

15-853: Algorithms in the Real World

Linear and Integer Programming II
- Ellipsoid algorithm
- Interior point methods

15-853

Page1

Ellipsoid Algorithm

First polynomial-time algorithm for linear programming (Khachian 79)

Solves

find x
subject to $Ax \leq b$
i.e. find a feasible solution

Run Time:

$O(n^4 L)$, where $L = \#$ bits to represent A and b

Problem in practice: always takes this much time.

15-853

Page2

Reduction from general case

To solve:

maximize: $z = c^T x$
subject to: $Ax \leq b, \quad x \geq 0$

Convert to:

find: x, y
subject to: $Ax \leq b,$
 $-x \leq 0$
 $-yA \leq -c$
 $-y \leq 0$
 $-cx + by \leq 0$

15-853

Page3

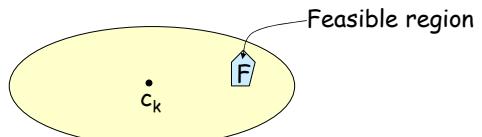
Ellipsoid Algorithm

Consider a sequence of smaller and smaller ellipsoids each with the feasible region inside.

For iteration k :

c_k = center of E_k

Eventually c_k has to be inside of F , and we are done.



15-853

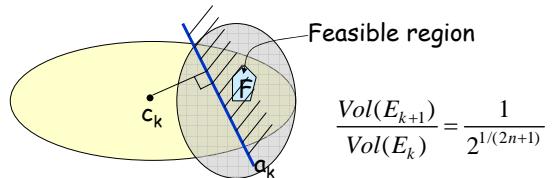
Page4

Ellipsoid Algorithm

To find the next smaller ellipsoid:

find most violated constraint a_k

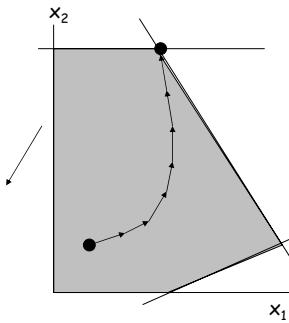
find smallest ellipsoid that includes constraint



15-853

Page5

Interior Point Methods



Travel through the interior with a combination of

1. An optimization term (moves toward objective)
2. A centering term (keeps away from boundary)

Used since 50s for nonlinear programming.

Karmakar proved a variant is polynomial time in 1984

15-853

Page6

Methods

Affine scaling: simplest, but no known time bounds

Potential reduction: $O(nL)$ iterations

Central trajectory: $O(n^{1/2} L)$ iterations

The time for each iteration involves solving a linear system so it takes polynomial time. The "real world" time depends heavily on the matrix structure.

15-853

Page7

Example times

	fuel	continent	car	initial
size (K)	13x31K	9x57K	43x107K	19x12K
non-zeros	186K	189K	183K	80K
iterations	66	64	53	58
time (sec)	2364	771	645	9252
Cholesky non-zeros	1.2M	.3M	.2M	6.7M

Central trajectory method (Lustic, Marsten, Shanno 94)
Time depends on Cholesky non-zeros (i.e. the "fill")

15-853

Page8

Assumptions

We are trying to solve the problem:

$$\text{minimize } z = c^T x$$

$$\text{subject to } Ax = b$$

$$x \geq 0$$

15-853

Page9

Outline

1. Centering Methods Overview
2. Picking a direction to move toward the optimal
3. Staying on the $Ax = b$ hyperplane (projection)
4. General method
5. Example: Affine scaling
6. Example: potential reduction
7. Example: log barrier

15-853

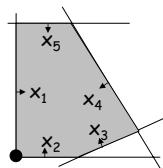
Page10

Centering: option 1

The "analytical center":

$$\text{Minimize: } y = -\sum_{i=1}^n \lg x_i$$

y goes to 1 as x approaches any boundary.

