
C H A P T E R 1 0

Overview 141

Macros 10

Overview

A macro is an extension to the core language that can be defined by the user, by
the implementation, or as part of the Dylan language specification. Much of
the grammatical structure of Dylan is built with macros. A macro defines the
meaning of one construct in terms of another construct. The compiler
substitutes the new construct for the original. The purpose of macros is to
allow programmers to extend the Dylan language, for example by creating new
control structures or new definitions. Unlike C, Dylan does not intend macros
to be used to optimize code by inlining. Other parts of the language, such as
sealing and define constant, address that need.

Throughout this chapter, italic font and SMALL CAPS are used to indicate
references to the formal grammar given in Appendix A, “BNF.”

Compilation and Macro Processing

Compilation consists of six conceptual phases:

1. Parsing a stream of characters into tokens, according to the lexical grammar
in Appendix A, “BNF.”

2. Parsing a stream of tokens into a program, according to the phrase grammar
in Appendix A, “BNF.”

3. Macro expansion, which translates the program to a core language.

4. Definition processing, which recognizes special and built-in definitions and
builds a compile-time model of the static structure of the program.

5. Optimization, which rewrites the program for improved performance.

6. Code generation, which translates the program to executable form.

Portions of a program can be macro calls. Macro expansion replaces a macro
call with another construct, which can itself be a macro call or contain macro
calls. This expansion process repeats until there are no macro calls remaining
in the program, thus macros have no space or speed cost at run time. Of
course, expanding macros affects the speed and space cost of compilation.

C H A P T E R 1 0

Macros

142 Overview

A macro definition describes both the syntax of a macro call and the process for
creating a new construct to replace the macro call. Typically the new construct
contains portions of the old one, which can be regarded as arguments to the
macro. A macro definition consists of a sequence of rewrite rules. The
left-hand side of each rule is a pattern that matches a macro call. The
right-hand side is a template for the expansion of a matching call. Pattern
variables appearing in the left-hand side act as names for macro arguments.
Pattern variables appearing in the right-hand side substitute arguments into
the expansion. Macro arguments can be constrained to match specified
elements of the Dylan grammar. Auxiliary rule sets enhance the rewrite rule
notation with named subrules.

Some implementations and a future version of the Dylan language
specification might allow macro expansions to be produced by compile-time
computation using the full Dylan language and an object-oriented
representation for programs. Such a “procedural macro” facility is not part of
Dylan at this time.

The input to, and output from, macro expansion is a fragment, which is a
sequence of elementary fragments. An elementary fragment is one of the
following:

■ A token: the output of the lexical grammar. The bracket tokens (,), [,], {,
}, #(, and #[are not allowed. Core reserved words (except otherwise),
BEGIN-WORDS, and FUNCTION-WORDS are not allowed unless quoted with
backslash.

■ A bracketed fragment: balanced brackets ((), [], or {}) enclosing a
fragment.

■ A macro call fragment: a macro call.

■ A parsed fragment: a single unit that is not decomposable into its
component tokens. It has been fully parsed by the phrase grammar. A
parsed fragment is either a function call, a list constant, a vector constant, a
definition, or a local declaration.

The second and third phases of compilation (parsing and macro expansion) are
interleaved, not sequential. The parsing phase of the compiler parses a macro
call just enough to find its end. See definition-macro-call, statement,
function-macro-call, body-fragment, list-fragment, and basic-fragment in Appendix
A, “BNF.” This process of parsing a macro call also parses any macro calls
nested inside it. The result is a macro call fragment.

C H A P T E R 1 0

Macros

Overview 143

This loose grammar for macro calls gives users a lot of flexibility to choose the
grammar that their macros will accept. For example, the grammar of macro
calls doesn't care whether a bracketed fragment will be interpreted as an
argument list, a parameter list, a set of for clauses, or a module import list.

The compiler delays computing the expansion of a macro call fragment until it
is needed. If an argument to a macro is a macro call, the outer macro call is
always expanded first. When the compiler computes the expansion of a macro
call fragment, it obeys the macro's definition. Constraints on pattern variables
can cause reparsing of portions of the macro call.

A constituent, operand, or leaf that is a macro call expands the macro during or
before the definition processing and optimization phases. The compiler
brackets the expansion in begin … end, using the standard binding of begin
in the Dylan module, and then reparses it as a statement. This reparsing may
discover more macro calls. A parse error while reparsing a macro expansion
could indicate an invalid macro definition or an incorrect call to the macro that
was not detected during pattern matching. Once the cycle of macro expansion
and reparsing has been completed, no tokens, bracketed fragments, or macro
call fragments remain and the entire source record has become one parsed
fragment.

This begin … end bracketing ensures that the expansion of a macro call will
not be broken apart by operator precedence rules when the macro call is a
subexpression. Similarly it ensures that the scopes of local declarations
introduced by a macro will not extend outside that macro expansion when the
macro call is a statement in a body.

The fragment produced by parsing a macro call, which is the input to macro
expansion, is as follows:

■ Local declarations and special definitions are parsed fragments.

■ Calls to macros are macro call fragments.

■ List constants and vector constants are parsed fragments.

■ Anything in brackets is a bracketed fragment.

■ If the macro call was not the result of macro expansion, everything else is
represented as sequences of tokens. There are a few restrictions on the
tokens, for example semicolons must appear in certain places and bare
brackets cannot appear; for details see the definition of body-fragment and
list-fragment in Appendix A, “BNF.”

C H A P T E R 1 0

Macros

144 Overview

■ In a macro call that is the result of macro expansion, additional items can be
parsed fragments, due to pattern-variable substitution.

■ Many built-in macros expand into implementation-specific parsed
fragments.

The fragment produced by parsing an expression is as follows:

■ An expression consisting of a single token returns a one-token fragment.
This will be a variable-name, non-collection literal, or SYMBOL.

■ An expression consisting of just a string-literal returns a one-token fragment.
If the string-literal consists of multiple STRING tokens, they are concatenated
into a single STRING token.

■ An expression consisting of just a list constant or a vector constant returns a
list constant or vector constant fragment.

■ An expression consisting of just a statement or function-macro-call returns a
macro call fragment.

■ An operator call, slot reference, or element reference that calls a function
macro returns a macro call fragment.

■ A function call, operator call, slot reference, or element reference that calls
something other than a function macro returns a function call fragment.

■ Enclosing an expression in parentheses does not change how it parses.

The term "parsed expression fragment" refers to any of the above.

The parser recognizes parsed fragments as well as raw tokens. The
nonterminals definition and local-declaration in the phrase grammar accept
parsed fragments of the same kind. The nonterminal operand accepts parsed
function call fragments and macro call fragments. The nonterminal literal
accepts list constant and vector constant fragments. The nonterminal
simple-fragment accepts parsed function call fragments and macro call
fragments. The nonterminal macro accepts macro call fragments. The parser
expands bracketed fragments into their constituent tokens before parsing them.

C H A P T E R 1 0

Macros

Extensible Grammar 145

Extensible Grammar

There are three kinds of macros: definition macros, which extend the available
set of definitions; statement macros, which extend the available set of
statements; and function macros, which syntactically resemble function calls
but are more flexible. Named value references and local declarations cannot be
macro calls. Only statements, function calls, and definitions are extensible.

