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Introduction to Suffix Trees

f

A suffix tree is a data structure that exposes the internal structure of a string in a deeper way
than does the fundamental preprocessing discussed in Section 1.3. Suffix trees can be used
to solve the exact matching problem in linear time (achieving the same worst-case bound
that the Knuth-Morris-Pratt and the Boyer-Moore algorithms achieve), but their real virtue
comes from their use in linear-time solutions to many string problems more complex than
exact matching. Moreover (as we will detail in Chapter 9), suffix trees provide a bridge

between exact matching problems, the focus of Part I, and inexact matching problems that
are the focus of Part IIL

The classic application for suffix trees is the substring problem. One is first given a text
T of length m. After O(m), or linear, preprocessing time, one must be prepared to take in
any unknown string S of length n and in O(n) time either find an occurrence of $inT
or determine that S is not contained in T. That is, the allowed preprocessing takes time
proportional to the length of the text, but thereafter, the search for S must be done in time
proportional to the length of S, independent of the length of T'. These bounds are achieved
with the use of a suffix tree. The suffix tree for the text is built in O(m) time during a
preprocessing stage; thereafter, whenever a string of length O(n) is input, the algorithm
searches for it in O(n) time using that suffix tree. ‘

The O(m) preprocessing and O(n) search result for the substring problem is very
surprising and extremely useful. In typical applications, a long sequence of requested
strings will be input after the suffix tree is built, so the linear time bound for each search
is important. That bound is not achievable by the Knuth-Morris-Pratt or Boyer-Moore
methods — those methods would preprocess each requested string on input, and then take
©®(m) (worst-case) time to search for the string in the text. Because m may be huge
compared to n, those algorithms would be impractical on any but trivial-sized texts.

Often the text is a fixed set of strings, for example, a collection of STSs or ESTs (see
Sections 3.5.1 and 7.10), so that the substring problem is to determine whether the input
string is a substring of any of the fixed strings. Suffix trees work nicely to efficiently
solve this problem as well. Superficially, this case of multiple text strings resembles the
dictionary problem discussed in the context of the Aho—Corasick algorithm. Thus it is
natural to expect that the Aho—Corasick algorithm could be applied. However, the Aho—
Corasick method does not solve the substring problem in the desired time bounds, because
it will only determine if the new string is a full string in the dictionary, not whether it is a
substring of a string in the dictionary.

After presenting the algorithms, several applications and extensions will be discussed
in Chapter 7. Then a remarkable result, the constant-time least common ancestor method,
will be presented in Chapter 8. That method greatly amplifies the utility of suffix trees,
as will be illustrated by additional applications in Chapter 9. Some of those applications
provide a bridge to inexact matching; more applications of suffix trees will be discussed
in Part 111, where the focus is on inexact matching.
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9 INTRODUCTION TO SUFFIX TREES

5.1. A short history

The first linear-time algorithm for constructing suffix trees was given by Weiner [473] in
1973, although he called his tree a position tree. A different, more space efficient algorithm
to build suffix trees in linear time was given by McCreight [318] a few years later. More
recently, Ukkonen [438] developed a conceptually different linear-time algorithm for
building suffix trees that has all the advantages of McCreight’s algorithm (and when
properly viewed can be seen as a variant of McCreight’s algorithm) but allows a much
simpler explanation.

Although more than twenty years have passed since Weiner’s original result (which
Knuth is claimed to have called “the algorithm of 1973” [24]), suffix trees have not made
it into the mainstream of computer science education, and they have generally received less
attention and use than might have been expected. This is probably because the two original
papers of the 1970s have a reputation for being extremely difficult to understand. That
reputation is well deserved but unfortunate, because the algorithms, although nontrivial, are
no more complicated than are many widely taught methods. And, when implemented well,
the algorithms are practical and allow efficient solutions to many complex string problems.
We know of no other single data structure (other than those essentially equivalent to suffix
trees) that allows efficient solutions to such a wide range of complex string problems.

Chapter 6 fully develops the linear-time algorithms of Ukkonen and Weiner and then
briefly mentions the high-level organization of McCreight’s algorithm and its relationship
to Ukkonen’s algorithm. Our approach is to introduce each algorithm at a high level,
giving simple, inefficient implementations. Those implementations are then incrementally
improved to achieve linear running times. We believe that the expositions and analyses
given here, particularly for Weiner’s algorithm, are much simpler and clearer than in the
original papers, and we hope that these expositions result in a wider use of suffix trees in
practice.

5.2. Basic definitions

When describing how to build a suffix tree for an arbitrary string, we will refer to the
generic string S of length m. We do not use P or T (denoting pattern and text) because
suffix trees are used in a wide range of applications where the input string sometimes
plays the role of a pattern, sometimes a text, sometimes both, and sometimes neither. As
usual the alphabet is assumed finite and known. After discussing suffix tree algorithms for
a single string S, we will generalize the suffix tree to handle sets of strings.

Definition A suffix tree 7 for an m-character string S is a rooted directed tree with
exactly m leaves numbered 1 to m. Each internal node, other than the root, has at least
two children and each edge is labeled with a nonempty substring of S. No two edges
out of a node can have edge-labels beginning with the same character. The key feature
of the suffix tree is that for any leaf i, the concatenation of the edge-labels on the path
from the root to leaf i exactly spells out the suffix of S that starts at position i. That is,
it spells out S[i..m].

For example, the suffix tree for the string xabxac is shown in Figure 5.1. The path from
the root to the leaf numbered 1 spells out the full string § = xabxac, while the path to
the leaf numbered 5 spells out the suffix ac, which starts in position 5 of S.

As stated above, the definition of a suffix tree for S does not guarantee that a suffix
tree for any string S actually exists. The problem is that if one suffix of S matches a prefix
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Figure 5.1: Suffix tree for string xabxac. The node labels v and w on the two interior nodes will be used
later.

of another suffix of S then no suffix tree obeying the above definition is possible, since
the path for the first suffix would not end at a leaf. For example, if the last character of
xabxac is removed, creating string xabxa, then suffix xa is a prefix of suffix xabxa, so
the path spelling out xa would not end at a leaf. ,

To avoid this problem, we assume (as was true in Figure 5.1) that the last character of
S appears nowhere else in S. Then, no suffix of the resulting string can be a prefix of any
other suffix. To achieve this in practice, we can add a character to the end of S that is not
in the alphabet that string S is taken from. In this book we use $ for the “termination”
character. When it is important to emphasize the fact that this termination character has
been added, we will write it explicitly as in §$. Much of the time, however, this reminder
will not be necessary and, unless explicitly stated otherwise, every string S is assumed to
be extended with the termination symbol $, even if the symbol is not explicitly shown.

A suffix tree is related to the keyword tree (without backpointers) considered in Sec-
tion 3.4. Given string S, if set P is defined to be the m suffixes of S, then the suffix tree
for S can be obtained from the keyword tree for P by merging any path of nonbranching
nodes into a single edge. The simple algorithm given in Section 3.4 for building keyword
trees could be used to construct a suffix tree for S in O(m?) time, rather than the O(m)
bound we will establish.

Definition The label of a path from the root that ends at a node is the concatenation,
in order, of the substrings labeling the edges of that path. The path-label of a node is the
label of the path from the root of 7 to that node.

Definition For any node v in a suffix tree, the string-depth of v is the number of
characters in v’s label.

Definition A path that ends in the middle of an edge (u, v) splits the label on (u, v} at
a designated point. Define the label of such a path as the label of u concatenated with
the characters on edge (u, v) down to the designated split point.

For example, in Figure 5.1 string xa labels the internal node w (so node w has path-label
xa), string a labels node u, and string xabx labels a path that ends inside edge (w, 1), that
is, inside the leaf edge touching leaf 1.

5.3. A motivating example

Before diving into the details of the methods to construct suffix trees, let’s look at how
a suffix tree for a string is used to solve the exact match problem: Given a pattern P of
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Figure 5.2: Three occurrences of aw in awyawxawxz. Their starting positions number the leaves in the ‘

subtree of the node with path-label aw.

length n and a text T of length m, find all occurrences of P in T in O(n + m) time. We
have already seen several solutions to this problem. Suffix trees provide another approach: :

Build a suffix tree 7 for text T in O(m) time. Then, match the characters of P along
the unique path in 7" until either P is exhausted or no more matches are possible. In
the latter case, P does not appear anywhere in 7. In the former case, every leaf in
the subtree below the point of the last match is numbered with a starting location of
P in T, and every starting location of P in T numbers such a leaf,

The key to understanding the former case (when all of P matches a path in T) is to note
that P occurs in T starting at position j if and only if P occurs as a prefix of T[j..m]. But
that happens if and only if string P labels an initial part of the path from the root to leaf
J. Itis the initial path that will be followed by the matching algorithm.

The matching path is unique because no two edges out of a common node can have
edge-labels beginning with the same character. And, because we have assumed a finite
alphabet, the work at each node takes constant time and so the time to match P to a path
is proportional to the length of P.

Forexample, Figure 5.2 shows a fragment of the suffix tree for string T =awyawxawxz.
Pattern P = qw appears three times in T starting at locations 1,4, and 7. Pattern P matches
a path down to the point shown by an arrow, and as required, the leaves below that point
are numbered 1, 4, and 7.

If P fully matches some path in the tree, the algorithm can find all the starting positions
of P in T by traversing the subtree below the end of the matching path, collecting position
numbers written at the leaves. All occurrences of P in T can therefore be found in O(n+m)
time. This is the same overall time bound achieved by several algorithms considered in
Part I, but the distribution of work is different. Those earlier algorithms spend O(n) time
for preprocessing P and then O(m) time for the search. In contrast, the suffix tree approach
spends O(m) preprocessing time and then O(n + k) search time, where & is the number

of occurrences of P in T.
To collect the k starting positions of P, traverse the subtree at the end of the matching
path using any linear-time traversal (depth-first say), and note the leaf numbers encoun-
tered. Since every internal node has at least two children, the number of leaves encountered
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is proportional to the number of edges traversed, so the time for the traversal is O(k), even
though the total string-depth of those O(k) edges may be arbitrarily larger than k.

If only a single occurrence of P is required, and the preprocessing is extended a bit,
then the search time can be reduced from O(n + k) to O(n) time. The idea is to write
at each node one number (say the smallest) of a leaf in its subtree. This can be achieved
in O(m) time in the preprocessing stage by a depth-first traversal of 7. The details are
straightforward and are left to the reader. Then, in the search stage, the number written on
the node at or below the end of the match gives one starting positionof PinT.