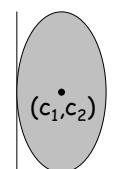


15-853

Page11

Centering: option 2

Elliptical Scaling:



$$\frac{x_1^2}{c_1^2} + \frac{x_2^2}{c_2^2} = 1$$

Dikin Ellipsoid

The idea is to bias spaced based on the ellipsoid.
More on this later.

15-853

Page12

Finding the Optimal solution

Let's say $f(x)$ is the combination of the "centering term" $c(x)$ and the "optimization term" $z(x) = c^T x$. We would like this to have the same minimum over the feasible region as $z(x)$ but can otherwise be quite different.

In particular $c(x)$ and hence $f(x)$ need not be linear.

Goal: find the minimum of $f(x)$ over the feasible region starting at some interior point x_0

Can do this by taking a sequence of steps toward the minimum.

How do we pick a direction for a step?

15-853

Page13

Picking a direction: steepest descent

Option 1: Find the steepest descent on x at x_0 by taking the gradient: $\nabla f(x_0)$

Problem: the gradient might be changing rapidly, so local steepest descent might not give us a good direction.

Any ideas for better selection of a direction?

15-853

Page14

Picking a direction: Newton's method

Consider the truncated taylor series:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2} f''(x_0)(x - x_0)^2$$

To find the minimum of $f(x)$ take the derivative and set to 0.

$$0 = f'(x_0) + f''(x_0)(x - x_0)$$

$$x = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

In matrix form, for arbitrary dimension:

$$x = x_0 - (F(x))^{-1} \nabla f(x)^T \quad F(x) = \nabla \times \nabla f(x)$$

Hessian

15-853

Page15

Next Step?

Now that we have a direction, what do we do?

15-853

Page16

Remaining on the support plane

Constraint: $Ax = b$

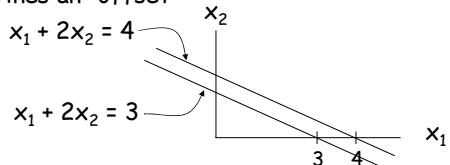
A is a $n \times (n+m)$ matrix.

The equation describes an m dimensional hyperplane in a $n+m$ dimensional space.

The hyperplane basis is the null space of A

A = defines the "slope"

b = defines an "offset"



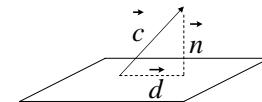
15-853

Page17

Projection

Need to project our direction onto the plane defined by the null space of A .

$$\begin{aligned} \vec{d} &= \vec{c} - \vec{n} \\ &= \vec{c} - A^T(AA^T)^{-1}A\vec{c} \\ &= (I - A^T(AA^T)^{-1}A)\vec{c} \\ &= P\vec{c} \end{aligned}$$



$$P = (I - A^T(AA^T)^{-1}A) \text{ is the "projection matrix"}$$

We want to calculate $P\vec{c}$

15-853

Page18

Calculating $P\vec{c}$

$$P\vec{c} = (I - A^T(AA^T)^{-1}A)\vec{c} = \vec{c} - A^T\vec{w}$$

where $A^T\vec{w} = A^T(AA^T)^{-1}A\vec{c}$

giving $AA^T\vec{w} = AA^T(AA^T)^{-1}A\vec{c} = A\vec{c}$

so all we need to do is solve for \vec{w} in: $AA^T\vec{w} = A\vec{c}$

This can be solved with a sparse solver as described in the graph separator lectures.

This is the workhorse of the interior-point methods.

Note that AA^T will be more dense than A .

15-853

Page19

Next step?

We now have a direction \vec{c} and its projection \vec{d} onto the constraint plane defined by $Ax = b$.

What do we do now?

To decide how far to go we can find the minimum of $f(x)$ along the line defined by \vec{d} . Not too hard if $f(x)$ is reasonably nice (e.g. has one minimum along the line).