Definition Macros

A definition macro extends the definition-macro-call production of the Dylan
phrase grammar to recognize additional constructs as valid definitions, by
creating a new DEFINE-BODY-WORD that is recognized by the following grammar
line:

definition-macro-call:
 define modifiers

opt
 DEFINE-BODY-WORD body-fragment

opt definition-tail

or by creating a new DEFINE-LIST-WORD that is recognized by the following
grammar line:

definition-macro-call:
 define modifiers

opt
 DEFINE-LIST-WORD list-fragment

opt

This allows programmers to extend Dylan by defining new kinds of
definitions. The syntax of the definition must be parseable by one of these two
predefined grammar rules. The first handles body-style definitions like
define class, define method, and define module, while the second
handles list-style definitions like define constant. See Appendix A, “BNF,”
for the details.

The new DEFINE-BODY-WORD or DEFINE-LIST-WORD becomes a partially
reserved word in each module where the macro definition is visible. In
particular a DEFINE-BODY-WORD or DEFINE-LIST-WORD cannot be used as a
modifier in a definition. It can still be used as a variable-name.

C H A P T E R 1 0

Macros

146 Macro Names

Statement Macros

A statement macro extends the statement production of the Dylan phrase
grammar to recognize additional constructs as valid statements, by creating a
new BEGIN-WORD that is recognized by the following grammar line:

statement:
 BEGIN-WORD body-fragment

opt
 end-clause

The new BEGIN-WORD becomes a reserved word in each module where the
macro definition is visible. It can only be used at the beginning and end of this
new statement.

Function Macros

A function macro extends the function-macro-call production of the Dylan
phrase grammar to recognize additional constructs, by creating a new
FUNCTION-WORD that is recognized by the following grammar line:

function-macro-call:
 FUNCTION-WORD (body-fragment

opt)

In addition, a function macro can be invoked by any of the shorthand syntax
constructs available for invoking functions. In this case, the arguments are
always parsed expression fragments, as described on page 144.

The new FUNCTION-WORD becomes a reserved word in each module where the
macro definition is visible. It can only be used at the beginning of a macro call.

Macro Names

A macro is named by a constant module binding. The macro is available to be
called in any scope where this binding is accessible. Macro names can be
exported and can be renamed during module importing just like any other
module binding. Macro bindings are constant and cannot be changed by the
assignment operator :=.

The name bound to a definition macro is the macro’s DEFINE-BODY-WORD or
DEFINE-LIST-WORD suffixed by “-definer”. This suffixing convention is

C H A P T E R 1 0

Macros

Macro Names 147

analogous to the naming convention for setters and allows the
DEFINE-BODY-WORD or DEFINE-LIST-WORD to be used for another purpose. The
name bound to a statement macro is the macro's BEGIN-WORD. The name
bound to a function macro is the macro's FUNCTION-WORD.

A named value reference is not allowed when the value of the binding is a
macro, because macros are not run-time objects.

A macro cannot be named by a local binding. Macro definitions are always
scoped to modules.

Attempting to create a local binding that shadows a binding to a macro is an
error.

Reserved words created by a macro definition are reserved in any module
where the binding that names the macro is accessible. In other modules, the
same words are ordinary names. Each module has an associated syntax table
which is used when parsing code associated with that module. The syntax
table controls the lexical analyzer's assignment of names to the
DEFINE-BODY-WORD, DEFINE-LIST-WORD, BEGIN-WORD, and FUNCTION-WORD
categories. Importing a macro into a module makes the same modifications to
that module's syntax table that would be made by defining that macro in the
module. If a definition macro is renamed when it is imported, the
DEFINE-BODY-WORD or DEFINE-LIST-WORD derives from the new name. If the
new name does not end in “-definer”, the imported macro cannot be called.

A NAME or UNRESERVED-NAME in the lexical grammar can be a backslash ('\')
character followed by a word. This prevents the word from being recognized
as a reserved word during parsing, but does not change which binding the
word names. Quoting the name of a statement or function macro with a
backslash allows the name to be mentioned without calling the macro, for
example to export it from a module.

When a binding that names a macro is exported from a module that is exported
from a library, clients of that library can call the macro. Information derived
from the macro definition goes into the library export information part of the
library description.

C H A P T E R 1 0

Macros

148 Rewrite Rules

Rewrite Rules

The grammar of a macro definition is define macro macro-definition. For
details see Appendix A, “BNF.”

If the optional NAME at the end of a macro-definition is present, it must be the
same NAME that appears at the beginning of the macro-definition.

The kind of macro being defined, and thus the Dylan grammar production that
this macro extends, is determined by which kind of rules appear in the macro’s
main-rule-set.

The NAME preceding the main-rule-set is the name of the binding whose value
is this macro. It must be consistent with each left-hand side of the
main-rule-set. It can be any name, even a reserved word or backslash followed
by an operator. For statement and function macros this NAME must be the
same as the NAME that appears as the first token in each main-rule-set pattern.
For definition macros this NAME must be the same as the NAME in the
xxx-style-definition-rule with the suffix “-definer” added.

A NAME can belong to more than one of the lexical categories BEGIN-WORD,
FUNCTION-WORD, DEFINE-BODY-WORD, and DEFINE-LIST-WORD. A NAME cannot
belong to both BEGIN-WORD and FUNCTION-WORD. A NAME cannot belong to
both DEFINE-BODY-WORD and DEFINE-LIST-WORD.

For simplicity of documentation, the xxx-style-definition-rule productions are
written ambiguously. The NAME in the left-hand side of the rule must be the
NAME immediately following define macro with the “-definer” suffix
removed, not an arbitrary NAME, which would be ambiguous with modifier.

The general idea is that the main-rule-set is an ordered sequence of rewrite
rules. Macro expansion tests the macro call against each left-hand side in turn
until one matches. The corresponding right-hand side supplies the new
construct to replace the macro call. The left- and right-hand sides can contain
pattern variables. The portion of the macro call that matches a particular
pattern variable on the left replaces each occurrence of that pattern variable on
the right. It is an error for the right-hand side of a rule to contain a pattern
variable that does not appear on the left-hand side of the same rule.

If none of the left-hand sides match, the macro call is invalid. If more than one
left-hand side matches, the first matching rule is used. Note that (as described

C H A P T E R 1 0

Macros

Patterns 149

in the next section) a pattern variable with a wildcard constraint can match an
empty portion of the macro call. A comma or a semicolon followed by a
pattern variable with a wildcard constraint also can match an empty portion of
the macro call. Do not assume that only an empty pattern can match an empty
input. In general when writing recursive rewrite rules it is better to put the
base case first, before the inductive cases, in case an inductive case rewrite rule
might match a base case input.

The punctuation marks ?, ??, and ?= used in patterns and templates are
customarily written without any whitespace following them.

Patterns

Approximately speaking, a pattern looks like the construct that it matches, but
contains pattern variables that bind to portions of the construct. Hence a
left-hand side in the main-rule-set looks like a macro call. However, the
grammar of patterns is not the same as the grammar of programs, but contains
just what is required to match the portions of the Dylan grammar that are
extensible by macros. Patterns have a simple nested grammar, with
semicolons, commas, and brackets used to indicate levels of nesting. See the
definition of pattern in Appendix A, “BNF.”