In Section 7.2.1 we will again consider the relative advantages of methods that pre-
process the text versus methods that preprocess the pattern(s). Later, in Section 7.8, we
will also show how to use a suffix tree to solve the exact matching problem using O(n)
preprocessing and O(m) search time, achieving the same bounds as in the algorithms
presented in Part L

5.4. A naive algorithm to build a suffix tree

To further solidify the definition of a suffix tree and develop the reader’s intuition, we
present a straightforward algorithm to build a suffix tree for string S. This naive method first
enters a single edge for suffix S[1..m]$ (the entire string) into the tree; then it successively
enters suffix S[i..m]$ into the growing tree, for i increasing from 2 to m. We let N; denote
the intermediate tree that encodes all the suffixes from 1 to i.

In detail, tree N consists of a single edge between the root of the tree and a leaf labeled
1. The edge is labeled with the string S$. Tree Ny is constructed from N; as follows:
Starting at the root of N; find the longest path from the root whose label matches a prefix
of S[i + 1..m1$. This path is found by successively comparing and matching characters
in suffix S[i + 1..m]$ to characters along a unique path from the root, until no further
matches are possible. The matching path is unique because no two edges out of a node
can have labels that begin with the same character. At some point, no further matches are
possible because no suffix of S$ is a prefix of any other suffix of S $. When that point is
reached, the algorithm is either at a node, w say, or it is in the middle of an edge. If it is
in the middle of an edge, (u, v) say, then it breaks edge (u, v) into two edges by inserting
a new node, called w, just after the last character on the edge that matched a character
in S[i + 1..m] and just before the first character on the edge that mismatched. The new
edge (u, w) is labeled with the part of the (u, v) label that matched with S[i + 1..m], and
the new edge (w, v) is labeled with the remaining part of the (, v) label. Then (whether
a new node w was created or whether one already existed at the point where the match
ended), the algorithm creates a new edge (w, i + 1) running from w to a new leaf labeled
i + 1, and it labels the new edge with the unmatched part of suffix S[i + 1..m1$.

The tree now contains a unique path from the root to leaf i + 1, and this path has the
label S[i + 1..m]$. Note that all edges out of the new node w have labels that begin with
different first characters, and so it follows inductively that no two edges out of a node have
labels with the same first character.

Assuming, as usual, a bounded-size alphabet, the above naive method takes O (m?) time
to build a suffix tree for the string S of length m.
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Linear-Time Construction of Suffix Trees

We will present two methods for constructing suffix trees in detail, Ukkonen’s method
and Weiner’s method. Weiner was the first to show that suffix trees can be built in linear
time, and his method is presented both for its historical importance and for some different
technical ideas that it contains. However, Ukkonen’s method is equally fast and uses far
less space (i.e., memory) in practice than Weiner’s method. Hence Ukkonen is the method
of choice for most problems requiring the construction of a suffix tree. We also believe
that Ukkonen’s method is easier to understand. Therefore, it will be presented first. A
reader who wishes to study only one method is advised to concentrate on it. However, our
development of Weiner’s method does not depend on understanding Ukkonen’s algorithm,
and the two algorithms can be read independently (with one small shared section noted in
the description of Weiner’s method).

6.1. Ukkonen’s linear-time suffix tree algorithm

Esko Ukkonen [438] devised a linear-time algorithm for constructing a suffix tree that may
be the conceptually easiest linear-time construction algorithm. This algorithm has a space-
saving improvement over Weiner’s algorithm (which was achieved first in the development
of McCreight’s algorithm), and it has a certain “on-line” property that may be useful in
some situations. We will describe that on-line property but emphasize that the main virtue
of Ukkonen’s algorithm is the simplicity of its description, proof, and time analysis.
The simplicity comes because the algorithm can be developed as a simple but inefficient
method, followed by “common-sense” implementation tricks that establish a better worst-
case running time. We believe that this less direct exposition is more understandable, as
each step is simple to grasp.

6.1.1. Implicit suffix trees

Ukkonen’s algorithm constructs a sequence of implicit suffix trees, the last of which is
converted to a true suffix tree of the string S.

Definition An implicit suffix tree for string S is a tree obtained from the suffix tree for
$$ by removing every copy of the terminal symbol $ from the edge labels of the tree,
then removing any edge that has no label, and then removing any node that does not
have at least two children.

An implicit suffix tree for a prefix S[1..i] of S is similarly defined by taking the suffix
tree for S[1..i]$ and deleting $ symbols, edges, and nodes as above.

Definition We denote the implicit suffix tree of the string S[1..i] by Z;, for i from 1
tom.

The implicit suffix tree for any string S will have fewer leaves than the suffix tree for

94
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xa  bxa$

Figure 6.1: Suffix tree for string xabxa $.

xabxa

Figure 6.2: Implicit suffix tree for string xabxa.

string S$ if and only if at least one of the suffixes of S is a prefix of another suffix. The
terminal symbol $ was added to the end of S precisely to avoid this situation. However, if
S ends with a character that appears nowhere else in S, then the implicit suffix tree of S
will have a leaf for each suffix and will hence be a true suffix tree.

As an example, consider the suffix tree for string xabxa$ shown in Figure 6.1. Suffix
xa is a prefix of suffix xabxa, and similarly the string a is a prefix of abxa. Therefore,
in the suffix tree for xabxa the edges leading to leaves 4 and 5 are labeled only with $.
Removing these edges creates two nodes with only one child each, and these are then
removed as well. The resulting implicit suffix tree for xabxa is shown in Figure 6.2. As
another example, Figure 5.1 on page 91 shows a tree built for the string xabxac. Since
character ¢ appears only at the end of the string, the tree in that figure is both a suffix tree
and an implicit suffix tree for the string.

Even though an implicit suffix tree may not have a leaf for each suffix, it does encode all
the suffixes of S —each suffix is spelled out by the characters on some path from the root of
the implicit suffix tree. However, if the path does notend at a leaf, there will be no marker
to indicate the path’s end. Thus implicit suffix trees, on their own, are somewhat less
informative than true suffix trees. We will use them just as a tool in Ukkonen’s algorithm
to finally obtain the true suffix tree for S.

6.1.2. Ukkonen’s algorithm at a high level

Ukkonen’s algorithm constructs an implicit suffix tree Z; for each prefix S[1..i] of S,
starting from Z, and incrementing i by one until Z,, is built. The true suffix tree for §
is constructed from Z,,, and the time for the entire algorithm is O(m). We will explain
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Ukkonen’s algorithm by first presenting an O(m?)-time method to build all trees Z; and
then optimizing its implementation to obtain the claimed time bound.

High-level description of Ukkonen’s algorithm

Ukkonen’s algorithm is divided into m phases. In phase i + 1, tree Z;,1 is constructed
from Z;. Each phase i + 1 is further divided into i + 1 extensions, one for each ofthei +1
suffixes of S[1..i + 1]. In extension j of phase i + 1, the algorithm first finds the end of the
path from the root labeled with substring S[j..i]. It then extends the substring by adding
the character S(i + 1) to its end, unless S(i + 1) already appears there. So in phase i + 1,
string S[1..i + 1] is first put in the tree, followed by strings S[2..i + 1], S[3..i +1]....
(in extensions 1,2, 3, .. ., respectively). Extension i + 1 of phase i + 1 extends the empty
suffix of S[1..i], that is, it puts the single character string S(i + 1) into the tree (unless it
is already there). Tree Z, is just the single edge labeled by character S(1). Procedurally,
the algorithm is as follows:

High-level Ukkonen algorithm

Construct tree Z;.

Fori from 1tom — 1 do

begin {phase i + 1}

For j from 1toi + 1

begin {extension j}
Find the end of the path from the root labeled S[j..i] in the
current tree. If needed, extend that path by adding character S(i + 1),
thus assuring that string S[j..i + 1] is in the tree.
end;

end;

Suffix extension rules

To turn this high-level description into an algorithm, we must specify exactly how to
perform a suffix extension. Let S[j..i] = B be a suffix of S[1..i]. In extension j, when the
algorithm finds the end of B in the current tree, it extends j to be sure the suffix S + 1)
is in the tree. It does this according to one of the following three rules:

Rule 1 In the current tree, path § ends at a leaf. That is, the path from the root labeled
B extends to the end of some leaf edge. To update the tree, character S(@i + 1) is added to
the end of the label on that leaf edge.

Rule 2 No path from the end of string 8 starts with character S(i + 1), but at least one
labeled path continues from the end of 8.

In this case, a new leaf edge starting from the end of $ must be created and labeled
with character S(i + 1). A new node will also have to be created there if B ends inside an
edge. The leaf at the end of the new leaf edge is given the number j.

Rule3 Some path from the end of string f starts with character S(i + 1). In this case the
string BS(i + 1) is already in the current tree, so (remembering that in an implicit suffix
tree the end of a suffix need not be explicitly marked) we do nothing.
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Figure 6.4: Extended implicit suffix tree after the addition of character b.

As an example, consider the implicit suffix tree for S = axabx shown in Figure 6.3.
The first four suffixes end at leaves, but the single character suffix x ends inside an edge.
When a sixth character b is added to the string, the first four suffixes get extended by
applications of Rule 1, the fifth suffix gets extended by rule 2, and the sixth by rule 3. The
result is shown in Figure 6.4.

6.1.3. Implementation and speedup

Using the suffix extension rules given above, once the end of a suffix 8 of S[1..i] has
been found in the current tree, only constant time is needed to execute the extension rules
(to ensure that suffix 8S(i + 1) is in the tree). The key issue in implementing Ukkonen’s
algorithm then is how to locate the ends of all the i + 1 suffixes of S[1..i].

Naively we could find the end of any suffix 8 in O(|8|) time by walking from the root
of the current tree. By that approach, extension j of phase i + 1 would take OG + 1 — j )
time, Z;41 could be created from Z; in 0(i?) time, and Z,, could be created in o(m?)
time. This algorithm may seem rather foolish since we already know a straightforward
algorithm to build a suffix tree in O(m?) time (and another is discussed in the exercises),
but it is easier to describe Ukkonen’s O(m) algorithm as a speedup of the O(m?) method
above.

We will reduce the above O(m?) time bound to O(m) time with a few observations and
implementation tricks. Each trick by itself looks like a sensible heuristic to accelerate the
algorithm, but acting individually these tricks do not necessarily reduce the worst-case
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bound. However, taken together, they do achieve a linear worst-case time. The most
important element of the acceleration is the use of suffix links.

Suffix links: first implementation speedup

Definition Let xc denote an arbitrary string, where x denotes a single character and o
denotes a (possibly empty) substring. For an internal node v with path-label xa, if there
is another node s(v) with path-label o, then a pointer from v to s(v) is called a suffix link.

