- 1
- 
AT&T Labs-Research.
 Graphviz.
 Available from http://www.research.att.com/sw/tools/graphviz/,
  2000.
- 2
- 
F. Bacchus, C. Boutilier, and A. Grove.
 Rewarding behaviors.
 In Proc. American National Conference on Artificial Intelligence
  (AAAI), pages 1160-1167, 1996.
- 3
- 
F. Bacchus, C. Boutilier, and A. Grove.
 Structured solution methods for non-Markovian decision processes.
 In Proc. American National Conference on Artificial Intelligence
  (AAAI), pages 112-117, 1997.
- 4
- 
F. Bacchus and F. Kabanza.
 Planning for temporally extended goals.
 Annals of Mathematics and Artificial Intelligence, 22:5-27,
  1998.
- 5
- 
F. Bacchus and F. Kabanza.
 Using temporal logic to express search control knowledge for
  planning.
 Artificial Intelligence, 116(1-2), 2000.
- 6
- 
C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski.
 Controller synthesis for probabilistic systems (extended abstract).
 In Proc. IFIP International Conference on Theoretical Computer
  Science (IFIP TCS), 2004.
- 7
- 
C. Baral and J. Zhao.
 Goal specification in presence of nondeterministic actions.
 In Proc. European Conference on Artificial Intelligence (ECAI),
  pages 273-277, 2004.
- 8
- 
A.G. Barto, S.L. Bardtke, and S.P. Singh.
 Learning to act using real-time dynamic programming.
 Artificial Intelligence, 72:81-138, 1995.
- 9
- 
B. Bonet and H. Geffner.
 Labeled RTDP: Improving the convergence of real-time dynamic
  programming.
 In Proc. International Conference on Automated Planning and
  Scheduling (ICAPS), pages 12-21, 2003.
- 10
- 
B. Bonet and H. Geffner.
 mGPT: A probabilistic planner based on heuristic search.
 Journal of Artificial Intelligence Research, 24:933-944, 2005.
- 11
- 
C. Boutilier, T. Dean, and S. Hanks.
 Decision-theoretic planning: Structural assumptions and computational
  leverage.
 In Journal of Artificial Intelligence Research, volume 11,
  pages 1-94, 1999.
- 12
- 
C. Boutilier, R. Dearden, and M. Goldszmidt.
 Stochastic dynamic programming with factored representations.
 Artificial Intelligence, 121(1-2):49-107, 2000.
- 13
- 
D. Calvanese, G. De Giacomo, and M. Vardi.
 Reasoning about actions and planning in LTL action theories.
 In Proc. International Conference on the Principles of Knowledge
  Representation and Reasoning (KR), pages 493-602, 2002.
- 14
- 
A. Cesta, S. Bahadori, Cortellessa G, G. Grisetti, M.V. Giuliani, L. Loochi,
  G.R. Leone, D. Nardi, A. Oddi, F. Pecora, R. Rasconi, A Saggase, and
  M. Scopelliti.
 The RoboCare project. Cognitive systems for the care of the
  elderly.
 In Proc. International Conference on Aging, Disability and
  Independence (ICADI), 2003.
- 15
- 
J. Chomicki.
 Efficient checking of temporal integrity constraints using bounded
  history encoding.
 ACM Transactions on Database Systems, 20(2):149-186, 1995.
- 16
- 
U. Dal Lago, M. Pistore, and P. Traverso.
 Planning with a language for extended goals.
 In Proc. American National Conference on Artificial Intelligence
  (AAAI), pages 447-454, 2002.
- 17
- 
T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson.
 Planning under time constraints in stochastic domains.
 Artificial Intelligence, 76:35-74, 1995.
- 18
- 
T. Dean and K. Kanazawa.
 A model for reasoning about persistance and causation.
 Computational Intelligence, 5:142-150, 1989.
- 19
- 
M. Drummond.
 Situated control rules.
 In Proc. International Conference on the Principles of Knowledge
  Representation and Reasoning (KR), pages 103-113, 1989.
- 20
- 
E. A. Emerson.
 Temporal and modal logic.
 In Handbook of Theoretical Computer Science, volume B, pages
  997-1072. Elsevier and MIT Press, 1990.
- 21
- 
Z. Feng and E. Hansen.
 Symbolic LAO search for factored Markov decision processes. search for factored Markov decision processes.
 In Proc. American National Conference on Artificial Intelligence
  (AAAI), pages 455-460, 2002.
- 22
- 
Z. Feng, E. Hansen, and S. Zilberstein.
 Symbolic generalization for on-line planning.
 In Proc. Conference on Uncertainty in Artificial Intelligence
  (UAI), pages 209-216, 2003.
- 23
- 
A. Fern, S. Yoon, and R. Givan.
 Learning domain-specific knowledge from random walks.
 In Proc. International Conference on Automated Planning and
  Scheduling (ICAPS), pages 191-198, 2004.
- 24
- 
M. Fourman.
 Propositional planning.
 In Proc. AIPS Workshop on Model-Theoretic Approaches to
  Planning, pages 10-17, 2000.
- 25
- 
C. Gretton, D. Price, and S. Thiébaux.
 Implementation and comparison of solution methods for decision
  processes with non-Markovian rewards.
 In Proc. Conference on Uncertainty in Artificial Intelligence
  (UAI), pages 289-296, 2003.
- 26
- 
C. Gretton, D. Price, and S. Thiébaux.
 NMRDPP: a system for decision-theoretic planning with
  non-Markovian rewards.
 In Proc. ICAPS Workshop on Planning under Uncertainty and
  Incomplete Information, pages 48-56, 2003.