A pattern matches a fragment (a sequence of elementary fragments) by
executing the following algorithm from left to right. It is easy to create patterns
that are ambiguous when considered as grammars. This ambiguity is resolved
by the left to right processing order and the specified try-shortest-first order for
matching wildcards. Pattern matching succeeds only if all sub-patterns match.
If pattern matching fails, the current rule fails and control passes to the next
rule in the current rule set. If all patterns in a rule set fail to match, the macro
call is invalid.

Multiple occurrences of the same pattern variable name in a single rule's
left-hand side are not valid.

A pattern matches a fragment as follows:

■ If the pattern consists of just one pattern-list, go to the next step. Otherwise
divide the pattern into subpatterns and the fragment into subfragments at
semicolons, and match subpatterns to subfragments individually in order.
The subpatterns and subfragments do not include the semicolons that

C H A P T E R 1 0

Macros

150 Patterns

separate them. Suppose the pattern consists of N + 1 pattern-lists separated
by N semicolons. Locate the first N semicolons in the fragment (without
looking inside of elementary fragments) and divide up the fragment into
subfragments accordingly. The match fails if the fragment contains fewer
than N - 1 semicolons. As a special case, if the fragment contains N - 1
semicolons, the match still succeeds and the last subfragment is empty. If
the fragment contains more than N semicolons, the extra semicolons will be
in the last subfragment.

A pattern-list matches a fragment as follows:

■ If the pattern-list consists of just a pattern-sequence, go to the next step. If
the pattern-list consists of just a property-list-pattern, go to that step.
Otherwise divide the pattern-list into subpatterns and the fragment into
subfragments at commas, and match subpatterns to subfragments
individually in order. The subpatterns and subfragments do not include the
commas that separate them. Suppose the pattern consists of N + 1
subpatterns separated by N commas. Locate the first N commas in the
fragment (without looking inside of elementary fragments) and divide up
the fragment into subfragments accordingly. The match fails if the fragment
contains fewer than N - 1 commas. As a special case, if the fragment contains
N - 1 commas, the match still succeeds and the last subfragment is empty. If
the fragment contains more than N commas, the extra commas will be in the
last subfragment. Note that the subdivision algorithms for commas and
semicolons are identical.

A pattern-sequence matches a fragment as follows:

■ Consider each simple-pattern in the pattern-sequence in turn from left to
right. Each simple-pattern matches an initial subsequence of the fragment
and consumes that subsequence, or fails. The entire pattern match fails if
any simple-pattern fails, if the fragment is empty and the simple-pattern
requires one or more elementary fragments, or if the fragment is not entirely
consumed after all simple-patterns have been matched. There is a special
backup and retry rule for wildcards, described below.

A simple-pattern matches a fragment as follows:

■ A NAME or => consumes one elementary fragment, which must be identical
to the simple-pattern. A NAME matches a name that is spelled the same,
independent of modules, lexical scoping issues, alphabetic case, and
backslash quoting. As a special case, after the word otherwise, an => is

C H A P T E R 1 0

Macros

Patterns 151

optional in both the pattern and the fragment. Presence or absence of the
arrow in either place makes no difference to matching.

■ A bracketed-pattern matches and consumes a bracketed-fragment. If the
enclosed pattern is omitted, the enclosed body-fragment must be empty,
otherwise the enclosed pattern must match the enclosed body-fragment
(which can be empty). The type of brackets ((), [], or {}) in the
bracketed-fragment must be the same as the type of brackets in the
bracketed-pattern.

A binding-pattern matches a fragment as follows:

■ pattern-variable :: pattern-variable consumes as much of the fragment as
can be parsed by the grammar for variable. It matches the first
pattern-variable to the variable-name and the second to the type, a parsed
expression fragment. If no specializer is present, it matches the second
pattern-variable to a parsed expression fragment that is a named value
reference to <object> in the Dylan module. This matching checks the
constraints on the pattern variable, fails if the constraint is not satisfied, and
binds the pattern variable to the fragment.

■ pattern-variable = pattern-variable consumes as much of the fragment as can
be parsed by the grammar for variable = expression. It matches the first
pattern-variable to the variable, a fragment, and the second to the expression,
a parsed expression fragment.

■ pattern-variable :: pattern-variable = pattern-variable consumes as much of
the fragment as can be parsed by the grammar for variable = expression. It
matches the first two pattern-variables the same as the first kind of
binding-pattern and it matches the third pattern-variable the same as the
second kind of binding-pattern.

A pattern-variable matches a fragment as follows:

■ When the constraint is a wildcard constraint (see “Pattern Variable
Constraints” on page 154), the pattern variable consumes some initial
subsequence of the fragment, using a backup and retry algorithm. First, the
wildcard consumes no elementary fragments, and matching continues with
the next simple-pattern in the pattern-sequence. If any simple-pattern in the
current pattern-sequence fails to match, back up to the wildcard, consume one
more elementary fragment than before, and retry matching the rest of the
pattern-sequence, starting one elementary fragment to the right of the
previous start point. Once the entire pattern-sequence has successfully

C H A P T E R 1 0

Macros

152 Patterns

matched, the pattern variable binds to a fragment consisting of the sequence
of elementary fragments that it consumed.

■ It is an error for more than one of the simple-patterns directly contained in a
pattern-sequence to be a wildcard.

■ When the constraint is other than a wildcard constraint, the pattern variable
consumes as much of the fragment as can be parsed by the grammar
specified for the constraint in “Pattern Variable Constraints” on page 154. If
the parsing fails, the pattern match fails. The pattern variable binds to the
fragment specified in “Pattern Variable Constraints.” This can be a parsed
fragment rather than the original sequence of elementary fragments.

■ The ellipsis pattern-variable, ..., can only be used in an auxiliary rule set. It
represents a pattern variable with the same name as the current rule set and
a wildcard constraint.

A property-list-pattern matches a fragment as follows:

■ Parse the fragment using the grammar for property-list
opt

 . If the parsing fails
or does not consume the entire fragment, the pattern match fails.

■ If the property-list-pattern contains #key and does not contain #all-keys,
the match fails if the SYMBOL part of any property is not the NAME in some
pattern-keyword in the property-list-pattern. Comparison of a SYMBOL to a
NAME is case-insensitive, ignores backslash quoting, and is unaffected by the
lexical context of the NAME.

■ If the property-list-pattern contains #rest, bind the pattern variable
immediately following #rest to the entire fragment. If the pattern variable
has a non-wildcard constraint, parse the value part of each property
according to this constraint, fail if the parsing fails or does not consume the
entire value part, and substitute the fragment specified in “Pattern Variable
Constraints” on page 154 for the value part.

■ Each pattern-keyword in the property-list-pattern binds a pattern variable as
follows:

■ A single question mark finds the first property whose SYMBOL is the NAME
of the pattern-keyword . Comparison of a SYMBOL to a NAME is
case-insensitive, ignores backslash quoting, and is unaffected by the
lexical context of the NAME. If the pattern-keyword has a non-wildcard
constraint, parse the property's value according to this constraint, fail if
the parsing fails or does not consume the entire value , and bind the
pattern variable to the fragment specified in “Pattern Variable

C H A P T E R 1 0

Macros

Patterns 153

Constraints” on page 154. If the pattern-keyword has a wildcard
constraint, bind the pattern variable to the property's value .

■ A double question mark finds every property with a matching SYMBOL,
processes each property's value as for a single question mark, and binds
the pattern variable to a sequence of the values, preserving the order of
properties in the input fragment. This sequence can only be used with
double question mark in a template. Constraint-directed parsing applies
to each property value individually.