Alternatively we can go some fraction of the way to the boundary (e.g. 90%)

15-853

Page20

General Interior Point Method

Pick start x_0

Factor AA^T

Repeat until done (within some threshold)

- decide on function to optimize $f(x)$ (might be the same for all iterations)
- select direction d based on $f(x)$ (e.g. with Newton's method)
- project d onto null space of A (using factored AA^T and solving a linear system)
- decide how far to go along that direction

Caveat: every method is slightly different

15-853

Page21

Affine Scaling Method

A biased steepest descent.

On each iteration solve:

minimize $c^T y$

subject to $Ay = 0$

$$D = \begin{bmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Dikin ellipsoid

Note that:

1. y is in the null space of A and can therefore be used as the direction d .
2. we are optimizing in the desired direction c^T

What does the Dikin Ellipsoid do for us?

15-853

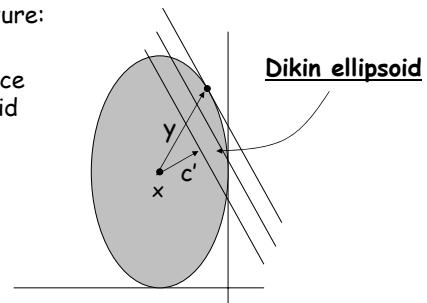
Page22

Affine Scaling

Intuition by picture:

$Ax = b$ is a slice of the ellipsoid

$c' = P c$



Note that y is biased away from the boundary

15-853

Page23

How to compute

By substitution of variables: $y = Dy'$

minimize: $c^T Dy'$

subject to: $ADy' = 0$

$y'^T D^T D y' \leq 1$ ($y' \leq 1$)

The sphere $y' \leq 1$ is unbiased.

So we project the direction $c^T D = Dc$ onto the nullspace of $B = AD$:

$$y' = (I - B^T(BB^T)^{-1}B)Dc$$

and

$$y = Dy' = D(I - B^T(BB^T)^{-1}B)Dc$$

As before, solve for w in $BB^Tw = BDc$ and

$$y = D(Dc - B^Tw) = D^2(c - A^Tw)$$

Page24

Affine Interior Point Method

Pick start x_0

Symbolically factor AA^T

Repeat until done (within some threshold)

- $B = A D_i$
- Solve $BB^Tw = BDc$ for w (use symbolically factored AA^T ...same non-zero structure)
- $d = D_i(D_i^Tc - B^Tw)$
- move in direction d a fraction α of the way to the boundary (something like $\alpha = .96$ is used in practice)

Note that D_i changes on each iteration since it depends on x_i

15-853

Page25

Potential Reduction Method

minimize: $z = q \ln(c^T x - by) - \sum_{j=1}^n \ln(x_j)$

subject to: $Ax = b$

$x \geq 0$

$yA + s = 0$ (dual problem)

$s \geq 0$

First term of z is the **optimization** term

The second term of z is the **centering** term.

The objective function is **not** linear. Use hill climbing or "Newton Step" to optimize.

$(c^T x - by)$ goes to 0 near the solution

15-853

Page26

Central Trajectory (log barrier)

Dates back to 50s for nonlinear problems.

On step i:

1. minimize: $c x - \mu_k \sum_{j=1}^n \ln(x_j)$, s.t. $Ax = b$, $x > 0$
2. select: $\mu_{k+1} \cdot \mu_k$

Each minimization can be done with a constrained Newton step.

μ_k needs to approach zero to terminate.

A primal-dual version using higher order approximations is currently the best interior-point method in practice.

15-853

Page27

Summary of Algorithms

1. Actual algorithms used in practice are very sophisticated
2. Practice matches theory reasonably well
3. Interior-point methods dominate when
 - A. Large n
 - B. Small Cholesky factors (i.e. low fill)
 - C. Highly degenerate
4. Simplex dominates when starting from a previous solution very close to the final solution
5. Ellipsoid algorithm not currently practical
6. Large problems can take hours or days to solve. Parallelism is very important.

15-853

Page28