
1

15-853 Page1

15-853:Algorithms in the Real World

Linear and Integer Programming II
– Ellipsoid algorithm
– Interior point methods

15-853 Page2

Ellipsoid Algorithm
First polynomial-time algorithm for linear

programming (Khachian 79)
Solves

find x
subject to Ax ≤ b

i.e find a feasible solution
Run Time:

O(n4L), where L = #bits to represent A and b

Problem in practice: always takes this much time.

15-853 Page3

Reduction from general case
To solve:

maximize: z = cTx
subject to: Ax ≤ b, x ≥ 0

Convert to:
find: x, y
subject to: Ax ≤ b,

-x ≤ 0
-yA ≤ –c
-y ≤ 0

-cx +by ≤ 0

15-853 Page4

Ellipsoid Algorithm
Consider a sequence of smaller and smaller ellipsoids

each with the feasible region inside.
For iteration k:

ck = center of Ek

Eventually ck has to be inside of F, and we are done.

ck

F

Feasible region

2

15-853 Page5

Ellipsoid Algorithm

find smallest ellipsoid that includes constraint

To find the next smaller ellipsoid:
find most violated constraint ak

ck

F

Feasible region

ak

)12/(1
1

2
1

)(
)(

+
+ = n
k

k

EVol
EVol

15-853 Page6

Interior Point Methods
Travel through the interior

with a combination of
1. An optimization term

(moves toward objective)
2. A centering term

(keeps away from
boundary)

Used since 50s for nonlinear
programming.

Karmakar proved a variant is
polynomial time in 1984x1

x2

15-853 Page7

Methods
Affine scaling: simplest, but no known time bounds
Potential reduction: O(nL) iterations
Central trajectory: O(n1/2 L) iterations

The time for each iteration involves solving a linear
system so it takes polynomial time. The “real
world” time depends heavily on the matrix
structure.

15-853 Page8

Example times

Central trajectory method (Lustic, Marsten, Shanno 94)
Time depends on Cholesky non-zeros (i.e. the “fill”)

6.7M.2M.3M1.2MCholesky
non-zeros

92526457712364time (sec)
58536466iterations

80K183K189K186Knon-zeros
19x12K43x107K9x57K13x31Ksize (K)
initialcarcontinentfuel

3

15-853 Page9

Assumptions
We are trying to solve the problem:

minimize z = cTx
subject to Ax = b

x ≥ 0

15-853 Page10

Outline
1. Centering Methods Overview
2. Picking a direction to move toward the optimal
3. Staying on the Ax = b hyperplane (projection)
4. General method
5. Example: Affine scaling
6. Example: potential reduction
7. Example: log barrier

15-853 Page11

Centering: option 1
The “analytical center”:

Minimize: y = -Σi=1
n lg xi

y goes to 1 as x approaches any boundary.

x1

x2

x4

x3

x5

15-853 Page12

Centering: option 2
Elliptical Scaling:

(c1,c2)

12
2

2
2

2
1

2
1 =+

c
x

c
x

Dikin Ellipsoid

The idea is to bias spaced based on the ellipsoid.
More on this later.

4

15-853 Page13

Finding the Optimal solution
Let’s say f(x) is the combination of the “centering

term” c(x) and the “optimization term” z(x) = cT x.
We would like this to have the same minimum over

the feasible region as z(x) but can otherwise be
quite different.

In particular c(x) and hence f(x) need not be linear.
Goal: find the minimum of f(x) over the feasible

region starting at some interior point x0

Can do this by taking a sequence of steps toward the
minimum.

How do we pick a direction for a step?

15-853 Page14

Picking a direction: steepest descent
Option 1: Find the steepest descent on x at x0 by

taking the gradient:

Problem: the gradient might be changing rapidly, so
local steepest descent might not give us a good
direction.

Any ideas for better selection of a direction?

)(0xf∇

15-853 Page15

Picking a direction: Newton’s method

To find the minimum of f(x) take the derivative and
set to 0.

2
00000))((''

2
1))((')()(xxxfxxxfxfxf −+−+≈

Consider the truncated taylor series:

))(('')('0 000 xxxfxf −+=

)(''
)('

0

0
0 xf

xfxx −=

In matrix form, for arbitrary dimension:
TxfxFxx)())((1

0 ∇−= −)()(xfxF ∇×∇=
Hessian

15-853 Page16

Next Step?
Now that we have a direction, what do we do?