■ If a single question mark pattern-keyword does not find any matching
property, then if a default is present, the pattern variable binds to the default
expression, otherwise the property is required so the pattern match fails.

■ If a double question mark pattern-keyword does not find any matching
property, then if a default is present, the pattern variable binds to a sequence
of one element, the default expression, otherwise the pattern variable binds
to an empty sequence.

■ Note: the default expression in a pattern-keyword is not evaluated during
macro expansion; it is a parsed expression fragment that is used instead of a
fragment from the macro call. The default is not subject to a pattern variable
constraint.

Special Rules for Definitions

A list-style definition parses as the core reserved word define, an optional
sequence of modifiers, a DEFINE-LIST-WORD, and a possibly-empty list-fragment.
The left-hand side of a list-style-definition-rule matches this by treating the
definition-head as a pattern-sequence and matching it to the sequence of
modifiers, and then matching the pattern to the list-fragment. If no
definition-head is present, the sequence of modifiers must be empty. If no pattern
is present, the list-fragment must be empty. The word define and the
DEFINE-LIST-WORD do not participate in the pattern match because they were
already used to identify the macro being called and because the spelling of the
DEFINE-LIST-WORD might have been changed by renaming the macro during
module importing.

A body-style definition parses as the core reserved word define, an optional
sequence of modifiers, a DEFINE-BODY-WORD, a possibly-empty body-fragment,
the core reserved word end, and optional repetitions of the DEFINE-BODY-WORD
and the NAME (if any) that is the first token of the body-fragment. The left-hand

C H A P T E R 1 0

Macros

154 Patterns

side of a body-style-definition-rule matches this by treating the definition-head as a
pattern-sequence and matching it to the sequence of modifiers, and then
matching the pattern to the body-fragment. If no definition-head is present, the
sequence of modifiers must be empty. If no pattern is present, the body-fragment
must be empty. If the body-fragment ends in a semicolon, this semicolon is
removed before matching. The optional semicolon in the rule is just decoration
and does not participate in the pattern match. The word define and the
DEFINE-BODY-WORD do not participate in the pattern match because they were
already used to identify the macro being called and because the spelling of the
DEFINE-BODY-WORD might have been changed by renaming the macro during
module importing. The word end and the two optional items following it in
the macro call are checked during parsing, and so do not participate in the
pattern match.

It is an error for a definition-head to contain more than one wildcard.

Special Rules for Statements

A statement parses as a BEGIN-WORD, a possibly-empty body-fragment, the core
reserved word end, and an optional repetition of the BEGIN-WORD. The
left-hand side of a statement-rule matches this by matching the pattern to the
body-fragment. If the rule does not contain a pattern, the body-fragment must be
empty. If the body-fragment ends in a semicolon, this semicolon is removed
before matching. The optional semicolon in the rule is just decoration and does
not participate in the pattern match. The BEGIN-WORD does not participate in
the pattern match because it was already used to identify the macro being
called and because its spelling might have been changed by renaming the
macro during module importing. The word end and the optional item
following it in the macro call are checked during parsing, and so do not
participate in the pattern match.

Special Rules for Function Macros

A call to a function macro parses as a FUNCTION-WORD followed by a
parenthesized, possibly-empty body-fragment. The left-hand side of a
function-rule matches this by matching the pattern to the body-fragment. If the
rule does not contain a pattern, the body-fragment must be empty. The
FUNCTION-WORD does not participate in the pattern match because it was
already used to identify the macro being called and because its spelling might

C H A P T E R 1 0

Macros

Pattern Variable Constraints 155

have been changed by renaming the macro during module importing. The
parentheses in the rule are just decoration and do not participate in the pattern
match.

A function macro can also be invoked by any of the shorthand syntax
constructs available for invoking functions. In this case, the arguments are
always parsed expression fragments, as described on page 144. However, the
left-hand side of a function-rule has to use function-macro-call syntax even if
the macro is intended to be called by operator, slot reference, or element
reference syntax.

Pattern Variable Constraints

Each pattern-variable in the left-hand side of a rule in a macro definition has a
constraint associated with it. This prevents the pattern from matching unless
the fragment matched to the pattern-variable satisfies the constraint. In most
cases it also controls how the matching fragment is parsed.

You specify a constraint in a pattern-variable by suffixing a colon and the
constraint name to the pattern variable name. Intervening whitespace is not
allowed. As an abbreviation, if a pattern variable has the same name as its
constraint, the pattern-variable can be written ?:the-name instead of
?the-name:the-name.

The following constraints are available:

Table 10-1 Available constraints

Constraint name Grammar accepted Binds pattern variable to

expression expression parsed expression
fragment(1)

variable variable fragment(2)

name NAME one-token fragment

token TOKEN one-token fragment

body body
opt (3) parsed expression

fragment (4)

C H A P T E R 1 0

Macros

156 Pattern Variable Constraints

Notes:

1. Parsed expression fragments are described on page 144

2. Where expression, operand, constituents or body appears in the grammar that
this constraint accepts, the bound fragment contains a parsed expression
fragment, not the original elementary fragments.

3. Parsing stops at an intermediate word.

4. The body is wrapped in begin … end to make it an expression, using the
standard binding of begin in the Dylan module. An empty body defaults
to #f.

5. A pattern-variable with a macro constraint accepts exactly one elementary
fragment, which must be a macro call fragment. It binds the pattern variable
to the expansion of the macro.

Some implementations and a future version of the Dylan language
specification might add more constraint choices to this table.

When a pattern variable has the same name as an auxiliary rule-set, its
constraint defaults to wildcard and can be omitted. Otherwise a constraint
must be specified in every pattern-variable and pattern-keyword.

A constraint applies only to the specific pattern variable occurrence to which it
is attached. It does not constrain other pattern variable occurrences with the
same name.

Intermediate Words

When a pattern-variable has a constraint of body or case-body, its parsing of
the fragment stops before any token that is an intermediate word. This allows
intermediate words to delimit clauses that have separate bodies, like else and

case-body case-body
opt

 (3) fragment(2)

macro macro fragment(5)

* (wildcard) fragment

Table 10-1 Available constraints

Constraint name Grammar accepted Binds pattern variable to

C H A P T E R 1 0

Macros

Templates 157

elseif in an if statement. The intermediate words of a macro are identified
as follows:

■ Define a body-variable to be a pattern variable that either has a constraint of
body or case-body, or names an auxiliary rule-set where some left-hand
side in that rule-set ends in a body-variable. This is a least fixed point, so a
recursive auxiliary rule-set does not automatically make its name into a
body-variable! Note that an ellipsis that stands for a pattern variable is a
body-variable when that pattern variable is one.

■ Define an intermediate-variable to be a pattern variable that either
immediately follows a body-variable in a left-hand side, or appears at the
beginning of a left-hand side in an auxiliary rule-set named by an
intermediate-variable.

■ An intermediate word is a NAME that either immediately follows a
body-variable in a left-hand side, or occurs at the beginning of a left-hand
side in an auxiliary rule-set named by an intermediate-variable.
Intermediate words are not reserved, they are just used as delimiters during
the parsing for a pattern-variable with a body or case-body constraint.

Templates

Approximately speaking, a template has the same structure as what it
constructs, but contains pattern variables that will be replaced by fragments
extracted from the macro call. Thus a template in the main-rule-set looks like
the macro expansion.