- 27
- 
P. Haddawy and S. Hanks.
 Representations for decision-theoretic planning: Utility functions
  and deadline goals.
 In Proc. International Conference on the Principles of Knowledge
  Representation and Reasoning (KR), pages 71-82, 1992.
- 28
- 
E. Hansen and S. Zilberstein.
 LAO : A heuristic search algorithm that finds solutions with
  loops. : A heuristic search algorithm that finds solutions with
  loops.
 Artificial Intelligence, 129:35-62, 2001.
- 29
- 
J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
 SPUDD: stochastic planning using decision diagrams.
 In Proc. Conference on Uncertainty in Artificial Intelligence
  (UAI), pages 279-288, 1999.
- 30
- 
J. Hoffmann.
 Local search topology in planning benchmarks: A theoretical analysis.
 In Proc. International Conference on AI Planning and Scheduling
  (AIPS), pages 92-100, 2002.
- 31
- 
J. Hoffmann and B. Nebel.
 The FF planning system: Fast plan generation through heuristic
  search.
 Journal of Artificial Intelligence Research, 14:253-302, 2001.
- 32
- 
R.A. Howard.
 Dynamic Programming and Markov Processes.
 MIT Press, Cambridge, MA, 1960.
- 33
- 
F. Kabanza and S. Thiébaux.
 Search control in planning for temporally extended goals.
 In Proc. International Conference on Automated Planning and
  Scheduling (ICAPS), pages 130-139, 2005.
- 34
- 
E. Karabaev and O Skvortsova.
 A Heuristic Search Algorithm for Solving First-Order
  MDPs.
 In Proc. Conference on Uncertainty in Artificial Intelligence
  (UAI), pages 292-299, July 2005.
- 35
- 
J. Koehler and K. Schuster.
 Elevator control as a planning problem.
 In Proc. International Conference on AI Planning and Scheduling
  (AIPS), pages 331-338, 2000.
- 36
- 
R. Korf.
 Real-time heuristic search.
 Artificial Intelligence, 42:189-211, 1990.
- 37
- 
N. Kushmerick, S. Hanks, and D. Weld.
 An algorithm for probabilistic planning.
 Artificial Intelligence, 76:239-286, 1995.
- 38
- 
O. Lichtenstein, A. Pnueli, and L. Zuck.
 The glory of the past.
 In Proc. Conference on Logics of Programs, pages 196-218.
  LNCS, volume 193, 1985.
- 39
- 
N. Onder, G. C. Whelan, and L. Li.
 Engineering a conformant probabilistic planner.
 Journal of Artificial Intelligence Research, 25:1-15, 2006.
- 40
- 
M. Pistore and P. Traverso.
 Planning as model-checking for extended goals in non-deterministic
  domains.
 In Proc. International Joint Conference on Artificial
  Intelligence (IJCAI-01), pages 479-484, 2001.
- 41
- 
J. Slaney.
 Semi-positive LTL with an uninterpreted past operator.
 Logic Journal of the IGPL, 13:211-229, 2005.
- 42
- 
J. Slaney and S. Thiébaux.
 Blocks world revisited.
 Artificial Intelligence, 125:119-153, 2001.
- 43
- 
F. Somenzi.
 CUDD: CU Decision Diagram Package.
 Available from ftp://vlsi.colorado.edu/pub/, 2001.
- 44
- 
F. Teichteil-Königsbuch and P. Fabiani.
 Symbolic heuristic policy iteration algorithms for structured
  decision-theoretic exploration problems.
 In Proc. ICAPS workshop on Planning under Uncertainty for
  Autonomous Systems, 2005.
- 45
- 
S. Thiébaux, J. Hertzberg, W. Shoaff, and M. Schneider.
 A stochastic model of actions and plans for anytime planning under
  uncertainty.
 International Journal of Intelligent Systems, 10(2):155-183,
  1995.
- 46
- 
S. Thiébaux, F. Kabanza, and J. Slaney.
 Anytime state-based solution methods for decision processes with
  non-Markovian rewards.
 In Proc. Conference on Uncertainty in Artificial Intelligence
  (UAI), pages 501-510, 2002.
- 47
- 
S. Thiébaux, F. Kabanza, and J. Slaney.
 A model-checking approach to decision-theoretic planning with
  non-Markovian rewards.
 In Proc. ECAI Workshop on Model-Checking in Artificial
  Intelligence (MoChArt-02), pages 101-108, 2002.
- 48
- 
M. Vardi.
 Automated verification = graph, logic, and automata.
 In Proc. International Joint Conference on Artificial
  Intelligence (IJCAI), pages 603-606, 2003.
 Invited paper.
- 49
- 
P. Wolper.
 On the relation of programs and computations to models of temporal
  logic.
 In Proc. Temporal Logic in Specification, LNCS 398, pages
  75-123, 1987.
- 50
- 
H. L. S. Younes and M. Littman.
 PPDDL1.0: An extension to PDDL for expressing planning domains
  with probabilistic effects.
 Technical Report CMU-CS-04-167, School of Computer Science, Carnegie
  Mellon University, Pittsburgh, Pennsylvania, 2004.
- 51
- 
H. L. S. Younes, M. Littman, D. Weissmann, and J. Asmuth.
 The first probabilistic track of the International Planning
  Competition.
 In Journal of Artificial Intelligence Research, volume 24,
  pages 851-887, 2005.
- 52
- 
H.L.S. Younes and R. G. Simmons.
 Policy generation for continuous-time stochastic domains with
  concurrency.
 In Proc. International Conference on Automated Planning and
  Scheduling (ICAPS), pages 325-333, 2004.
Sylvie Thiebaux
2006-01-20