We will sometimes refer to a suffix link from v to s(v) as the pair (v, s(v)). For example,
in Figure 6.1 (on page 95) let v be the node with path-label xa and let s(v) be the node
whose path-label is the single character a. Then there exists a suffix link from node v to
node s(v). In this case, « is just a single character long.

As aspecial case, if « is empty, then the suffix link from an internal node with path-label
xo goes to the root node. The root node itself is not considered internal and has no suffix
link from it.

Although definition of suffix links does not imply that every internal node of an implicit
suffix tree has a suffix link from it, it will, in fact, have one. We actually establish something
stronger in the following lemmas and corollaries.

Lemma 6.1.1. If a new internal node v with path-label x« is added to the current tree in
extension j of some phase i + 1, then either the path labeled o already ends at an internal
node of the current tree or an internal node at the end of string o will be created (by the
extension rules) in extension j + 1 in the same phase i + 1.

PROOF A new internal node v is created in extension j (of phase i + 1) only when
extension rule 2 applies. That means that in extension j, the path labeled xa continued
with some character other than S(i + 1), say c. Thus, in extension j + 1, there is a path
labeled « in the tree and it certainly has a continuation with character ¢ (although possibly
with other characters as well). There are then two cases to consider: Either the path labeled
o continues only with character c or it continues with some additional character. When o
is continued only by c, extension rule 2 will create a node s(v) at the end of path . When
« is continued with two different characters, then there must already be a node s(v) at the
end of path o. The Lemma is proved in either case. O

Corollary 6.1.1. In Ukkonen’s algorithm, any newly created internal node will have a
suffix link from it by the end of the next extension.

PROOF The proof is inductive and is true for tree Z; since Z; contains no internal nodes.
Suppose the claim is true through the end of phase i, and consider a single phase i + 1. By
Lemma 6.1.1, when a new node v is created in extension j, the correct node s(v) ending
the suffix link from v will be found or created in extension j + 1. No new internal node
gets created in the last extension of a phase (the extension handling the single character
suffix S(i + 1)), so all suffix links from internal nodes created in phase i + 1 are known
by the end of the phase and tree Z;; has all its suffix links. 0O

Corollary 6.1.1 is similar to Theorem 6.2.5, which will be discussed during the treatment
of Weiner’s algorithm, and states an important fact about implicit suffix trees and ultimately
about suffix trees. For emphasis, we restate the corollary in slightly different language.

Corollary 6.1.2. In any implicit suffix tree Z;, if internal node v has path-label xa, then
there is a node s(v) of Z; with path-label o.
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Following Corollary 6.1.1, all internal nodes in the changing tree will have suffix links
from them, except for the most recently added internal node, which will receive its suffix
link by the end of the next extension. We now show how suffix links are used to speed up
the implementation.

Following a trail of suffix links to build Z;

Recall that in phase i + 1 the algorithm locates suffix S[;..i] of § [1..i] in extension j, for
j increasing from 1 to i 4 1. Naively, this is accomplished by matching the string S[;..i]
along a path from the root in the current tree.‘Suffix links can shortcut this walk and each
extension. The first two extensions (for j = 1 and j = 2) in any phase i + 1 are the easiest
to describe.

The end of the full string S[1..i] must end at a leaf of T; since S[1..i] is the longest
string represented in that tree. That makes it easy to find the end of that suffix (as the trees
are constructed, we can keep a pointer to the leaf corresponding to the current full string
S[1..i]), and its suffix extension is handled by Rule 1 of the extension rules. So the first
extension of any phase is special and only takes constant time since the algorithm has a
pointer to the end of the current full string.

Let string S[1..i] be xo, where x is a single character and o is a (possibly empty)
substring, and let (v, 1) be the tree-edge that enters leaf 1. The algorithm next must find
the end of string S[2..i] = « in the current tree derived from Z;. The key is that node v is
either the root or it is an interior node of Z;. If it is the root, then to find the end of « the
algorithm just walks down the tree following the path labeled & as in the naive algorithm.
But if v is an internal node, then by Corollary 6.1.2 (since v was in T:) v has a suffix link
out of it to node s(v). Further, since s(v) has a path-label that is a prefix of string «, the
end of string « must end in the subtree of s(v). Consequently, in searching for the end of
« in the current tree, the algorithm need not walk down the entire path from the root, but
can instead begin the walk from node s(v). That is the main point of including suffix links
in the algorithm.

To describe the second extension in more detail, let y denote the edge-label on edge
(v, 1). To find the end of «, walk up from leaf 1 to node v; follow the suffix link from v to
s(v); and walk from s(v) down the path (which may be more than a single edge) labeled
y. The end of that path is the end of o (see Figure 6.5). At the end of path «, the tree
is updated following the suffix extension rules. This completely describes the first two
extensions of phase i + 1.

To extend any string S[j..i] to S[j..i + 1] for j > 2, repeat the same general idea:
Starting at the end of string S[j — 1..i] in the current tree, walk up at most one node to
either the root or to a node v that has a suffix link from it; let y be the edge-label of that
edge; assuming v is not the root, traverse the suffix link from v to s(v); then walk down the
tree from s(v), following a path labeled y to the end of S[;j..i]; finally, extend the suffix
to S[j..i + 1] according to the extension rules.

There is one minor difference between extensions for j > 2 and the first two extensions.
In general, the end of S[j — 1..i] may be at a node that itself has a suffix link from it, in
which case the algorithm traverses that suffix link. Note that even when extension rule 2
applies in extension j — 1 (so that the end of S[j — 1..i] is at a newly created internal
node w), if the parent of w is not the root, then the parent of w already has a suffix link
out of it, as guaranteed by Lemma 6.1.1. Thus in extension j the algorithm never walks
up more than one edge.
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node s(v)

Figure 6.5: Extension j > 1in phase j + 1. Walk up atmost one edge (labeled y) from the end of the path
labeled S[j~ 1..i]to node v; then follow the suffix link to s(v); then walk down the path specifying substring
y; then apply the appropriate extension rule to insert suffix S[j..i + 1].

Single extension algorithm: SEA

Putting these pieces together, when implemented using suffix links, extension j > 2 of
phase i + 1is:

Single extension algorithm
Begin

1. Find the first node v at or above the end of S[j — 1..i] that either has a suffix link from it
or is the root. This requires walking up at most one edge from the end of S[j — 1..i] in the
current tree. Let ¥ (possibly empty) denote the string between v and the end of S[j — 1..i].

2. If v is not the root, traverse the suffix link from v to node s(v) and then walk down from
s(v) following the path for string y. If v is the root, then follow the path for S[;..i] from
the root (as in the naive algorithm).

3. Using the extension rules, ensure that the string S[j..i}1S( + 1) is in the tree.

4. If a new internal node w was created in extension j — 1 (by extension rule 2), then by

Lemma 6.1.1, string o must end at node s(w), the end node for the suffix link from w.
Create the suffix link (w, s(w)) from w to s(w).

End.

Assuming the algorithm keeps a pointer to the current full string S[1..i], the first
extension of phase i + 1 need not do any up or down walking. Furthermore, the first
extension of phase i + 1 always applies suffix extension rule 1.

What has been achieved so far?

The use of suffix links is clearly a practical improvement over walking from the root in
each extension, as done in the naive algorithm. But does their use improve the worst-case
running time?

The answer is that as described, the use of suffix links does not yet improve the time
bound. However, here we introduce a trick that will reduce the worst-case time for the
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algorithm to O(m?). This trick will also be central in other algorithms to build and use
suffix trees.

Trick number 1: skip/count trick

In Step 2 of extension j + 1 the algorithm walks down from node s(v) along a path labeled
v. Recall that there surely must be such a y path from s(v). Directly implemented, this
walk along y takes time proportional to |y |, the number of characters on that path. But
a simple trick, called the skip/count trick, will reduce the traversal time to something
proportional to the number of nodes on the path. It will then follow that the time for all
the down walks in a phase is at most O(m).

Trick1 Let g denote the length of y, and recall that no two labels of edges out of s(v) can
start with the same character, so the first character of y must appear as the first character
on exactly one edge out of s(v). Let g’ denote the number of characters on that edge. If
g’ is less than g, then the algorithm does not need to look at any more of the characters
on that edge; it simply skips to the node at the end of the edge. There it sets g to g — g,
sets a variable & to g’ + 1, and looks over the outgoing edges to find the correct next edge
(whose first character matches character h of y). In general, when the algorithm identifies
the next edge on the path it compares the current value of g to the number of characters g’
on that edge. When g is at least as large as g’, the algorithm skips to the node at the end
of the edge, sets g to g — &', sets h to h + g’, and finds the edge whose first character is
character k of y and repeats. When an edge is reached where g is smaller than or equal to
g, then the algorithm skips to character g on the edge and quits, assured that the y path
from s(v) ends on that edge exactly g characters down its label. (See Figure 6.6).

Assuming simple and obvious implementation details (such as knowing the number of
characters on each edge, and being able, in constant time, to extract from S the character
at any given position) the effect of using the skip/count trick is to move from one node to
the next node on the y path in constant time.! The total time to traverse the path is then
proportional to the number of nodes on it rather than the number of characters on it.

This is a useful heuristic, but what does it buy in terms of worst-case bounds? The next
lemma leads immediately to the answer.

Definition Define the node-depth of a node u to be the number of nodes on the path
from the root to u.

Lemma 6.1.2. Let (v, s(v)) be any suffix link traversed during Ukkonen’s algorithm. At
that moment, the node-depth of v is at most one greater than the node depth of s(v).

PROOF When edge (v, s(v)) is traversed, any internal ancestor of v, which has path-label
xp say, has a suffix link to a node with path-label 8. But xpB is a prefix of the path to v,
so B is a prefix of the path to s(v) and it follows that the suffix link from any internal
ancestor of v goes to an ancestor of s(v). Moreover, if  is nonempty then the node labeled
by B is an internal node. And, because the node-depths of any two ancestors of v must
differ, each ancestor of v has a suffix link to a distinct ancestor of s(v). It follows that the
node-depth of s(v) is at least one (for the root) plus the number of internal ancestors of
v who have path-labels more than one character long. The only extra ancestor that v can
have (without a corresponding ancestor for s(v)) is an internal ancestor whose path-label

! Again, we are assuming a constant-sized alphabet.
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node s(v)

end of
suffix j—1

end of
suffix j

Figure 6.6: The skip/count trick. In phase i + 1, substring y has length ten. There is a copy of substring
y out of node s(v); it is found three characters down the last edge, after four node skips are executed.

has length one (it has label x). Therefore, v can have node-depth at most one more than
s(v). (See Figure 6.7). O

Definition As the algorithm proceeds, the current node-depth of the algorithm is the
node depth of the node most recently visited by the algorithm.