However, templates do not have a full grammar. A template is essentially any
sequence of tokens and substitutions in which all of Dylan’s brackets are
balanced: (), [], {}, #(), and #[]. Substitution for pattern variables
produces a sequence of tokens and other elementary fragments.

Note that using unparsed token sequences as templates allows a macro
expansion to contain macro calls without creating any inter-dependencies
between macros. Since the template is not parsed at macro definition time, any
macros called in the template do not have to be defined first, and macros can be
compiled independently of each other. This simplifies the implementation at
the minor cost of deferring some error checking from when a macro is defined
until the time when the macro is called.

C H A P T E R 1 0

Macros

158 Templates

The grammar for templates is the definition of template in “Templates” on
page 415.

All template-elements other than substitution are copied directly into the macro
expansion. The various kinds of substitution insert something else into the
macro expansion, as follows:

? NAME The fragment bound to the pattern variable named NAME.

name-prefix
opt
 ? name-string-or-symbol name-suffix

opt

The fragment bound to the pattern variable named
name-string-or-symbol, converted to a STRING or SYMBOL and/or
concatenated with a prefix and/or suffix. Note that this rule
applies only when the first rule does not. The fragment must be
a NAME. Concatenate the prefix, if any, the characters of the
fragment, and the suffix, if any. The alphabetic case of the
characters of the fragment is unspecified. Convert this to the
same grammatical type (NAME, STRING, or SYMBOL) as
name-string-or-symbol. When the result is a NAME, its hygiene
context is the same as that of the fragment.

?? NAME separator
opt
 ...

The sequence of fragments bound to the pattern variable named
NAME, with separator inserted between each pair of fragments.
The pattern variable must have been bound by a ??
pattern-keyword. Separator can be a binary operator, comma, or
semicolon. If the size of the sequence is 1 or separator is omitted,
no separator is inserted. If the sequence is empty, nothing is
inserted.

... The fragment bound to the pattern variable that names this rule
set; this is only valid in an auxiliary rule set.

?= NAME A reference to NAME, in the lexical context where the macro
was called.

It is an error for a single question-mark substitution to use a pattern variable
that was bound by a double question-mark pattern-keyword.

It is an error for a double question-mark substitution to use a pattern variable
that was bound by a single question-mark pattern-variable or pattern-keyword.

It is an error for a substitution to use a pattern variable that does not appear on
the left-hand side of the same rule.

C H A P T E R 1 0

Macros

Auxiliary Rule Sets 159

When a template contains a separator immediately followed by a substitution,
and the fragment inserted into the macro expansion by the substitution is
empty, the separator is removed from the macro expansion.

Auxiliary Rule Sets

Auxiliary rule sets are like subroutines for rewrite rules. An auxiliary rule set
rewrites the value of a pattern variable after it is bound by a pattern and before
it is substituted into a template. Auxiliary rule sets only come into play after a
pattern has matched; the failure of all patterns in an auxiliary rule set to match
causes the entire macro call to be declared invalid, rather than back-tracking
and trying the next pattern in the calling rule set.

See the definition of aux-rule-sets in “Auxiliary Rule Sets” on page 416.

A SYMBOL flags the beginning of an auxiliary rule set. For readability it is
generally written as name: rather than #"name". The name of the symbol is
the same as the name of the pattern variable that is rewritten by this auxiliary
rule set. All occurrences of this pattern variable in all rule sets are rewritten. A
pattern variable can occur in the very auxiliary rule set that rewrites that
pattern variable; this is how you write recursive rewrite rules, which greatly
expand the power of pattern-matching.

When an auxiliary rule set's pattern variable occurs in a double question-mark
pattern-keyword, the auxiliary rule set rewrites each property value in the
sequence individually.

The order of auxiliary rule sets in a macro definition is immaterial.

The ellipsis ... in patterns and templates of an auxiliary rule set means
exactly the same thing as the pattern variable that is rewritten by this auxiliary
rule set. Using ellipsis instead of the pattern variable can make recursive
rewrite rules more readable.

Hygiene

Dylan macros are always hygienic. The basic idea is that each named value
reference in a macro expansion means the same thing as it meant at the place in

C H A P T E R 1 0

Macros

160 Hygiene

the original source code from which it was copied into the macro expansion.
This is true whether that place was in the macro definition or in the macro call.
Because a macro expansion can include macro calls that need further
expansion, named value references in one final expansion can come from
several different macro definitions and can come from several different macro
calls, either to different macros or—in the case of recursion—distinct calls to
the same macro.

(Sometimes the property that variable references copied from a macro call
mean the same thing in the expansion is called “hygiene” and the property that
variable references copied from a macro definition mean the same thing in the
expansion is called “referential transparency.” We include both properties in
the term “hygiene.”)

Specifically, a macro can bind temporary variables in its expansion without the
risk of accidentally capturing references in the macro call to another binding
with the same name. Furthermore, a macro can reference module bindings in
its expansion without the risk of those references accidentally being captured
by bindings of other variables with the same name that surround the macro
call. A macro can reference module bindings in its expansion without
worrying that the intended bindings might have different names in a module
where the macro is called.

One way to implement this is for each template-element that is a NAME,
UNARY-OPERATOR, or BINARY-OPERATOR to be replaced in the macro expansion
by a special token which plays the same grammatical role as the NAME,
UNARY-OPERATOR, or BINARY-OPERATOR but remembers three pieces of
information:

■ The original NAME. For an operator, this is the name listed in Table 4-1 on
page 36.

■ The lexical context where the macro was defined, which is just a module
since macro definitions are only allowed at top level, not inside of bindings.

■ The specific macro call occurrence. This could be an integer that is
incremented each time a macro expansion occurs.

In general one cannot know until all macros are expanded whether a NAME is a
bound variable reference, a module binding reference, a variable that is being
bound, or something that is not a binding name at all, such as a definition
modifier or an intermediate word. Similarly, one cannot know until all macros
are expanded whether a UNARY-OPERATOR or BINARY-OPERATOR refers to a local
binding or a module binding. Thus the information for each of those cases is

C H A P T E R 1 0

Macros

Hygiene 161

retained in the special token. A named value reference and a binding connect if
and only if the original NAMES and the specific macro call occurrences are both
the same. (In that case, the lexical contexts will also be the same, but this need
not be checked.) A named value reference and a binding never connect if one
originated in a template and the other originated in a macro call.

References in a macro expansion to element or aref created by using element
reference syntax must receive similar treatment so the NAME element or aref
gets looked up in the environment of the macro definition, not the
environment of the macro call.

For purposes of hygiene, a pattern-keyword default is treated like part of a
template, even though it is actually part of a pattern.

The mapping from getters to setters done by the := operator is hygienic. In all
cases the setter name is looked up in the same lexical context and macro call
occurrence as the getter name.

Intentional Hygiene Violation

Sometimes it is necessary for a macro to violate the hygienic property, for
example to include in a macro expansion a named value reference to be
executed in the lexical context where the macro was called, not the lexical
context where the macro was defined. Another example is creating a local
binding in a macro expansion that will be visible to the body of the macro.
This feature should be used sparingly, as it can be confusing to users of the
macro, but sometimes it is indispensable.

The construct ?= NAME in a template inserts into the expansion a reference to
NAME, in the lexical context where the macro was called. It is as if NAME came
from the macro call rather than from the template.

