15-853:Algorithms in the Real World

Linear and Integer Programming IT
- Ellipsoid algorithm
- Interior point methods
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Ellipsoid Algorithm

First polynomial-time algorithm for linear
programming (Khachian 79)
Solves
find X
subject to Ax<b
i.e find a feasible solution
Run Time:
O(n*L), where L = #bits to represent A and b

Problem in practice: always takes this much time.
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Reduction from general case

To solve:
maximize: z=c'x
subject to: Ax<b, x20
Convert to:
find: X,y
subject to: Ax<b,
-x<0
-yAs<-c
-y<0
-cx+by <0
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Ellipsoid Algorithm

Consider a sequence of smaller and smaller ellipsoids
each with the feasible region inside.

For iteration k:
¢k = center of E,
Eventually ¢, has to be inside of F, and we are done.

Feasible region

S
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Ellipsoid Algorithm

To find the next smaller ellipsoid:
find most violated constraint a,
find smallest ellipsoid that includes constraint

Feasible region

Vol(E.) 1
VOl(Ek) - 21/(2n+1)
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Interior Point Methods

X, Travel through the interior
N\, with a combination of

1. An optimization ferm
(moves toward objective)

/ 2. A centering term

(keeps away from
boundary)

Used since 50s for nonlinear
programming.

Karmakar proved a variant is

X polynomial time in 1984
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Methods

Affine scaling: simplest, but no known time bounds
Potential reduction: O(nlL) iterations
Central trajectory: O(n'/2 L) iterations

The time for each iteration involves solving a linear
system so it takes polynomial fime. The “real
world” time depends heavily on the matrix
structure.
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Example times

fuel continent car initial
size (K) | 13x31K | 9x57K | 43x107K | 19x12K
non-zeros 186K 189K 183K 80K
iterations 66 64 53 58
time (sec) | 2364 771 645 9252
Cholesky | 1om | am | oM | e7m

Central trajectory method (Lustic, Marsten, Shanno 94)
Time depends on Cholesky non-zeros (i.e. the “fill")
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Assumptions

We are trying to solve the problem:
minimize z = c'x
subject to Ax=b
x20
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Outline

Centering Methods Overview

Picking a direction to move toward the optimal
Staying on the Ax = b hyperplane (projection)
General method

Example: Affine scaling

Example: potential reduction

Example: log barrier

NooswN s
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Centering: option 1

The “analytical center”:
Minimize: y = -Z,_" Ig X;
y goes to 1 as x approaches any boundary.

X5
Xt x,
X
X
« 2
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Centering: option 2

Elliptical Scaling:

2 2
X X
LZ + LZ =1
G G
L Dikin Ellipsoid

The idea is to bias spaced based on the ellipsoid.
More on this later.
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Finding the Optimal solution

Let's say f(x) is the combination of the “centering
term” c(x) and the “optimization term” z(x) = cT x.

We would like this to have the same minimum over
the feasible region as z(x) but can otherwise be
quite different.

In particular c(x) and hence f(x) need not be linear.

Goal: find the minimum of f(x) over the feasible
region starting at some interior point xg

Can do this by taking a sequence of steps toward the
minimum.

How do we pick a direction for a step?
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Picking a direction: steepest descent

Option 1: Find the steepest descent on x at x, by
taking the gradient: Vf (X,)

Problem: the gradient might be changing rapidly, so
local steepest descent might not give us a good
direction.

Any ideas for better selection of a direction?
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Picking a direction: Newton's method

Consider the ftruncated taylor series:
FO)~ £06) + /(%) (X = %) 3 F' (%) (x = %)

To find the minimum of f(x) take the derivative and
set to O.

0=f"(Xp) + f"(X)(X— %)
" (%)
In matrix form, for arbitrary dimension:
x =% = (F(0)'VE () F(X) =V x Vf (X)

Hessian
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Next Step?

Now that we have a direction, what do we do?

15-853 Page16




Remaining on the support plane

Constraint: Ax=b
Ais anx (n+m) matrix.

The equation describes an m dimensional hyperplane
in a n+m dimensional space.