Theorem 6.1.1. Using the skip/count trick, any phase of Ukkonen’s algorithm takes O (m)
time.

PROOF There are i + 1 < m extensions in phase i. In a single extension the algorithm
walks up at most one edge to find a node with a suffix link, traverses one suffix link, walks
down some number of nodes, applies the suffix extension rules, and maybe adds a suffix
link. We have already established that all the operations other than the down-walking take
constant time per extension, so we only need to analyze the time for the down-walks. We
do this by examining how the current node-depth can change over the phase.

The up-walk in any extension decreases the current node-depth by at most one (since it
moves up at most one node), each suffix link traversal decreases the node-depth by at most
another one (by Lemma 6.1.2), and each edge traversed in a down-walk moves to a node
of greater node-depth. Thus over the entire phase the current node-depth is decremented
at most 2m times, and since no node can have depth greater than m, the total possible
increment to current node-depth is bounded by 3m over the entire phase. It follows that
over the entire phase, the total number of edge traversals during down-walks is bounded
by 3m. Using the skip/count trick, the time per down-edge traversal is constant, so the
total time in a phase for all the down-walking is O(m), and the theorem is proved. O
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Figure 6.7: For every node v on the path xa, the corresponding node s(v) is on the path . However, the
node-depth of s(v) can be one less than the node-depth of v, it can be equal, or it can be greater. For
example, the node labeled xab has node-depth two, whereas the node-depth of ab is one. The node-depth
of the node labeled xabcdefg is four, whereas the node-depth of abcdefg is five.

There are m phases, so the following is immediate:

Corollary 6.1.3. Ukkonen’s algorithm can be implemented with suffix links to run in
O(m?) time. :

Note that the O (m?) time bound for the algorithm was obtained by multiplying the O(m)
time bound on a single phase by m (since there are m phases). This crude multiplication
was necessary because the time analysis was directed to only a single phase. What is
needed are some changes to the implementation allowing a time analysis that crosses
phase boundaries. That will be done shortly.

At this point the reader may be a bit weary because we seem to have made no progress,
since we started with a naive O(m?) method. Why all the work just to come back to the
same time bound? The answer is that although we have made no progress on the time
bound, we have made great conceptual progress so that with only a few more easy details,
the time will fall to O(m). In particular, we will need one simple implementation detail
and two more little tricks.

6.1.4. A simple implementation detail

We next establish an O(m) time bound for building a suffix tree. There is, however, one
immediate barrier to that goal: The suffix tree may require ©(m?) space. As described so far,
the edge-labels of a suffix tree might contain more than ®(m) characters in total. Since the
time for the algorithm is at least as large as the size of its output, that many characters makes
an O(m) time bound impossible. Consider the string S = abcdefghijkimnopgrstuvwxyz.
Every suffix begins with a distinct character; hence there are 26 edges out of the root and




104 LINEAR-TIME CONSTRUCTION OF SUFFIX TREES

S = abcdefabcuvw

Figure 6.8: The left tree is a fragment of the suffix tree for string S = abcdefabcuvw, with the edge-labels
written explicitly. The right tree shows the edge-labels compressed. Note that that edge with label 2, 3 could
also have been labeled 8, 9.

each is labeled with a complete suffix, requiring 26x27/2 characters in all. For strings
longer than the alphabet size, some characters will repeat, but still one can construct strings
of arbitrary length m so that the resulting edge-labels have more than @(m) characters
in total. Thus, an O(m)-time algorithm for building suffix trees requires some alternate
scheme to represent the edge-labels.

Edge-label compression

A simple, alternate scheme exists for edge labeling. Instead of explicitly writing a substring
on an edge of the tree, only write a pair of indices on the edge, specifying beginning and
end positions of that substring in S (see Figure 6.8). Since the algorithm has a copy of
string S, it can locate any particular character in S in constant time given its position in the
string. Therefore, we may describe any particular suffix tree algorithm as if edge-labels
were explicit, and yet implement that algorithm with only a constant number of symbols
written on any edge (the index pair indicating the beginning and ending positions of a
substring).

For example, in Ukkonen’s algorithm when matching along an edge, the algorithm uses
the index pair written on an edge to retrieve the needed characters from S and then performs
the comparisons on those characters. The extension rules are also easily implemented with
this labeling scheme. When extension rule 2 applies ina phase i +1, label the newly created
edge with the index pair (i + 1, i + 1), and when extension rule 1 applies (on a leaf edge),
change the index pair on that leaf edge from (p, g) to (p, g +1).Itis easy to see inductively
that ¢ had to be i and hence the new label (p, i + 1) represents the correct new substring
for that leaf edge.

By using an index pair to specify an edge-label, only two numbers are written on
any edge, and since the number of edges is at most 2m — 1, the suffix tree uses only
O(m) symbols and requires only O(m) space. This makes it more plausible that the tree
can actually be built in O(m) time.2 Although the fully implemented algorithm will not
explicitly write a substring on an edge, we will still find it convenient to talk about “the
substring or label on an edge or path” as if the explicit substring was written there.

2 We make the standard RAM model assumption that a number with up to log m bits can be read, written, or compared

in constant time.
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6.1.5. Two more little tricks and we’re done

We present two more implementation tricks that come from two observations about the
way the extension rules interact in successive extensions and phases. These tricks, plus
Lemma 6.1.2, will lead immediately to the desired linear time bound.

Observation 1: Rule 3 is a show stopper In any phase, if suffix extension rule 3 applies
in extension j, it will also apply in all further extensions (j + 1toi + 1) until the end of
the phase. The reason is that when rule 3 applies, the path labeled S[j..i] in the current
tree must continue with character S(i + 1), and so the path labeled S[j + 1..i] does also,
and rule 3 again applies in extensions j +1,j +2,...,i + L.

When extension rule 3 applies, no work needs to be done since the suffix of interest is
already in the tree. Moreover, a new suffix link needs to be added to the tree only after
an extension in which extension rule 2 applies. These facts and Observation 1 lead to the
following implementation trick.

Trick 2 Endany phase i + 1 the first time that extension rule 3 applies. If this happens in
extension j, then there is no need to explicitly find the end of any string S[k..i]fork > j.
The extensions in phase i + 1 that are “done” after the first execution of rule 3 are said
to be done implicitly. This is in contrast to any extension j where the end of S[j..i]is
explicitly found. An extension of that kind is called an explicit extension.
Trick 2 is clearly a good heuristic to reduce work, but it’s not clear if it leads to a better
worst-case time bound. For that we need one more observation and trick.

Observation 2: Once a leaf, always a leaf That is, if at some point in Ukkonen’s
algorithm a leaf is created and labeled j (for the suffix starting at position j of S), then
that leaf will remain a leaf in all successive trees created during the algorithm. This is
true because the algorithm has no mechanism for extending a leaf edge beyond its current
leaf. In more detail, once there is a leaf labeled j, extension rule 1 will always apply to
extension j in any successive phase. So once a leaf, always a leaf.

Now leaf 1 is created in phase 1, so in any phase i there is an initial sequence of
consecutive extensions (starting with extension 1) where extension rule 1 or 2 applies.
Let j; denote the last extension in this sequence. Since any application of rule 2 creates
a new leaf, it follows from Observation 2 that j; < ji4+1. That is, the initial sequence of
extensions where rule 1 or 2 applies cannot shrink in successive phases. This suggests an
implementation trick that in phase i + 1 avoids all explicit extensions 1 through j;. Instead,
only constant time will be required to do those extensions implicitly.

To describe the trick, recall that the label on any edge in an implicit suffix tree (or a
suffix tree) can be represented by two indices p, ¢ specifying the substring S[p..q]. Recall
also that for any leaf edge of Z;, index g is equal to i and in phase i + 1 index g gets
incremented to i + 1, reflecting the addition of character S(i + 1) to the end of each suffix.

Trick 3 In phase i + 1, when a leaf edge is first created and would normally be labeled
with substring S[p..i + 1], instead of writing indices (p, i + 1) on the edge, write (p, e),
where e is a symbol denoting “the current end”. Symbol e is a global index that is set to
i + 1 once in each phase. In phase i + 1, since the algorithm knows that rule 1 will apply
in extensions 1 through j; at least, it need do no additional explicit work to implement
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1 2 3 4 5 6 7 8
8 9 10 11
11 12 13 14 15 16
16 17

Figure 6.9: Cartoon of a possible execution of Ukkonen’s algorithm. Each line represents a phase of the
algorithm, and each number represents an explicit extension executed by the algorithm. In this cartoon
there are four phases and seventeen explicit extensions. In any two consecutive phases, there is at most
one index where the same explicit extension is executed in both phases.

those j; extensions. Instead, it only does constant work to increment variable ¢, and then
does explicit work for (some) extensions starting with extension j; + 1.

The punch line

With Tricks 2 and 3, explicit extensions in phase i + 1 (using algorithm SEA) are then
only required from extension j; + 1 until the first extension where rule 3 applies (or until
extension i -+ 1 is done). All other extensions (before and after those explicit extensions)
are done implicitly. Summarizing this, phase i + 1 is implemented as follows:

Single phase algorithm: SPA
Begin

1. Increment index e to i + 1. (By Trick 3 this correctly implements all implicit extensions
1 through j;.)

2. Explicitly compute successive extensions (using algorithm SEA) starting at j; + 1 until
reaching the first extension j* where rule 3 applies or until all extensions are done in this
phase. (By Trick 2, this correctly implements all the additional implicit extensions j* + 1
throughi 4 1.)

3. Set ji4+ to j* — 1, to prepare for the next phase.
End

Step 3 correctly sets j;41 because the initial sequence of extensions where extension
rule 1 or 2 applies must end at the point where rule 3 first applies.

The key feature of algorithm SPA is that phase i + 2 will begin computing explicit
extensions with extension j*, where j* was the last explicit extension computed in phase
i + 1. Therefore, two consecutive phases share at most one index (j*) where an explicit
extension is executed (see Figure 6.9). Moreover, phase i + 1 ends knowing where string
S{j*..i + 1] ends, so the repeated extension of j* in phase i + 2 can execute the suffix
extension rule for j* without any up-walking, suffix link traversals, or node skipping. That
means the first explicit extension in any phase only takes constant time. It is now easy to
prove the main result.

Theorem 6.1.2. Using suffix links and implementation tricks 1,2, and 3, Ukkonen’s
algorithm builds implicit suffix trees I, through T, in O(m) total time.

PROOF The time for all the implicit extensions in any phase is constant and so is O(m)
over the entire algorithm.