Hygiene Versus Module Encapsulation

A named value reference in a macro expansion that was produced by a
template-element that is a NAME, UNARY-OPERATOR, BINARY-OPERATOR, or
[template

opt
] and that does not refer to a local binding created by the macro

expansion must have the same meaning as would a named value reference
with the same name adjacent to the macro definition. This is true even if the

C H A P T E R 1 0

Macros

162 Hygiene

macro call is in a different module or a different library from the one in which
the macro definition occurs, even if the binding is not exported.

This allows exported macros to make use of private bindings without requiring
these bindings to be exported for general use. The module that calls the macro
does not need to import the private bindings used by the expansion.

If one of the following template-element sequences appears in the right-hand
side of a rewrite rule, it may introduce named value references to the indicated
name in an expansion of the macro. If such a named value reference does not
refer to a local binding created by the macro expansion then it must have the
same meaning as would a named value reference with the same name adjacent
to the macro definition.

■ variable-name

Reference to variable-name

■ getter-name (template
opt

) assignment-operator
assignment-operator-name (template

opt
 getter-name (template

opt
))

Reference to getter-name ## "-setter"

■ [template
opt
] assignment-operator

assignment-operator-name (template
opt
 [template

opt
])

Reference to either element-setter and aref-setter

■ . getter-name assignment-operator
assignment-operator-name (template

opt
 . getter-name)

Reference to getter-name ## "-setter"

■ define definition-head
opt
 definer-name

Reference to definer-name ## "-definer"

Items in the preceding template-element sequences have the following
meanings:

■ assignment-operator-name is a NAME, and the value of the binding with that
name (in the module containing the macro definition in which the
template occurs) is the assignment macro which is the value of the
binding named \:= exported by the Dylan module of the Dylan library.

C H A P T E R 1 0

Macros

Rewrite Rule Examples 163

■ assignment-operator is a binary-operator whose associated binding is an
assignment-operator-name.)

■ definer-name is a DEFINE-BODY-WORD or DEFINE-LIST-WORD.

■ variable-name and getter-name are NAMEs.

■ template is defined in Appendix A, “BNF,” on page 415.

■ definition-head is defined in Appendix A, “BNF,” on page 413.

■ The notation foo ## "string" indicates a new token composed of the
text of foo concatenated with the string.

Note that these template-element sequences can overlap in a template. For
example { foo (bar) := } is a potential reference to foo, to foo-setter,
and to bar.

Implementations must use some automatic mechanism for noting the bindings
associated with the named value references in macro expansions produced by
the template-element sequences described above, and must make such
bindings available to any library where the macro is accessible. In general, the
set of bindings that must be made available to other libraries cannot be
computed precisely because the right-hand sides of rewrite rules are not fully
parsed until after a macro is called and expanded, making it impossible to
determine whether an occurance of one of the described sequences of template
elements will actually produce a named variable reference in the expansion.
However, an upper bound on this set of bindings can be computed by
assuming that all occurances of the described template-element sequences
might introduce the indicated named value reference if there is a binding for
that name accessible from the module in which the macro definition appears.

Rewrite Rule Examples

The following definitions of all of the built-in macros are provided as examples.
This section is not intended to be a tutorial on how to write macros, just a
collection of demonstrations of some of the tricks.

The built-in macros cannot really be implemented this way, for example, if
and case cannot really both be implemented by expanding to the other.
Certain built-in macros cannot be implemented with rewrite rules or
necessarily rewrite into implementation-dependent code; in these cases the
right-hand sides are shown as id.

C H A P T E R 1 0

Macros

164 Rewrite Rule Examples

Statement Macros

Begin

define macro begin

 { begin ?:body end } => { ?body }

end;

Block

define macro block

 { block () ?ebody end }

 => { ?ebody }

 { block (?:name) ?ebody end }

 => { with-exit(method(?name) ?ebody end) }

 // Left-recursive so leftmost clause is innermost

 ebody:

 { ... exception (?type:expression, ?eoptions) ?:body }

 => { with-handler(method() ... end,

 method(ignore) ?body end,

 ?type, ?eoptions) }

 { ... exception (?:name :: ?type:expression, ?eoptions) ?:body }

 => { with-handler(method() ... end,

 method(?name) ?body end,

 ?type, ?eoptions) }

 { ?abody cleanup ?cleanup:body}

 => { with-cleanup(method() ?abody end, method () ?cleanup end) }

 { ?abody }

 => { ?abody }

 abody:

 { ?main:body }

 => { ?main }

 { ?main:body afterwards ?after:body }

 => { with-afterwards(method() ?main end, method () ?after end) }

C H A P T E R 1 0

Macros

Rewrite Rule Examples 165

 eoptions:

 { #rest ?options:expression,

 #key ?test:expression = always(#t),

 ?init-arguments:expression = #() }

 => { ?options }

end;

Case

define macro case

 { case ?:case-body end } => { ?case-body }

 case-body:

 { } => { #f }

 { otherwise ?:body } => { ?body }

 { ?test:expression => ?:body; ... } => { if (?test) ?body

 else ... end if }

end;

For

// This macro has three auxiliary macros, whose definitions follow

define macro for

 { for (?header) ?fbody end } => { for-aux ?fbody, ?header end }

 // pass main body and finally body as two expressions

 fbody:

 { ?main:body } => { ?main, #f }

 { ?main:body finally ?val:body } => { ?main, ?val }

 // convert iteration clauses to property list via for-clause macro

 header:

 { ?v:variable in ?c:expression, ... }

 => { for-clause(?v in ?c) ... }

 { ?v:variable = ?e1:expression then ?e2:expression, ... }

 => { for-clause(?v = ?e1 then ?e2) ... }

 { ?v:variable from ?e1:expression ?to, ... }

C H A P T E R 1 0

Macros

166 Rewrite Rule Examples

 => { for-clause(?v from ?e1 ?to) ... }

 { } => { }

 { #key ?while:expression } => { for-clause(~?while stop) }

 { #key ?until:expression } => { for-clause(?until stop) }

 // parse the various forms of numeric iteration clause

 to:

 { to ?limit:expression by ?step:expression }

 => { hard ?limit ?step }

 { to ?limit:expression } => { easy ?limit 1 > }

 { above ?limit:expression ?by } => { easy ?limit ?by <= }

 { below ?limit:expression ?by } => { easy ?limit ?by >= }

 { ?by } => { loop ?by }

 by:

 { } => { 1 }

 { by ?step:expression } => { ?step }

end;

// Auxiliary macro to make the property list for an iteration clause.

// Each iteration clause is a separate call to this macro so the

// hygiene rules will keep the temporary variables for each clause

// distinct.