The hyperplane basis is the null space of A
A = defines the "slope”
b = defines an "offset"

X3
x1+2x2:4f\
X; + 2X, = 3J

X
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Projection

Need to project our direction onto the plane defined
by the null space of A.

- - >

d = ¢c-n
c—AT(AAT)AC
(I - AT (AAT) M A)e
= Pc

P= (I - AT (AAT Tl A) = the "projection matrix"

We want to calculate Pc
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Calculating Pc

[Pc)= (T - AT(AATY1A)C [c - ATw |

where ATw = AT(AAT)1Ac
giving AATw = AAT(AAT)!Ac = Ac

so all we need to do is solve for w in] AATw = Ac

This can be solved with a sparse solver as described
in the graph separator lectures.

This is the workhorse of the interior-point methods.
Note that AATwill be more dense than A.
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Next step?

We now have a direction ¢ and its projection d onto
the constraint plane defined by Ax = b.

What do we do now?

To decide how far to go we can find the minimum of
f(x) along the line defined by d. Not too hard if
f(x) is reasonably nice (e.g. has one minimum along
the line).

Alternatively we can go some fraction of the way to
the boundary (e.g. 90%)
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General Interior Point Method

Pick start x,
Factor AAT
Repeat until done (within some threshold)

- decide on function to optimize f(x)
(might be the same for all iterations)

- select direction d based on f(x)
(e.g. with Newton's method)

- project d onto null space of A
(using factored AAT and solving a linear system)

- decide how far to go along that direction

Caveat: every method is slightly different
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Affine Scaling Method

A biased steepest descent.

On each iteration solve: x 0 0
minimize ¢y b_| 0 % ©
subject to Ay =0 0 0 x

yD?y <1 g
Dikin ellipsoid ——
Note that:

1. y isin the null space of A and can therefore be
used as the direction d.

2. we are optimizing in the desired direction cT
What does the Dikin Ellipsoid do for us?
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Affine Scaling

Intuition by picture:

Ax = b is a slice Dikin ellipsoid

of the ellipsoid

c' =Pc

Note that y is biased away from the boundary
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How to compute

By substitution of variables: y = Dy’
minimize:  cTDy’
subject to: ADy' =0
yD™D2Dy' <1 (yy' <1)
The sphere y'y' < 1 is unbiased.

So we project the direction cTD =Dc onto the
nullspace of B = AD:

y' = (I - BT(BBT)'B)Dc
and
y = Dy' = D (T - BT(BBT)1B)Dc
As before, solve for w in BBTw = BDc and
y = D(Dc - BTw) = D2 - ATw) Page24




Affine Interior Point Method

Pick start x,
Symbolically factor AAT
Repeat until done (within some threshold)
-B=AD;
- Solve BBTw = BDc for w (use symbolically
factored AAT..same non-zero structure)
- d=Dy(Dic - BTw)
- move in direction d a fraction o of the way to
the boundary (something like o = .96 is used in
practice)

Note that D; changes on each iteration since it
depends on x;
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Potential Reduction Method

minimize:  z = q In(c™x - by) - Zi." In(x;)
subject fo: Ax=b

x20

yA+s=0 (dual problem)

s20
First term of z is the optimization term
The second term of z is the centering term.

The objective function is not linear. Use hill climbing
or "Newton Step” to optimize.

(c™x - by) goes to O hear the solution
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Central Trajectory (log barrier)

Dates back to 50s for nonlinear problems.

On step i

1. minimize: cx - w X" In(x;), s.t. Ax = b, x>0
2. select: p,q - by

Each minimization can be done with a constrained
Newton step.

u heeds to approach zero to terminate.

A primal-dual version using higher order
approximations is currently the best interior-
point method in practice.
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Summary of Algorithms

1. Actual algorithms used in practice are very
sophisticated

2. Practice matches theory reasonably well
3. Interior-point methods dominate when
A. Largen
B. Small Cholesky factors (i.e. low fill)
C. Highly degenerate

4. Simplex dominates when starting from a previous
solution very close to the final solution

5. Ellipsoid algorithm not currently practical

6. Large problems can take hours or days to solve.
Parallelism is very important.
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