As the algorithm executes explicit extensions, consider an index j corresponding to the
explicit extension the algorithm is currently executing. Over the entire execution of the
algorithm, j never decreases, but it does remain the same between two successive phases.
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Since there are only m phases, and j is bounded by m, the algorithm therefore executes
only 2m explicit extensions. As established earlier, the time for an explicit extension is
a constant plus some time proportional to the number of node skips it does during the
down-walk in that extension.

To bound the total number of node skips done during all the down-walks, we consider
(similar to the proof of Theorem 6.1.1) how the current node-depth changes during suc-
cessive extensions, even extensions in different phases. The key is that the first explicit
extension in any phase (after phase 1) begins with extension j*, which was the last ex-
plicit extension in the previous phase. Therefore, the current node-depth does not change
between the end of one extension and the beginning of the next. But (as detailed in the
proof of Theorem 6.1.1), in each explicit extension the current node-depth is first reduced
by at most two (up-walking one edge and traversing one suffix link), and thereafter the
down-walk in that extension increases the current node-depth by one at each node skip.
Since the maximum node-depth is m, and there are only 2m explicit extensions, it follows
(as in the proof of Theorem 6.1.1) that the maximum number of node skips done during
all the down-walking (and not just in a single phase) is bounded by O(m). All work has
been accounted for, and the theorem is proved. O

6.1.6. Creating the true suffix tree

The final implicit suffix tree Z,, can be converted to a true suffix tree in O(m) time. First,
add a string terminal symbol $ to the end of S and let Ukkonen’s algorithm continue
with this character. The effect is that no suffix is now a prefix of any other suffix, so the
execution of Ukkonen’s algorithm results in an implicit suffix tree in which each suffix
ends at a leaf and so is explicitly represented. The only other change needed is to replace
each index e on every leaf edge with the number m. This is achieved by an O(m)-time
traversal of the tree, visiting each leaf edge. When these modifications have been made,
the resulting tree is a true suffix tree.
In summary,

Theorem 6.1.3. Ukkonen’s algorithm builds a true suffix tree for S, along with all its
suffix links in O(m) time.

6.2. Weiner’s linear-time suffix tree algorithm

Unlike Ukkonen'’s algorithm, Weiner’s algorithm starts with the entire string S. However,
like Ukkonen’s algorithm, it enters one suffix at a time into a growing tree, although in
a very different order. In particular, it first enters string S(m)$ into the tree, then string
S[m — 1..m1$, ..., and finally, it enters the entire string S$ into the tree.

Definition Suff; denotes the suffix S{i..m] of S starting in position i.
For example, Suff) is the entire string S, and Suff,, is the single character S(m).

Definition Define 7; to be the tree that has m — i + 2 leaves numbered i through m + 1
such that the path from the root to any leaf j (i < j < m + 1) has label Suff; $. That is,
T, is a tree encoding all and only the suffixes of string S[i..m]$, so it is a suffix tree of
string S[i..m1$.

Weiner’s algorithm constructs trees from 7,41 down to 7; (i.e., in decreasing order
of i). We will first implement the method in a straightforward inefficient way. This will
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Figure 6.10: A step in the naive Weiner algorithm. The full string tat is added to the suffix tree for at. The
edge labeled with the single character $ is omitted, since such an edge is part of every suffix tree.

serve to introduce and illustrate important definitions and facts. Then we will speed up the
straightforward construction to obtain Weiner’s linear-time algorithm.

6.2.1. A straightforward construction

The first tree T,,.; consists simply of a single edge out of the root labeled with the
termination character $. Thereafter, for each i from m down to 1, the algorithm constructs
each tree 7; from tree 7;.4, and character S(i). The idea of the method is essentially the same
as the idea for constructing keyword trees (Section 3.4), but for a different set of strings
and without putting in backpointers. As the algorithm proceeds, each tree T; will have the
property that for any node v in 7;, no two edges out of v have edge-labels beginning with
the same character. Since 7,,+; only has one edge out of the root, this is trivially true for
T,.+1. We assume inductively that this property is true for tree ;4 and will verify that it
holds for tree 7;.

In general, to create 7T; from 7;,,, start at the root of T;,, and walk as far as possible
down a path whose label matches a prefix of Suff;$. Let R denote that path. In more
detail, path R is found by starting at the root and explicitly matching successive characters
of Suff;$ with successive characters along a unique path in Z;;. The matching path is
unique, since at any node v of 7T;.1 no two edges out of v have edge-labels beginning with
the same character. Thus the matching continues on at most one edge out of v. Ultimately,
because no suffix is a prefix of another, no further match will be possible. If no node exists
at that point, then create a new node there. In either case, refer to the node there (old or
new) as w. Finally, add an edge out of w to a new leaf node labeled i, and label the new
edge (w, i) with the remaining (unmatched) part of Suff;$. Since no further match had
been possible, the first character on the label for edge (w, i) does not occur as the first
character on any other edge out of w. Thus the claimed inductive property is maintained.
Clearly, the path from the root to leaf i has label Suff;$. That is, that path exactly spells
out string Suff;$, so tree 7; has been created.

For example, Figure 6.10 shows the transformation of 7, to 7T; for the string tat.

Definition For any position i, Head(i) denotes the longest prefix of S[i..m] that matches
a substring of S[i + 1..m]$.

Note that Head(i) could be the empty string. In fact, Head(m) is always the empty
string because S[i + 1..m] is the empty string when i + 1 is greater than m and character

S(m) # 8.
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Since a copy of string Head(i) begins at some position between i + 1 and m, Head(i) is
also a prefix of Suff;, for some k > i.It follows that Head(i) is the longest prefix (possibly
empty) of Suff; that is a label on some path from the root in tree Ti1-

The above straightforward algorithm to build 7T; from 7;; can be described as follows:

Naive Weiner algorithm

1. Find the end of the path labeled Head(i) in tree 7;.

2. Ifthereis no node at the end of Head(i) then create one, and let w denote the node (created
or not) at the end of Head(i). If w is created at this point, splitting an existing edge, then
split its existing edge-label so that w has node-label Head(i). Then, create a new leaf
numbered i and a new edge (w, i) labeled with the remaining characters of Suff;$. That is,
the new edge-label should be the last m — i + 1 — |Head(i)| characters of Suff;, followed
by the termination symbol $.

6.2.2. Toward a more efficient implementation

It should be clear that the final suffix tree 7 = 77 is constructed in O(m?) time by this
straightforward approach. Clearly, the difficult part of the algorithm is finding Head(i),
since step 2 takes only constant time for any i. So, to speed up the algorithm, we will need
a more efficient way to find Head(i). But, as in the discussion of Ukkonen’s algorithm, a
linear time bound is not possible if edge-labels are explicitly written on the tree. Instead,
each edge-label is represented by two indices indicating the start and end positions of the
labeling substring. The reader should review Section 6.1.4 at this point.

It is easy to implement Weiner’s algorithm using an index pair to label an edge. When
inserting Suff;, suppose the algorithm has matched up to the kth character on an edge
(u, 7) labeled with interval [s, ], but the next character is a mismatch. A new node w is
created dividing (u, z) into two edges, (#, w) and (w, z), and a new edge is also created
from w to leaf i. Edge (u, w) gets labeled [s, s +k — 1], edge (w, z) gets labeled {s + k, ],
and edge (w, i) gets labeled [i + d(w), m]$, where d(w) is the string-depth (number of
characters) of the path from the root down to node w. These string-depths can easily be
created and maintained as the tree is being built, since d(w) = d(u) + k. The string-depth
ofaleafiism —i + 1.

Finding Head(i) efficiently

We now return to the central issue of how to find Head(i) efficiently. The key to Weiner’s
algorithm are two vectors kept at each nonleaf node (including the root). The first vector
is called the indicator vector I and the second is called the link vector L. Each vector is
of length equal to the size of the alphabet, and each is indexed by the characters of the
alphabet. For example, for the English alphabet augmented with $, each link and indicator
vector will be of length 27.

The link vector is essentially the reverse of the suffix link in Ukkonen’s algorithm, and
the two links are used in similar ways to accelerate traversals inside the tree.

The indicator vector is a bit vector so its entries are just O or 1, whereas each entry in
the link vector is either null or is a pointer to a tree node. Let I,(x) specify the entry of the
indicator vector at node v indexed by character x. Similarly, let L,(x) specify the entry of
the link vector at node v indexed by character x.

The vectors I and L have two crucial properties that will be maintained inductively
throughout the algorithm:
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e For any (single) character x and any node u, I,(x) = 1in T;4; if and only if there is a path
from the root of 7T;,1 labeled xa, where & is the path-label of node u. The path labeled
xo need not end at a node.

o For any character x, L,(x)in 7; 4| points to (internal) node ¥ in T;, if and only if u has
path-label xa, where u has path-label «. Otherwise L,(x) is null.

For example, in the tree in Figure 5.1 (page 91) consider the two internal nodes u and
w with path-labels a and xa respectively. Then I,(x) = 1 for the specific character x, and
L,(x) = w. Also, 1,(b) = 1, but L,(b) is null.

Clearly, for any node u and any character x, L,(x) is nonnull only if I(x) = 1, but
the converse is not true. It is also immediate that if 7,(x) = 1 then I,(x) = 1 for every
ancestor node v of u.

Tree 7, has only one nonleaf node, namely the root r. In this tree we set I,(S(m)) to
one, set I,(x) to zero for every other character x, and set all the link entries for the root to
null. Hence the above properties hold for T... The algorithm will maintain the vectors as
the tree changes, and we will prove inductively that the above properties hold for each tree.

6.2.3. The basic idea of Weiner’s algorithm

Weiner’s algorithm uses the indicator and link vectors to find Head(i) and to construct T
more efficiently. The algorithm must take care of two degenerate cases, but these are not
much different than the general “good” case where no degeneracy occurs. We first discuss
how to construct 7; from 77 in the good case, and then we handle the degenerate cases.

The algorithm in the good case

We assume that tree 7;; has just been constructed and we now want to build T;. The
algorithm starts at leaf i + 1 of 74, (the leaf for Suff; ) and walks toward the root looking
for the first node v, if it exists, such that I,(SG)) = 1. If found, it then continues from
v walking upwards toward the root searching for the first node v’ it encounters (possibly
v) where L,(S(i)) is nonnull. By definition, L,(S( )) is nonnull only if I,(83@)) = 1,80
if found, v’ will also be the first node encountered on the walk from leaf i + 1 such that
L,/(S(i)) is nonnull. In general, it may be that neither v nor v’ exist or that v exists but v’
does not. Note, however, that v or v' may be the root.

The “good case” is that both v and v’ do exist.

