
Algorithms in the Real World
Assignment #3 Due Date: 29 Oct 03

Do either one of problems 5 and 6.

Problem 1: (20pts)

1. Show that in a binary tree there is (1/4)-(3/4) edge separator of size 1. Here we are assuming
edges and vertices are unweighted and we want to balance the vertices. Generalize this
theorem to trees where each node has degree at most d.

2. Show that in any tree, the bisection width (i.e., the number of nodes that must be removed in
order to partition the tree into two equal-sized (to within 1) pieces is at mostO(log n).

Problem 2: (20pt)

1. Prove that the bisection width (i.e. the number of edges that must be removed to separate a
graph into two equal-sized parts, within 1) of the complete graph withn vertices is(n/2)2.

2. Prove that the bisection width of then-node hypercube isn/2. This should be proved from
below and above. (Hint: show that the complete graph can be embedded in the hypercube
so that vertices map to vertices, edges in the complete graph map to paths in the hypercube,
and each hypercube ends up supporting the same number of paths.)

Problem 3: (20pt)
Consider applying divide-and-conquer to graphs and lets say that merging the two recursive solu-
tions takesf(s) time, wheres is the number of edges separating the two graphs. For each of the
following f(s), and assuming you are given an edge separator tree for which all separators for the
subgraphs of sizen are 1/3-2/3 balanced and bounded bykn1/2, what is the running time of such
an approach.

1. s

2. s log s

3. s2

4. s4

1



Problem 4: (20pt) In class, and in the Karypis and Kumar reading, we covered a multilevel edge-
separator algorithm. In this problem you need to generalize this technique to work for vertex
separators directly (do not use a postprocessing stage). In particular:

1. Argue why coarsening using a maximal matching is or is not still appropriate.

2. Describe what we should keep track of when coarsening (contracting) the graph (e.g. on the
edge separator version each edge kept a weight representing the number of original edges
between two multivertices).

3. Describe how we project the solution of the coarsened version back onto the original graph
(the recursive solution must return a vertex separator).

4. Describe a variant of Kernighan-Lin or (preferably) the Fiduccia-Mattheyses heuristic for
vertex separators. Be explicit about what the gain metric is.

Note that there is not necessarily a right and wrong answer for this problem.

Problem 5: (20pts)
Suppose that rather than associating a single bit with a graph node in a Tornado code, we associate
a symbol drawn from a finite field.

1. Using a systematic Reed-Solomon code capable of correcting one symbol erasure instead of
a simple 1-bit parity function, show how the Tornado code construction described in class
can be generalized to correct for erasures of symbols rather than bits.

2. Now using a systematic Reed-Solomon code capable of correcting one symbol error (rather
than just an erasure), show how to construct a Tornado code capable of correcting errors
rather than just erasures. Your code should add at total ofO(m) parity symbols to a mes-
sage ofm symbols, and should be able to recover a message, with high probability, even if
every bit is incorrect with some constant probabilityp > 0 (p may be very small, but still a
constant).

You may find it helpful to make multiple copies of some of the structures in the graph de-
scribed in class.

Another tip is that the(α, δ) “unshared neighbor” property proved for bipartite expander
graphs in which there aren nodes on the left andn/2 nodes on the right can be generalized
to bipartite expander graphs in which there aren nodes on the left andn/c nodes on the right,
for any constantc > 0. (In particular, you may be interested in values ofc > 2.) Changing
the value ofc will impact the relationship betweenα andδ (for fixed δ, largerc will imply
smallerα), but as long asc is a constant,α andδ will also be constants.

3. Describe how to decode your code.

Problem 6: (20pts)
Recall that nested dissection is an algorithm that determines the order in which variables are to
eliminated when using Gaussian elimination to solve a linear systemAx = b. The goal of nested

2



dissection is to produce an ordering that creates only a small amount of “fill”. Fill occurs when
a zero entry in a matrix row becomes non-zero. It is helpful to view nested dissection as a graph
algorithm, where the graphG is defined by viewing the matrixA as an adjacency matrix. (There is
an edge between two nodes inG if the corresponding entry inA is non-zero.) Gaussian elimination
removes nodes from the graph one-by-one, and each time a node is removed, a clique is formed on
its neighbors. Any clique edges that were not already present in the graph constitute fill.
In this problem we will prove an upper bound on the fill generated by nested dissection forplanar
graphsthat have special “cycle” separator functions. A class of planar graphsC is said to have
an f(N)-cycle-separator-theorem if, for anyN -node graphG that belongs to the class, there is
a simple cycleC of lengthO(f(N)) whose removal partitions the graph into two subgraphsG1

andG2, whereN1 ≥ N/3, N2 ≥ N/3 (whereN1 andN2 are the number of nodes inG1 andG2,
respectively), whereG1 lies inside the cycle,G2 lies outside the cycle (the designation of inside
and outside doesn’t matter), and bothG1 andG2 either belong to the classC or contain onlyO(1)
nodes.

1. Let C be the class ofm × n two-dimensional meshes, wherem/2 ≤ n ≤ m. (Each such
graph hasN = mn nodes.) Prove thatC has a

√
N -cycle-separator-theorem.

Now suppose that we apply the following nested dissection algorithm to a graph with a cycle
separator theorem.

• Remove the cycle separatorC (nodes and edges) fromG. Place the nodes inC last in the
elimination order, in arbitrary order.

• Recursively orderG1. Place these nodes in the order before the nodes ofC.

• Recursively orderG2. Place these nodes in the order before the nodes ofG1.

The recursion terminates ifG is a graph consisting of a constant number of nodes that does not
belong to the class of graphsC , and hence cannot be further broken up.
The execution of this algorithm can be viewed as a decomposition of the graph. The natural
representation of this decomposition is a binary tree constructed recursively, where the root of the
tree is a node representing the cycleC, the left subtree is the tree forG2, and the right subtree is the
tree forG1. Each nodeu of the graphG is represented by a single nodet(u) in the decomposition
tree.

2. (Easy.) Prove that if there is an edge between nodesu andv in G, then eithert(u) = t(v), or
t(u) is an ancestor oft(v), or t(v) is an ancestor oft(u).

3. (Easy corollary.) Prove that there can be fill between nodesu and v of G only if either
t(u) = t(v), or t(u) is an ancestor oft(v), or t(v) is an ancestor oft(u).

4. Suppose thatu is a node ofG represented byt(u). Prove that there is fill betweenu and
nodesv represented by onlyO(d) tree nodes, whered is the depth of the tree. In this step
you will need to make use of the fact that all of the separators are simple cycles.

5. Prove that for the class ofm× n meshes with the
√
n-cycle-separator-theorem, the total fill

generated by the nested dissection algorithm isO(N logN).

3