5

15-853 Page17

Remaining on the support plane
Constraint: Ax = b
A is a n x (n + m) matrix.
The equation describes an m dimensional hyperplane

in a n+m dimensional space.
The hyperplane basis is the null space of A

A = defines the “slope”
b = defines an “offset” x2

x1
3

x1 + 2x2 = 3

x1 + 2x2 = 4

4
15-853 Page18

Projection
Need to project our direction onto the plane defined

by the null space of A.

Pc
cAAAAI

AcAAAc
ncd

TT

TT

=
−=
−=
−=

−

−

))((
)(

1

1

() matrix" projection" the
1

=⎟
⎠
⎞⎜

⎝
⎛ −=

−
AAAAIP TT

We want to calculate Pc

c n
d

15-853 Page19

Calculating Pc
Pc = (I – AT(AAT)-1A)c = c – ATw
where ATw = AT(AAT)-1Ac
giving AATw = AAT(AAT)-1Ac = Ac

so all we need to do is solve for w in: AATw = Ac

This can be solved with a sparse solver as described
in the graph separator lectures.

This is the workhorse of the interior-point methods.
Note that AAT will be more dense than A.

15-853 Page20

Next step?
We now have a direction c and its projection d onto

the constraint plane defined by Ax = b.
What do we do now?

To decide how far to go we can find the minimum of
f(x) along the line defined by d. Not too hard if
f(x) is reasonably nice (e.g. has one minimum along
the line).

Alternatively we can go some fraction of the way to
the boundary (e.g. 90%)

6

15-853 Page21

General Interior Point Method
Pick start x0
Factor AAT

Repeat until done (within some threshold)
– decide on function to optimize f(x)

(might be the same for all iterations)
– select direction d based on f(x)

(e.g. with Newton’s method)
– project d onto null space of A

(using factored AAT and solving a linear system)
– decide how far to go along that direction

Caveat: every method is slightly different
15-853 Page22

Affine Scaling Method
A biased steepest descent.
On each iteration solve:

minimize cTy
subject to Ay = 0

yD-2y ≤ 1

Note that:
1. y is in the null space of A and can therefore be

used as the direction d.
2. we are optimizing in the desired direction cT

What does the Dikin Ellipsoid do for us?

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

O
3

2

1

00
00
00

x
x

x

D

Dikin ellipsoid

15-853 Page23

Affine Scaling
Intuition by picture:

x
c’

y

c’ = Pc

Ax = b is a slice
of the ellipsoid

Note that y is biased away from the boundary

Dikin ellipsoid

15-853 Page24

How to compute
By substitution of variables: y = Dy’

minimize: cTDy’
subject to: ADy’ = 0

y’DTD-2 Dy’ ≤ 1 (y’y’ ≤ 1)
The sphere y’y’ ≤ 1 is unbiased.
So we project the direction cTD =Dc onto the

nullspace of B = AD:
y’ = (I – BT(BBT)-1B)Dc

and
y = Dy’ = D (I – BT(BBT)-1B)Dc

As before, solve for w in BBTw = BDc and
y = D(Dc – BTw) = D2(c – ATw)

7

15-853 Page25

Affine Interior Point Method
Pick start x0
Symbolically factor AAT

Repeat until done (within some threshold)
– B = A Di
– Solve BBTw = BDc for w (use symbolically

factored AAT…same non-zero structure)
– d = Di(Dic – BTw)
– move in direction d a fraction α of the way to

the boundary (something like α = .96 is used in
practice)

Note that Di changes on each iteration since it
depends on xi

15-853 Page26

Potential Reduction Method
minimize: z = q ln(cTx – by) - Σj=1

n ln(xj)
subject to: Ax = b

x ≥ 0
yA + s = 0 (dual problem)
s ≥ 0

First term of z is the optimization term
The second term of z is the centering term.
The objective function is not linear. Use hill climbing

or “Newton Step” to optimize.
(cTx – by) goes to 0 near the solution

15-853 Page27

Central Trajectory (log barrier)
Dates back to 50s for nonlinear problems.
On step i:
1. minimize: cx - μk ∑j=1

n ln(xj), s.t. Ax = b, x > 0
2. select: μk+1 · μk

Each minimization can be done with a constrained
Newton step.

μk needs to approach zero to terminate.

A primal-dual version using higher order
approximations is currently the best interior-
point method in practice.

15-853 Page28

Summary of Algorithms
1. Actual algorithms used in practice are very

sophisticated
2. Practice matches theory reasonably well
3. Interior-point methods dominate when

A. Large n
B. Small Cholesky factors (i.e. low fill)
C. Highly degenerate

4. Simplex dominates when starting from a previous
solution very close to the final solution

5. Ellipsoid algorithm not currently practical
6. Large problems can take hours or days to solve.

Parallelism is very important.