Let I; be the number of characters on the path between v’ and v, and if [; > O then let
¢ denote the first of these [; characters.

Assuming the good case, that both v and v’ exist, we will prove below that if node v
has path-label  then Head(i) is precisely string S(i)a. Further, we will prove that when
L,(S(i)) points to node v" in T;41, Head(i) either ends at v”, if [; = 0, or else it ends
exactly I; characters below v” on an edge out of v”. So in either case, Head(i) can be found
in constant time after v’ is found.

Theorem 6.2.1. Assume that node v has been found by the algorithmdnd that it has
path-label a. Then the string Head(i) is exactly S(i)a.

PROOF Head(i) is the longest prefix of Suff; that is also a prefix of Suff for some k > i.
Since v was found with I,(S@)) = 1 there is a path in 7; 41 that begins with S(i), so
Head(i) is at least one character long. Therefore, we can express Head(i) as S(@i)B, for
some (possibly empty) string B.
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Suff; and Suff, both begin with string Head(i) = S(i)f and differ after that. For
concreteness, say Suff; begins S(i)Ba and Suff; begins S(i)b. But then Suff; ;| begins
Ba and Suff;,| begins Bb. Both i + 1 and k + 1 are greater than or equal to i + 1 and less
than or equal to m, so both suffixes are represented in tree 7;,. Therefore, in tree Tiv1s
there must be a path from the root labeled B (possibly the empty string) that extends in
two ways, one continuing with character a and the other with character b. Hence there is a
node u in 7, with path-label 8, and 1,(S(i)) = 1 since there is a path (namely, an initial
part of the path to leaf k) labeled S(i)8 in 7T, +1. Further, node u must be on the path to leaf
i + 1 since B is a prefix of Suff;, ;.

Now I,(S()) = 1 and v has path-label «, so Head(i) must begin with S(i)a. That
means that « is a prefix of 8 and so node u, with path label B, must either be v or below v
on the path to leaf i + 1. However, if 4 # v then u would be a node below v on the path
to leaf i + 1, and 1,(S(i)) = 1. This contradicts the choice of node v, sov = u, @ = B,
and the theorem is proved. That is, Head(i) is exactly the string S(i)a. O

Note that in Theorem 6.2.1 and its proof we only assume that node v exists. No as-
sumption about v’ was made. This will be useful in one of the degenerate cases examined
later.

Theorem 6.2.2. Assume both v and v’ have been found and L, (S(i)) points to node v".
Ifl; = O then Head(i) ends at v"; otherwise it ends after exactly l; characters on a single
edge out of v".

PROOF Since v’ is on the path to leaf i + 1 and L,/(S(i)) points to node v”, the path from
the root labeled Head(i) must include v”. By Theorem 6.2.1 Head(i) = S(i)a, so Head(i)
must end exactly /; characters below v”. Thus, when [; = 0, Head(i) ends at v”. But when
I; > 0, there must be an edge e = (v"”, z) out of v” whose label begins with character ¢
(the first of the /; characters on the path from v’ to v) in 7i,,.

Can Head(i) extend down to node z (i.e., to a node below v”)? Node z must be a
branching node, for if it were a leaf then some suffix Suffy, for k > i, would be a prefix
of Suff;, which is not possible. Let z have path-label S(i)y. If Head(i) extends down to
branching node z, then there must be two substrings starting at or after position i + 1 of
S that both begin with string y. Therefore, there would be a node z’ with path-label y in
T;+1. Node z’ would then be below v’ on the path to leaf i 4 1, contradicting the selection
of v'. So Head(i) must not reach z and must end in the interior of edge e. In particular, it
ends exactly [; characters from v” onedgee. O

Thus when [; = 0, we know Head(i) ends at v”, and when /; > 0, we find Head(i) from
v" by examining the edges out of v” to identify that unique edge e whose first character
is c. Then Head(i) ends exactly [; characters down e from v”. Tree 7; is then constructed
by subdividing edge e, creating a node w at this point, and adding a new edge from w to
leaf i labeled with the remainder of Suff;. The search for the correct edge out of v” takes
only constant time since the alphabet is fixed.

In summary, when v and v’ exist, the above method correctly creates T; from T;,,
although we must still discuss how to update the vectors. Also, it may not yet be clear at
this point why this method is more efficient than the naive algorithm for finding Head(i).
That will come later. Let us first examine how the algorithm handles the degenerate cases
when v and v’ do not both exist.
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The two degenerate cases

The two degenerate cases are that node v (and hence node v’) does not exist or that v exists
but v’ does not. We will see how to find Head(i) efficiently in these two cases. Recall that
r denotes the root node.

Casel [.(S(i)=0.

In this case the walk ends at the root and no node v was found. It follows that character
S(i) does not appear in any position greater than i, for if it did appear, then some suffix
in that range would begin with S(i), some path from the root would begin with S(i), and
1,(S(i)) would have been 1. So when /,(S()) = 0, Head(i) is the empty string and ends
at the root.

Case2 1,(S(i)) = 1 for some v (possibly the root), but v’ does not exist.

In this case the walk ends at the root with L,(S(i)) null. Let ¢; be the number of characters
from the root to v. From Theorem 6.2.1 Head(i) ends exactly #; + 1 characters from the
root. Since v exists, there is some edge e = (r, z) whose edge-label begins with character
S(@i). This is true whether t; =0 orf; > 0.

If #; = O then Head(i) ends after the first character, S(i), on edge e.

Similarly, if ; > O then Head(i) ends exactly f; + 1 characters from the root on edge
e. For suppose Head(i) extends all the way to some child z (or beyond). Then exactly as
in the proof of Theorem 6.2.2, z must be a branching node and there must be a node 7’
below the root on the path to leaf i + 1 such that L ~(S()) is nonnull, which would be a
contradiction. So when t; > 0, Head(i) ends exactly #; + 1 characters from the root on the
edge e out of the root. This edge can be found from the root in constant time since its first
character is S(i).

In either of these degenerate cases (as in the good case), Head(i) is found in constant
time after the walk reaches the root. After the end of Head(i) is found and w is created or
found, the algorithm proceeds exactly as in the good case.

Note that degenerate Case 2 is very similar to the “good” case when both v and v’ were
found, but differs in a small detail because Head(i) is found #; + 1 characters down on e
rather than #; characters down (the natural analogue of the good case).

6.2.4. The full algorithm for creating 7Z; from Ti 11
Incorporating all the cases gives the following algorithm:
Weiner’s Tree extension
1. Start atleaf i + 1 of 7;., (the leaf for Suff; ;) and walk toward the root searching for the
first node v on the walk such that 7,(S(i)) = 1.

2. 1f the root is reached and I,(S(i)) = 0, then Head(i) ends at the root. Go to Step 4.

3. Let v be the node found (possibly the root) such that I,(S@)) = 1. Then continue walking
upward searching for the first node v’ (possibly v itself) such that L,(S(i)) is nonnull.
3a. If the root is reached and L,(S(i)) is null, et ¢; be the number of characters on the path
between the root and v. Search for the edge e out of the root whose edge-label begins with
S(i). Head(i) ends exactly t; + 1 characters from the root on edge e.
Else {when the condition in 3a does not hold}
3b. If v’ was found such that L, (S(i)) is nonnull, say v"”, then follow the link (for S(i)) to v".
Let /; be the number of characters on the path from v’ to v and let ¢ be the first character
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on this path. If /; = 0 then Head(i) ends at v". Otherwise, search for the edge e out of v”
whose first character is c. Head(i) ends exactly I; characters below v” on edge e.

4. If a node already exists at the end of Head(i), then let w denote that node; otherwise,
create a node w at the end of Head(i). Create a new leaf numbered i; create a new edge
(w, i) labeled with the remaining substring of Suff; (i.e., the last m — i + 1 — |Head(i)|
characters of Suff;), followed with the termination character $. Tree 7; has now been
created.

Correctness

It should be clear from the proof of Theorems 6.2.1 and 6.2.2 and the discussion of the
degenerate cases that the algorithm correctly creates tree 7; from 7;,1, although before it
can create 7;_;, it must update the I and L vectors.

How to update the vectors

After finding (or creating) node w, we must update the I and L vectors so that they
are correct for tree 7;. If the algorithm found a node v such that [,(S(i)) = 1, then by
Theorem 6.2.1 node w has path-label S(i)a in 7;, where node v has path-label a. In this
case, L,(S(i)) should be set to point to w in 7;. This is the only update needed for the
link vectors since only one node can point via a link vector to any other node and only
one new node was created. Furthermore, if node w is newly created, all its link entries
for 7; should be null. To see this, suppose to the contrary that there is a node u in T; with
path-label xHead(i), where w has path-label Head(i). Node u cannot be a leaf because
Head(i) does not contain the character $. But then there must have been a node in 7; 1,
with path-label Head(i), contradicting the fact that node w was inserted into 7; ., to create
7;. Consequently, there is no node in T; with path-label x Head(i) for any character x and
all the L vector values for w should be null.

Now consider the updates needed to the indicator vectors for tree 7;. For every node
u on the path from the root to leaf i + 1, [,(S(i)) must be set to 1 in 7; since there is
now a path for string Suff; in 7;. It is easy to establish inductively that if a node v with
1,(S(i)) = 1 is found during the walk from leaf i + 1, then every node u above v on
the path to the root already has I,(S(})) = 1. Therefore, only the indicator vectors for
the nodes below v on the path to leaf i + 1 need to be set. If no node v was found, then
all nodes on the path from i + 1 to the root were traversed and all of these nodes must
have their indicator vectors updated. The needed updates for the nodes below v can be
made during the search for v (i.e., no separate pass is needed). During the walk from leaf
i +1, I,((S@)) is set to 1 for every node u encountered on the walk. The time to set these
indicator vectors is proportional to the time for the walk.

The only remaining update is to set the I vector for a newly created node w created in
the interior of an edge e = (v”, 2).

Theorem 6.2.3. When a new node w is created in the interior of an edge (v, ) the
indicator vector for w should be copied from the indicator vector for z.

PROOF Itis immediate that if I,(x) = 1 then I,,(x) must also be 1 in 7;. But can it happen
that 1,,(x) should be 1 and yet I.(x) is set to O at the moment that w is created? We will
see that it cannot.

