ a2+ .)=p n%(1/1-a)

15-853 Pagel8

Algorithms for Partitioning

All are either heuristics or approximations
- Kernighan-Lin (heuristic)

- Planar graph separators
(finds O(n'/2) separators)

- Geometric separators
(finds O(nd-1/d) separators in RY)

- Spectral (finds O(n@d-1/d) separators in RY)

- Flow/LP-based techniques
(give log(n) approximations)

- Multilevel recursive bisection
(heuristic, currently most practical)

15-853 Pagel9

Kernighan-Lin Heuristic

Local heuristic for edge-separators based on “hill
climbing”. Will most likely end in a local-minima.

Two versions:
Original K-L: takes n? time per step
Fiduccia-Mattheyses: takes n time per step

15-853 Page20

High-level description for both

Start with an initial cut that partitions the vertices
info two equal size sets V; and V,

Want to swap two equal sized sets
X c Aand Y c B to reduce the cuft size.

Note that finding the optimal subsets X and Y solves
the optimal separator problem, so it is NP hard.

We want some heuristic that might help.

15-853 Page21

Some Terminology

C(A,B) : the weighted cut
between A and B

I(v): the number of edges
incident on v that stay
within the partition ¢

E(v) : the number of edges
incident on v that go to the
other partition

D(v) : E(v) - I(v)
D(u,v) : D(u) + D(v) - 2 w(u,v)
the gain for swapping u and v

15-853 Page22

Kernighan-Lin improvement step

KL(G,Ay.Bp)
Yue Ay VeBg
put (u,v) in a PQ based on D(u,v)
fork=11to0 |V|/2
(u,v) = max(PQ) ¢ ~
(Ax.By) = (Ax.1.By.1) swap (u,v) o
delete u and v entries from PQ
update D on neighbors (and PQ)
select A, B, with best C,

Note that can take backward steps
("gain” D(u,v) can be negative).

15-853 Page23

Fiduccia-Mattheyses improvement step

FM(G,A,.By)
YV u e Ay put uin PQ, based on D(u)
V v e By put vin PQg based on D(v) ~
fork=11t0 |V|/2
u = max(PQ,) -
put u on B side and update D
v = max(PQy)
put v on A side and update D
select A, ,B, with best C,

15-853 Page24

Two examples of KL or FM

Consider following graphs with initial cut given in red.

O-C-0-0-0-0-0 O

<
O
O

-O—0O
-O—O
O—0O
O—0O
O—0O
-O—0O
-O—0O

O-O-O-0-O-O-0
QOgggOO

-
(&}
(0}
ol
w

Page25

A Bad Example for KL or FM

Consider following graph with initial cut given in red.

O,
et o)
ate)
OO

OO ™
OO
OO
OO
<

KL (or FM) will start on one side of the grid (e.g. the
blue pair) and flip pairs over moving across the grid
until the whole thing is flipped.

After one round the graph will look identical?

15-853 Page26

Boundary Kernighan-Lin (or FM)

Instead of putting all pairs (u,v) in Q (or all uand v in
Q for FM), just consider the boundary vertices
(i.e. vertices adjacent to a vertex in the other
partition).

Note that vertices might not originally be boundaries
but become boundaries.

In practice for reasonable initial cuts this can speed
up KL by a large factor, but won't necessarily find
the same solution as KL.

15-853 Page2/

Performance in Practice

In general the algorithms do very well at smoothing a
cut that is approximately correct.

Works best for graphs with reasonably high degree.
Used by most separator packages either

1. to smooth final results
2. to smooth partial results during the algorithm

15-853 Page28

Separators Outline

Introduction:

Algorithms:
- Kernighan Lin

B - BFS and PFS
- Multilevel
- Spectral

- LP-baed

15-853 Page29

Breadth-First Search Separators

O)

N‘/

(=

r
/1

/7

\

oo
D O
A

Ie

N

5

15-853

Run BFS and as soon as
you have included half
the vertices return
that as the partition.

Won't necessarily be
50/50, but can
arbitrarily split
vertices in middle level.

Used as substep in Lipton-
Tarjan planar
separators.

In practiced does not
work well on its own.

Page30

Picking the Start Vertex

1. Try a few random starts and select best partition
found

2. Start at an "extreme” point.
Do an initial DFS starting at any point and select
a vertex from the last level to start with.

3. If multiple extreme points, try a few of them.

15-853 Page31

Priority-First Search Separators

Prioritize the vertices
based on their gain (as

defined in KL) with the
current seft.

Search until you have half
the vertices.

15-853 Page32

Multilevel Graph Partitioning

Suggested by many researchers around the same
time (early 1990s).

Packages that use it:
- METIS
- Jostle
- TSL (6NU)
- Chaco

Best packages in practice (for now), but not yet
properly analyzed in terms of theory.

Mostly applied to edge separators.

15-853

Page33

High-Level Algorithm Outline

MultilevelPartition(G)
If G is small, do something brute force
Else
Coarsen the graph into G' (Coarsen)
A' B' = MultilevelPartition(G')

Expand graph back to G and project the
partitions A'and B onto A and B

Refine the partition A,B and return result

Many choices on how to do underlined parts

15-853

Page34

MGP as Bubble Diagram

Coarsen Z
O @ Expand, Project
b ((:5 and Refine

"Brute Force"

15-853 Page35

How to Coarsen

Goal is to pick a sample G’ such that when we find its
partition it will help us find the partition of G.

Possibilities?