// The properties are:

// init0: - constituents for start of body, outside the loop

// var1: - a variable to bind on each iteration

// init1: - initial value for that variable

// next1: - value for that variable on iterations after the first

// stop1: - test expression, stop if true, after binding var1's

// var2: - a variable to bind on each iteration, after stop1 tests

// next2: - value for that variable on every iteration

// stop2: - test expression, stop if true, after binding var2's

define macro for-clause

 // while:/until: clause

 { for-clause(?e:expression stop) }

 => { , stop2: ?e }

C H A P T E R 1 0

Macros

Rewrite Rule Examples 167

 // Explicit step clause

 { for-clause(?v:variable = ?e1:expression then ?e2:expression) }

 => { , var1: ?v, init1: ?e1, next1: ?e2 }

 // Collection clause

 { for-clause(?v:variable in ?c:expression) }

 => { , init0: [let collection = ?c;

 let (initial-state, limit,

 next-state, finished-state?,

 current-key, current-element)

 = forward-iteration-protocol(collection);]

 , var1: state, init1: initial-state

 , next1: next-state(collection, state)

 , stop1: finished-state?(collection, state, limit)

 , var2: ?v, next2: current-element(collection, state) }

 // Numeric clause (three cases depending on ?to right-hand side)

 { for-clause(?v:name :: ?t:expression from ?e1:expression

 loop ?by:expression) }

 => { , init0: [let init = ?e1;

 let by = ?by;]

 , var1: ?v :: ?t, init1: init, next1: ?v + by }

 { for-clause(?v:name :: ?t:expression from ?e1:expression

 easy ?limit:expression ?by:expression ?test:token) }

 => { , init0: [let init = ?e1;

 let limit = ?limit;

 let by = ?by;]

 , var1: ?v :: ?t, init1: init, next1: ?v + by

 , stop1: ?v ?test limit }

 { for-clause(?v:name :: ?t:expression from ?e1:expression

 hard ?limit:expression ?by:expression) }

 => { , init0: [let init = ?e1;

 let limit = ?limit;

 let by = ?by;]

C H A P T E R 1 0

Macros

168 Rewrite Rule Examples

 , var1: ?v :: ?t, init1: init, next1: ?v + by

 , stop1: if (by >= 0) ?v > limit else ?v < limit end if }

end;

// Auxiliary macro to expand multiple for-clause macros and

// concatenate their expansions into a single property list.

define macro for-aux

 { for-aux ?main:expression, ?value:expression, ?clauses:* end }

 => { for-aux2 ?main, ?value ?clauses end }

 clauses:

 { } => { }

 { ?clause:macro ... } => { ?clause ... }

end;

// Auxiliary macro to assemble collected stuff into a loop.

// Tricky points:

// loop iterates by tail-calling itself.

// return puts the finally clause into the correct lexical scope.

// ??init0 needs an auxiliary rule set to strip off the shielding

// brackets that make it possible to stash local declarations in

// a property list.

// ??var2 and ??next2 need a default because let doesn't allow

// an empty variable list.

// ??stop1 and ??stop2 need a default because if () is invalid.

define macro for-aux2

 { for-aux2 ?main:expression, ?value:expression,

 #key ??init0:*, ??var1:variable,

 ??init1:expression, ??next1:expression,

 ??stop1:expression = #f,

 ??var2:variable = x, ??next2:expression = 0,

 ??stop2:expression = #f

 end }

 => { ??init0 ...

 local method loop(??var1, ...)

 let return = method() ?value end method;

 if (??stop1 | ...) return()

 else let (??var2, ...) = values(??next2, ...);

C H A P T E R 1 0

Macros

Rewrite Rule Examples 169

 if(??stop2 | ...) return()

 else ?main; loop(??next1, ...)

 end if;

 end if;

 end method;

 loop(??init1, ...) }

 // strip off brackets used only for grouping

 init0:

 { [?stuff:*] } => { ?stuff }

end;

If

define macro if

 { if (?test:expression) ?:body ?elses end }

 => { case ?test => ?body;

 otherwise ?elses end }

 elses:

 { } => { #f }

 { else ?:body } => { ?body }

 { elseif (?test:expression) ?:body ... }

 => { case ?test => ?body;

 otherwise ... end }

end;

Method

define macro method

 { method (?parameters:*) => (?results:*) ; ?:body end } => id
 { method (?parameters:*) => (?results:*) ?:body end } => id
 { method (?parameters:*) => ?result:variable ; ?:body end } => id
 { method (?parameters:*) ; ?:body end } => id
 { method (?parameters:*) ?:body end } => id
end;

C H A P T E R 1 0

Macros

170 Rewrite Rule Examples

Select

define macro select

 { select (?what) ?:case-body end } => { ?what; ?case-body }

 what:

 { ?object:expression by ?compare:expression }

 => { let object = ?object;

 let compare = ?compare }

 { ?object:expression } => { let object = ?object;

 let compare = \== }

 case-body:

 { }

 => { error("select error, %= doesn't match any key", object) }

 { otherwise ?:body } => { ?body }

 { ?keys => ?:body; ... } => { if (?keys) ?body

 else ... end if }

 keys:

 { ?key:expression } => { compare(object, ?key) }

 { (?keys2) } => { ?keys2 }

 { ?keys2 } => { ?keys2 }

 keys2:

 { ?key:expression } => { compare(object, ?key) }

 { ?key:expression, ... } => { compare(object, ?key) | ... }

end;

Unless

define macro unless

 { unless (?test:expression) ?:body end }

 => { if (~ ?test) ?body end }

end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 171

Until

define macro until

 { until (?test:expression) ?:body end }

 => { local method loop ()

 if (~ ?test)

 ?body;

 loop()

 end if;

 end method;

 loop() }

end;

While

define macro while

 { while (?test:expression) ?:body end }

 => { local method loop ()

 if (?test)

 ?body;

 loop()

 end if;

 end method;

 loop() }

end;

Definition Macros

Define Class

define macro class-definer

 { define ?mods:* class ?:name (?supers) ?slots end } => id

C H A P T E R 1 0

Macros

172 Rewrite Rule Examples

 supers:

 { } => id
 { ?super:expression, ... } => id

 slots:

 { } => id
 { inherited slot ?:name, #rest ?options:*; ... } => id
 { inherited slot ?:name = ?init:expression,

 #rest ?options:*; ... } => id
 { ?mods:* slot ?:name, #rest ?options:*; ... } => id
 { ?mods:* slot ?:name = ?init:expression,

 #rest ?options:*; ... } => id
 { ?mods:* slot ?:name :: ?type:expression,

 #rest ?options:*; ... } => id
 { ?mods:* slot ?:name :: ?type:expression = ?init:expression,

 #rest ?options:*; ... } => id
 { required keyword ?key:expression,

 #rest ?options:*; ... } => id
 { required keyword ?key:expression ?equals:token ?init:expression,

 #rest ?options:*; ... } => id
 { keyword ?key:expression, #rest ?options:*; ... } => id
 { keyword ?key:expression ?equals:token ?init:expression,

 #rest ?options:*; ... } => id
end;

Define Constant

define macro constant-definer

 { define ?modifiers:* constant

 ?:name :: ?type:expression = ?init:expression } => id
 { define ?modifiers:* constant

 (?variables:*) ?equals:token ?init:expression } => id
end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 173

Define Domain

define macro domain-definer

 { define sealed domain ?:name (?types) } => id

 types:

 { } => { }

 { ?type:expression, ... } => { ?type, ... }

end;

Define Generic

define macro generic-definer

 { define ?mods:* generic ?:name ?rest:* } => id

 rest:

 { (?parameters:*), #key } => id
 { (?parameters:*) => ?:variable, #key } => id
 { (?parameters:*) => (?variables:*), #key } => id
end;

Define Library

define macro library-definer

 { define library ?:name ?items end } => id

 items:

 { } => id
 { use ?:name, #rest ?options:*; ... } => id
 { export ?names; ... } => id

 names:

 { ?:name } => id
 { ?:name, ... } => id
end;