Let node z have path-label y, and of course node w has path-label Head(i), a prefix of
y. The fact that there are no nodes between u and z in T;,, means that every suffix from
Suff,, down to Suff;,, that begins with string Head(i) must actually begin with the longer
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string . Hence in 7T, there can be a path labeled xHead(i) only if there is also a path
labeled xy, and this holds for any character x. Therefore, if there is a path in 7; labeled
xHead(i) (the requirement for 1,,(x) to be 1) but no path xy, then the hypothesized string
xHead(i) must begin at character i of S. That means that Suff;,; must begin with the
string Head(i). But since w has path-label Head(i), leaf i + 1 must be below w in 7; and
so must be below z in 7;4;. That is, z is on the root to i + 1 path. However, the algorithm
to construct 7; from 7T;, starts at leaf i + 1 and walks toward the root, and when it finds
node v or reaches the root, the indicator entry for x has been set to 1 at every node on
the path from the leaf i + 1. The walk finishes before node w is created, and so it cannot
be that I,(x) = O at the time when w is created. So if path xHead(i ) exists in 7;, then
I,(x) = 1 at the moment w is created, and the theorem is proved. O

6.2.5. Time analysis of Weiner’s algorithm

The time to construct 7; from 7;,, and update the vectors is proportional to the time
needed during the walk from leaf i + 1 (ending either at v’ or the root). This walk moves
from one node to its parent, and assuming the usual parent pointers, only constant time is
used to move between nodes. Only constant time is used to follow a L link pointer, and
only constant time is used after that to add w and edge (w, i). Hence the time to construct
7T, is proportional to the number of nodes encountered on the walk from leaf i + 1.

Recall that the node-depth of a node v is the number of nodes on the path in the tree
from the root to v.

For the time analysis we imagine that as the algorithm runs we keep track of what node
has most recently been encountered and what its node-depth is. Call the node-depth of the
most recently encountered node the current node-depth. For example, when the algorithm
begins, the current node-depth is one and just after 7,, is created the current node-depth
is two. Clearly, when the algorithm walks up a path from a leaf the current node-depth
decreases by one at each step. Also, when the algorithm is at node v" (or at the root) and
then creates a new node w below v” (or below the root), the current node-depth increases
by one. The only question remaining is how the current node-depth changes when a link
pointer is traversed from a node v’ to v”.

Lemma 6.2.1. When the algorithm traverses @ link pointer from a node v’ 1o a node V"
in T; .1, the current node-depth increases by at most one.

PROOF Let u be a nonroot node in 7;+1 on the path from the root to v”, and suppose U
has path-label S(i)a for some nonempty string . All nodes on the root-to-v” path are of
this type, except for the single node (if it exists) with path-label S(i). Now S(i)x is the
prefix of Suff; and of Suff, for some k > i, and this string extends differently in the two
cases. Since v’ is on the path from the root to leafi + 1, a is a prefix of Suff;,, and there
must be a node (possibly the root) with path-label o on the path to v’ in 7;41. Hence the
path to v’ has a node corresponding to every node on the path to v”, except the node (if it
exists) with path-label S(@). Hence the depth of v” is at most one more than the depth of
v', although it could be less. [

We can now finish the time analysis.

Theorem 6.2.4. Assuming a finite alphabet, Weiner’s algorithm constructs the suffix tree
for a string of length m in O(m) time.
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PROOF The current node-depth can increase by one each time a new node is created and
each time a link pointer is traversed. Hence the total number of increases in the current
node-depth is at most 2m. It follows that the current node-depth can also only decrease at
most 2m times since the current node-depth starts at zero and is never negative. The current
node-depth decreases at each move up the walk, so the total number of nodes visited during
all the upward walks is at most 2m. The time for the algorithm is proportional to the total
number of nodes visited during upward walks, so the theorem is proved. O

6.2.6. Last comments about Weiner’s algorithm

Our discussion of Weiner’s algorithm establishes an important fact about suffix trees,
regardless of how they are constructed:

Theorem 6.2.5. If v is a node in the suffix tree labeled by the string xa, where x is a
single character, then there is a node in the tree labeled with the string a.

This fact was also established as Corollary 6.1.2 during the discussion of Ukkonen'’s
algorithm.

6.3. McCreight’s suffix tree algorithm

Several years after Weiner published his linear-time algorithm to construct a suffix tree
for a string S, McCreight [318] gave a different method that also runs in linear time but
is more space efficient in practice. The inefficiency in Weiner’s algorithm is the space it
needs for the indicator and link vectors, I and L, kept at each node. For a fixed alphabet,
this space is considered linear in the length of S, but the space used may be large in
practice. McCreight’s algorithm does not need those vectors and hence uses less space.
Ukkonen’s algorithm also does not use the vectors / and L of Weiner’s algorithm, and
it has the same space efficiency as McCreight’s algorithm.? In fact, the fully implemented
version of Ukkonen’s algorithm can be seen as a somewhat disguised version of Mc-
Creight’s algorithm. However, the high-level organization of Ukkonen and McCreight’s
algorithms are quite different, and the connection between the algorithms is not obvious.
That connection was suggested by Ukkonen [438] and made explicit by Giegerich and
Kurtz [178]. Since Ukkonen’s algorithm has all the advantages of McCreight’s, and is
simpler to describe, we will only introduce McCreight’s algorithm at the high level.

McCreight’s algorithm at the high level

McCreight’s algorithm builds the suffix tree T for m-length string S by inserting the
suffixes in order, one at a time, starting from suffix one (i.e., the complete string S).
(This is opposite to the order used in Weiner’s algorithm, and it is superficially different
from Ukkonen’s algorithm.) It builds a tree encoding all the suffixes of S starting at
positions 1 through i + 1, from the tree encoding all the suffixes of S starting at positions
1 through i.

The naive construction method is immediate and runs in O(m?) time. Using suffix links
and the skip/count trick, that time can be reduced to O(m). We leave this to the interested
reader to work out.

3 The space requirements for Ukkonen and McCreight’s algorithms are determined by the need to represent and
move around the tree quickly. We will be much more precise about space and practical implementation issues in

Section 6.5.
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6.4. Generalized suffix tree for a set of strings

We have so far seen methods to build a suffix tree for a single string in linear time. Those
methods are easily extended to represent the suffixes of a set {S1, S5, ..., S;} of strings.
Those suffixes are represented in a tree called a generalized suffix tree, which will be used
in many applications.

A conceptually easy way to build a generalized suffix tree is to append a different end
of string marker to each string in the set, then concatenate all the strings together, and
build a suffix tree for the concatenated string. The end of string markers must be symbols
that are not used in any of the strings. The resulting suffix tree will have one leaf for each
suffix of the concatenated string and is built in time proportional to the sum of all the
string lengths. The leaf numbers can easily be converted to two numbers, one identifying
a string S; and the other a starting position in S;.

One defect with this way of constructing a generalized suffix tree is that the tree
represents substrings (of the concatenated string) that span more than one of the original
strings. These “synthetic” suffixes are not generally of interest. However, because each
end of string marker is distinct and is not in any of the original strings, the label on any
path from the root to an internal node must be a substring of one of the original strings.
Hence by reducing the second index of the label on leaf edges, without changing any other
parts of the tree, all the unwanted synthetic suffixes are removed.

Under closer examination, the above method can be simulated without first concatenat-
ing the strings. We describe the simulation using Ukkonen’s algorithm and two strings S,
and S,, assumed to be distinct. First build a suffix tree for §, (assuming an added terminal
character). Then starting at the root of this tree, match S, (again assuming the same termi-
nal character has been added) against a path in the tree until a mismatch occurs. Suppose
that the first i characters of S, match. The tree at this point encodes all the suffixes of §i,
and it implicitly encodes every suffix of the string S>[1..i]. Essentially, the first i phases
of Ukkonen’s algorithm for S, have been executed on top of the tree for S;. So, with that
current tree, resume Ukkonen’s algorithm on S, in phase i + 1. That is, walk up at most
one node from the end of S,[1..i], etc. When S, is fully processed the tree will encode all
the suffixes of S; and all the suffixes of S, but will have no synthetic suffixes. Repeating
this approach for each of the strings in the set creates the generalized suffix tree in time
proportional to the sum of the lengths of all the strings in the set.

There are two minor subtleties with the second approach. One is that the compressed
labels on different edges may refer to different strings. Hence the number of symbols per
edge increases from two to three, but otherwise causes no problem. The second subtlety is
that suffixes from two strings may be identical, although it will still be true that no suffix
is a prefix of any other. In this case, a leaf must indicate all of the strings and starting
positions of the associated suffix.

As an example, if we add the string babxba to the tree for xabxa (shown in Figure 6.1),
the result is the generalized suffix tree shown in Figure 6.11.

6.5. Practical implementation issues

The implementation details already discussed in this chapter turn naive, quadratic (or even
cubic) time algorithms into algorithms that run in O(m) worst-case time, assuming a fixed
alphabet T. But to make suffix trees truly practical, more attention to implementation is
needed, particularly as the size of the alphabet grows. There are problems nicely solved
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Figure 6.11: Generalized suffix tree for strings S; = xabxa and S, = babxba. The first number at a leaf
indicates the string; the second number indicates the starting position of the suffix in that string.

in theory by suffix trees, where the typical string size is in the hundreds of thousands, or
even millions, and/or where the alphabet size is in the hundreds. For those problems, a
“linear” time and space bound is not sufficient assurance of practicality. For large trees,
paging can also be a serious problem because the trees do not have nice locality properties.
Indeed, by design, suffix links allow an algorithm to move quickly from one part of the
tree to a distant part of the tree. This is great for worst-case time bounds, but it is horrible
for paging if the tree isn’t entirely in memory. Consequently, implementing suffix trees to
reduce practical space use can be a serious concern.* The comments made here for suffix
trees apply as well to keyword trees used in the Aho—Corasick method.

The main design issues in all three algorithms are how to represent and search the
branches out of the nodes of the tree and how to represent the indicator and link vectors
in Weiner’s algorithm. A practical design must balance the constraints of space against
the need for speed, both in building the tree and in using it afterwards. We will discuss
representing tree edges, since the vector issues for Weiner’s algorithm are identical.

There are four basic choices possible to represent branches. The simplest is to use an
array of size ©(| £|) at each nonleaf node v. The array at v is indexed by single characters
of the alphabet; the cell indexed by character x has a pointer to a child of v if there is an
edge out of v whose edge-label begins with character x and is otherwise null. If there is
such an edge, then the cell should also hold the two indices representing its edge-label.
This array allows constant-time random accesses and updates and, although simple to
program, it can use an impractical amount of space as | 2| and m get large.

An alternative to the array is to use a linked list at node v of characters that appear at
the beginning of edge-labels out of v. When a new edge from v is added to the tree, a new
character (the first character on the new edge label) is added to the list. Traversals from
node v are implemented by sequentially searching the list for the appropriate character.
Since the list is searched sequentially it costs no more to keep it in sorted order. This
somewhat reduces the average time to search for a given character and thus speeds up (in
practice) the construction of the tree. The key point is that it allows a faster termination
of a search for a character that is not in the list. Keeping the list in sorted order will be
particularly useful in some of applications of suffix trees to be discussed later.