W

g

(@ movavdanwf_ Gy —— ‘
) oy M»a, M w»gc/a
(V) rmu»% pleck

yNe)

15-853 Page36

Random Sampling

15-853

Pick a random subset
of the vertices.

Remove the unchosen
vertices and their
incident edges

Page37

.

Random Sampling

cte®

15-853

Pick a random subset
of the vertices.

Remove the unchosen
vertices and their
incident edges

Graph falls apart if it
is not dense enough.

Page38

Maximal Matchings

A maximal matching is a pairing of neighbors so that
no unpaired vertex can be paired with an unpaired
neighbor.

The idea is to contract pairs into a single vertex.

15-853 Page39

A Maximal Matching

MCE » de%v:]
M o maximal

o % m'2 M

m oo e vk iy @0 el

0;447“(7

Can be found in linear time greedily. %ﬂ%&o

15-853 Page40

A side note

Compared to a maximum matching: a pairing such
that the number of covered nodes is maximum

15-853 Page4l

Coarsening

15-853 Page42

Collapsing and Weights

Why care about weights?

15-853

New vertices become
weighted by sum of
weights of their
pair.

New edges (u,v)
become weighted by
sum of weights of
multiple edges (u,v)

We therefore have to
solve the weighted
problem.

Page43

Heuristics for finding the Matching

Random : randomly select edges.

Prioritized: the edges are prioritized by weight.
Visit vertices in random order, but pick highest
priority edge first.

- Heaviest first: Why might this be a good
heuristic?

- Lightest first: Why might this be a good
heuristic?

Highly connected components: (or heavy clique
matching). Looks not only at two vertices but the
connectivity of their own structure.

15-853 Page44

Finding the Cut on the
Coarsened Graph

15-853 Page45

Exanding and "Projecting”

15-853 Page46

Refining

e.g. by using
Kernighan-Lin

15-853 Page4d’

After Refinement

\

15-853 Page48

METIS

Coarsening: "Heavy Edge"” maximal matching.

Base case: Priority-first search based on gain.
Randomly select 4 starting points and pick best
cut.

Smoothing: Boundary Kernighan-Lin

Has many other options. e.g., Multiway separators.

15-853 Page49

Separators Outline

Introduction:

Algorithms:
- Kernighan Lin
- BFS and PFS
- Multilevel

‘ - Spectral

15-853 Pages50

Spectral Separators

Based on the second eigenvector of the "Laplacian”
matrix for the graph.

Let A be the adjacency matrix for 6.

Let D be a diagonal matrix with degree of each
vertex.

The Laplacian matrix is definedasL = D-A

15-853 Page51

Laplacian Matrix: Example

1 @ ;

0

L=]|-1
5 4

0
1
0
0

-1 -1 -1
0O 0 -1
2 -1 0
-1 3 -1

“ﬂ' -1 -1 O

Note that each row sums to O.

15-853

-1 3

Page52

Fiedler Vectors

Eigenvalues A <A, <X\, < ... <A, real, non-negative.

Find eigenvector corresponding to the second
smallest eigenvalue: L x, = A, x,

This is called the Fiedler vector.

What is true about the first eigenvector?

15-853 Page53

Modes of Vibration

Iviodos of a Vibrating String

Lowest Frogounay lambdafl)

Sacond Fregoanoy lamhbdaj2)

‘Third Fregoanoy Lambd&al3)

(Picture from Jim Demmel's CS267 course at Berkeley.)
15-853 Page54

Fiedler Vector: Example

3 0 -1 -1 -1 ~.26

0 9 0 1 0 0 -1 81
L=|-1 0 2 -1 0| X,=|-.44

-1 0 -1 3 -1 - .26

9 -1 -1 0 -1 3 13

Note that each row sums to O.

If graph is not connected, what is the second
eigenvalue?

15-853 Page55

Finding the Separator

Sort Fiedler vector by value, and split in half.

Q| @ 28

81
X, =| —.44

e e 2 —.26
a 13

sorted vertices: [3,1, 4,5, 2]

15-853 Page56

Power Method

Iterative method for finding first few eigenvectors.

Every vector is a linear combination of its eigenvectors
e, e, ..

Consider:p, = a; e; + a, e, + ...
Iterating p;,; = Ap;until it settles will give the principal
eigenvector (largest magnitude eigenvalue) since
Pi=A'aje +i ae; + ..
(Assuming all a; are about the same magnitude)

The more spread in first two eigenvalues, the faster it
will settle (related to the rapid mixing of expander
graphs)

15-853 Page57

The second eigenvector

Assuming we have the principal eigenvector, after
each iteration remove the component that is
aligned with the principal eigenvector.

n = Api,

p; = n, - (e; ®* n)e; (assuming e, is normalized)

Now

Pi= A aze; + A3’ az ez + .
Can use random vector for initial pg

15-853 Page58

Power method for Laplacian

To apply the power method we have to shift the
eigenvalues, since we are interested in eigenvector
with eigenvalue closest to zero.

How do we shift eigenvalues by a constant amount?

Lanczos' algorithm is faster in practice if starting
from scratch, but if you have an approximate
solution, the power method works very well.

15-853 Page59

Multilevel Spectral

MultilevelFiedler(G)
If G is small, do something brute force
Else
Coarsen the graph into G’
e', = MultilevelFiedler(G')
Expand graph back to G and project €', onto e,
Refine e, using power method and return

To project, you can just copy the values in location i
of €', into both vertices i expands into.

This idea is used by Chaco.

15-853 Page60