' A very different approach to limiting space, based on changing the suffix tree into a different data structure called
a suffix array, will be discussed in Section 7.14.
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Keeping a linked list at node v works well if the number of children of v is small, but
in worst-case adds time | Z| to every node operation. The O(m) worst-case time bounds
are preserved since |Z| is assumed to be fixed, but if the number of children of v is large
then little space is saved over the array while noticeably degrading performance.

A third choice, a compromise between space and speed, is to implement the list at node
v as some sort of balanced tree [10]. Additions and searches then take O(log k) time and
O(k) space, where k is the number of children of v. Due to the space and programming
overhead of these methods, this alternative makes sense only when k is fairly large.

The final choice is some sort of hashing scheme. Again, the challenge is to find a scheme
balancing space with speed, but for large trees and alphabets hashing is very attractive
at least for some of the nodes. And, using perfect hashing techniques [167] the linear
worst-case time bound can even be preserved.

When m and ¥ are large enough to make implementation difficult, the best design is
probably a mixture of the above choices. Nodes near the root of the tree tend to have
the most children (the root has a child for every distinct character appearing in S), and
so arrays are a sensible choice at those nodes. In addition, if the tree is dense for several
levels below the root, then those levels can be condensed and eliminated from the explicit
tree. For example, there are 20° possible amino acid substrings of length five. Every
one of these substrings exists in some known protein sequence already in the databases.
Therefore, when implementing a suffix tree for the protein database, one can replace the
first five levels of the tree with a five-dimensional array (indexed by substrings of length
five), where an entry of the array points to the place in the remaining tree that extends the
five-tuple. The same idea has been applied [320] to depth seven for DNA data. Nodes in
the suffix tree toward the leaves tend to have few children and lists there are attractive. At
the extreme, if w is a leaf and v is its parent, then information about w may be brought
up to v, removing the need for explicit representation of the edge (v, w) or the node
w. Depending on the other implementation choices, this can lead to a large savings in
space since roughly half the nodes in a suffix tree are leaves. A suffix tree whose leaves
are deleted in this way is called a position tree. In a position tree, there is a one-to-one
correspondence between leaves of the tree and substrings that are uniquely occurring in §.

For nodes in the middle of a suffix tree, hashing or balanced trees may be the best
choice. Fortunately, most large suffix trees are used in applications where S is fixed (a
dictionary or database) for some time and the suffix tree will be used repeatedly. In those
applications, one has the time and motivation to experiment with different implementation
choices. For a more in-depth look at suffix tree implementation issues, and other suggested
variants of suffix trees, see [23].

Whatever implementation is selected, it is clear that a suffix tree for a string will take
considerably more space than the representation of the string itself.’ Later in the book
we will discuss several problems involving two (or more) strings P and T, where two
O(|P| + |T) time solutions exist, one using a suffix tree for P and one using a suffix tree
for T. We will also have examples where equally time-efficient solutions exist, but where
one uses a generalized suffix tree for two or more strings and the other uses just a suffix tree
for the smaller string. In asymptotic worst-case time and space, neither approachis superior
to the other, and usually the approach that builds the larger tree is conceptually simpler.
However, when space is a serious practical concern (and in many problems, including

5 Although, we have built suffix trees for DNA and amino acid strings more than one million characters long that can
be completely contained in the main memory of a moderate-size workstation.
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many in molecular biology, space is more of a constraint than is time), the size of the
suffix tree for a string may dictate using the solution that builds the smaller suffix tree. So
despite the added conceptual burden, we will discuss such space-reducing alternatives in
some detail throughout the book.

6.5.1. Alphabet independence: all linears are equal, but some are
more equal than others

The key implementation problems discussed above are all related to multiple edges (or
links) at nodes. These are influenced by the size of the alphabet X — the larger the alphabet,
the larger the problem. For that reason, some people prefer to explicitly reflect the alphabet
size in the time and space bounds of keyword and suffix tree algorithms. Those people
usually refer to the construction time for keyword or suffix trees as O(m log | X}), where m
is the size of all the patterns in a keyword tree or the size of the string in a suffix tree. More
completely, the Aho—Corasick, Weiner, Ukkonen, and McCreight algorithms all either
require ©(m|XZ|) space, or the O(m) time bound should be replaced with the minimum of
O(m log m) and O(m log |X|). Similarly, searching for a pattern P using a suffix tree can
be done with O(| P|) comparisons only if we use @(m|Z}) space; otherwise we must allow
the minimum of O(|P}logm) and O(| P|log|Z|) comparisons during a search for P.

In contrast, the exact matching method using Z values has worst-case space and compar-
ison requirements that are alphabet independent — the worst-case number of comparisons
(either characters or numbers) used to compute Z values is uninfluenced by the size of the
alphabet. Moreover, when two characters are compared, the method only checks whether
the characters are equal or unequal, not whether one character precedes the other in some
ordering. Hence no prior knowledge about the alphabet need be assumed. These properties
are also true of the Knuth-Morris-Pratt and the Boyer—-Moore algorithms. The alphabet
independence of these algorithms makes their linear time and space bounds superior, in
some people’s view, to the linear time and space bounds of keyword and suffix tree algo-
rithms: “All linears are equal but some are more equal than others”. Alphabet-independent
algorithms have also been developed for a number of problems other than exact match-
ing. Two-dimensional exact matching is one such example. The method presented in
Section 3.5.3 for two-dimensional matching is based on keyword trees and hence is not
alphabet independent. Nevertheless, alphabet-independent solutions for that problem have
been developed. Generally, alphabet-independent methods are more complex than their
coarser counterparts. In this book we will not consider alphabet-independence much fur-
ther, although we will discuss other approaches to reducing space that can be employed if
large alphabets cause excessive space use.

6.6. Exercises

1. Construct an infinite family of strings over a fixed alphabet, where the total length of the
edge-labels on their suffix trees grows faster than ©(m) (m s the length of the string). That
is, show that linear-time suffix tree algorithms would be impossible if edge-labels were
written explicitly on the edges.

2. In the text, we first introduced Ukkonen’s algorithm at a high level and noted that it could
be implemented in O(m?) time. That time was then reduced to O(n?) with the use of
suffix links and the skip/count trick. An alternative way to reduce the O(mP) time to O(m?)
(without suffix links or skip/count) is to keep a pointer to the end of each suffix of S[1../].
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Then Ukkonen's high-level algorithm could visit all these ends and create Z;,4 from Z; in
O(i) time, so that the entire algorithm would run in O(nP) time. Explain this in detail.

. The relationship between the suffix tree for a string S and for the reverse string S is not

obvious. However, there is a significant relationship between the two trees. Find it, state it,
and prove it.
Hint: Suffix links help.

. Can Ukkonen’s algorithm be implemented in linear time without using suffix links? The idea

is to maintain, for each index i, a pointer to the node in the current implicit suffix tree that
is closest to the end of suffix i.

. In Trick 3 of Ukkonen's algorithm, the symbol “e” is used as the second index on the label

of every leaf edge, and in phase i + 1 the global variable e is set to i + 1. An alternative
to using “e” is to set the second index on any leaf edge to m (the total length of S) at the
point that the ieaf edge is created. In that way, no work is required to update that second
index. Explain in detail why this is correct, and discuss any disadvantages there may be in
this approach, compared to using the symbol “€”.

. Ukkonen’s algorithm builds all the implicit suffix trees / through I in order and on-line,

all in O(m) time. Thus it can be called a linear-time on-line algorithm to construct implicit
suffix trees.

(Open question) Find an on-line algorithm running in O(m) total time that creates all the
true suffix trees. Since the time taken to explicitly store these trees is ®(m?), such an
algorithm would (like Ukkonen’s algorithm) update each tree without saving it.

. Ukkonen's algorithm builds all the implicit suffix trees in O(m) time. This sequence of implicit

suffix trees may expose more information about S than does the single final suffix tree for
S. Find a problem that can be solved more efficiently with the sequence of implicit suffix
trees than with the single suffix tree. Note that the algorithm cannot save the implicit suffix
trees and hence the prob|em will have to be solved in parallel with the construction of the
implicit suffix trees.

. The naive Weiner algorithm for constructing the suffix tree of S (Section 6.2.1) can be

described in terms of the Aho-Corasick algorithm of Section 3.4: Given string S of length
m, append $ and let P be the set of patterns consisting of the m + 1 suffixes of string
S$. Then build a keyword tree for set P using the Aho—Corasick algorithm. Removing
the backlinks gives the suffix tree for S. The time for this construction is O(m?). Yet, in our
discussion of Aho-Corasick, that method was considered as a linear time method. Resolve
this apparent contradiction.

. Make explicit the relationship between link pointers in Weiner's algorithm and suffix links

in Ukkonen’s algorithm.

The time analyses of Ukkonen's algorithm and of Weiner's algorithm both refy on watching
how the current node-depth changes, and the arguments are almost perfectly symmetric.
Examine these two algorithms and arguments closely to make explicit the similarities and
differences in the analysis. Is there some higher-level analysis that might establish the time
bounds of both the algorithms at once?

Empirically evaluate different implementation choices for representing the branches out
of the nodes and the vectors needed in Weiners algorithm. Pay particular attention to
the effect of alphabet size and string length, and consider both time and space issues in
building the suffix tree and in using it afterwards.

By using implementation tricks similar to those used in Ukkonen’s algorithm (particularly,
suffix links and skip/count) give a linear-time implementation for McCreight's algorithm.
Flesh out the relationship between McCreight's algorithm and Ukkonen's algorithm, when
they both are implemented in linear time.
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Suppose one must dynamically maintain a suffix tree for a string that is growing or con-
tracting. Discuss how to do this efficiently it the string is growing (contracting) on the left
end, and how to do it if the string is growing (contracting) on the right end.

Can either Weiner's algorithm or Ukkonen’s algorithm efficiently handle both changes to
the right and to the left ends of the string? What would be wrong in reversing the string so
that a change on the left end is “simulated” by a change on the right end?

Consider the previous problem where the changes are in the interior of the string. If you
cannot find an efficient solution to updating the suffix tree, explain what the technical issues
are and why this seems like a difficult problem.

Consider a generalized suffix tree built for a set of k strings. Additional strings may be
added to the set, or entire strings may be deleted from the set. This is the common case
for maintaining a generalized suffix tree for biological sequence data [320]. Discuss the
problem of maintaining the generalized suffix tree in this dynamic setting. Explain why this
problem has a much easier solution than when arbitrary substrings represented in the suffix
tree are deleted.