C H A P T E R 1 0

Macros

174 Rewrite Rule Examples

Define Method

define macro method-definer

 { define ?mods:* method ?:name ?rest end } => id
 rest:

 { (?parameters:*) => (?results:*) ; ?:body } => id
 { (?parameters:*) => (?results:*) ?:body } => id
 { (?parameters:*) => ?result:variable ; ?:body } => id
 { (?parameters:*) ; ?:body } => id
 { (?parameters:*) ?:body } => id
end;

Define Module

define macro module-definer

 { define module ?:name ?items end } => id

 items:

 { } => id
 { use ?:name, #rest ?options:*; ... } => id
 { export ?names; ... } => id
 { create ?names; ... } => id

 names:

 { ?:name } => id
 { ?:name, ... } => id
end;

Define Variable

define macro variable-definer

 { define ?modifiers:* variable

 ?:name :: ?type:expression = ?init:expression } => id
 { define ?modifiers:* variable

 (?variables:*) ?equals:token ?init:expression } => id
end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 175

Operator Function Macros

&

define macro \&

 { \&(?first:expression, ?second:expression) }

 => { if (?first) ?second else #f end }

end;

|

define macro \|

 { \|(?first:expression, ?second:expression) }

 => { let temp = ?first;

 if (temp) temp else ?second end }

end;

:=

define macro \:=

 { \:=(?place:macro, ?value:expression) } => id
 { \:=(?place:expression, ?value:expression) } => id
end;

Additional Examples

The following macros are not built-in, but are simply supplied as examples.
Each is shown as a definition followed by a sample call.

C H A P T E R 1 0

Macros

176 Rewrite Rule Examples

Test and Test-setter

define macro test

 { test(?object:expression) } =>

 { frame-slot-getter(?object, #"test") }

end macro;

define macro test-setter

 { test-setter(?value:expression, ?object:expression) }

 => { frame-slot-setter(?value, ?object, #"test") }

end macro;

test(foo.bar) := foo.baz;

Transform!

define macro transform!

 // base case

 { transform!(?xform:expression) } => { ?xform }

 // the main recursive rule

 { transform!(?xform:expression, ?x:expression, ?y:expression,

 ?more:*) }

 => { let xform = ?xform;

 let (nx, ny) = transform(xform, ?x, ?y);

 ?x := nx; ?y := ny;

 transform!(xform, ?more) }

end macro;

transform!(w.transformation, xvar, yvar, w.pos.x, w.pos.y);

Formatting-table

define macro formatting-table

 { formatting-table (?:expression,

 #rest ?options:expression,

 #key ?x-spacing:expression = 0,

C H A P T E R 1 0

Macros

Rewrite Rule Examples 177

 ?y-spacing:expression = 0)

 ?:body end }

 => { do-formatting-table(?expression, method() ?body end,

 ?options) }

end macro;

formatting-table (stream, x-spacing: 10, y-spacing: 12)

 foobar(stream)

end;

With-input-context

define macro with-input-context

 { with-input-context (?context-type:expression,

 #key ?override:expression = #f)

 ?bbody end }

 => { do-with-input-context(?context-type, ?bbody,

 override: ?override) }

 bbody:

 { ?:body ?clauses } => { list(?clauses), method() ?body end }

 clauses:

 { } => { }

 { on (?:name :: ?spec:expression, ?type:variable) ?:body ... }

 => { pair(?spec, method (?name :: ?spec, ?type) ?body end),

 ... }

end macro;

with-input-context (context-type, override: #t)

 // the body that reads from the user

 read-command-or-form (stream);

 // the clauses that dispatch on the type

 on (object :: <command>, type) execute-command (object);

 on (object :: <form>, type) evaluate-form (object, type);

end;

C H A P T E R 1 0

Macros

178 Rewrite Rule Examples

Define Command

define macro command-definer

 { define command ?:name (?arguments:*) (#rest ?options:expression)

 ?:body end }

 => { define-command-1 ?name (?arguments) ?body end;

 define-command-2 ?name (?arguments) (?options) end }

end macro;

// define the method that implements a command

// throws away the "stuff" in each argument used by the command parser

define macro define-command-1

 { define-command-1 ?:name (?arguments) ?:body end }

 => { define method ?name (?arguments) ?body end }

 // map over ?arguments, reducing each to a parameter-list entry

 // but when we get to the first argument that has a default, put

 // in #key and switch to the key-arguments loop

 arguments:

 { } => { }

 { ?:variable = ?default:expression ?stuff:*, ?key-arguments }

 => { #key ?variable = ?default, ?key-arguments }

 { ?argument, ... } => { ?argument, ... }

 // map over keyword arguments the same way, each must

 // have a default

 key-arguments:

 { } => { }

 { ?key-argument, ... } => { ?key-argument, ... }

 // reduce one required argument spec to a parameter-list entry

 argument:

 { ?:variable ?stuff:* } => { ?variable }

C H A P T E R 1 0

Macros

Rewrite Rule Examples 179

 // reduce one keyword argument spec to a parameter-list entry

 key-argument:

 { ?:variable = ?default:expression ?stuff:* }

 => { ?variable = ?default }

end macro;

// generate the datum that describes a command and install it

define macro define-command-2

 { define-command-2 ?:name (?arguments) (#rest ?options:*) end }

 => { install-command(?name, list(?arguments), ?options) }

 // map over ?arguments, reducing each to a data structure

 arguments:

 { } => { }

 { ?argument, ... } => { ?argument, ... }

 // reduce one argument specification to a data structure

 argument:

 { ?:name :: ?type:expression = ?default:expression ?details }

 => { make(<argument-info>, name: ?"name", type: ?type,

 default: ?default, ?details) }

 { ?:name :: ?type:expression ?details }

 => { make(<argument-info>, name: ?"name", type: ?type, ?details) }

 // translate argument specification to <argument-info> init keywords

 details:

 { } => { }

 { ?key:name ?value:expression ... } => { ?#"key" ?value, ... }

end macro;

define command com-show-home-directory

 (directory :: <type> provide-default #t,

 before :: <time> = #() prompt "date",

 after :: <time> = #() prompt "date")

 // Options

 (command-table: directories,

C H A P T E R 1 0

Macros

180 Rewrite Rule Examples

 name: "Show Home Directory")

 body()

end command com-show-home-directory;

Get-resource

// The idea is that in this application each library has its own

// variable named $library, which is accessible to modules in that

// library. Get-resource gets a resource associated with the library

// containing the call to it. Get-resource-from-library is a function.

// The get-resource macro is a device to make programs more concise.

define macro get-resource

 { get-resource(?type:expression, ?id:expression) }

 => { get-resource-from-library(?=$library, ?type, ?id) }

end macro;

show-icon(get-resource(ResType("ICON"), 1044));

Completing-from-suggestions

// The completing-from-suggestions macro defines a lexically visible

// helper function called "suggest", which is only meaningful inside

// of calls to the completer. The "suggest" function is passed as an

// argument to the method passed to complete-input; alternatively it

// could have been defined in a local declaration wrapped around the

// method.

define macro completing-from-suggestions

 { completing-from-suggestions (?stream:expression,

 #rest ?options:expression)

 ?:body end }

 =>{ complete-input(?stream,

 method (?=suggest) ?body end,

 ?options) }

end macro;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 181

completing-from-suggestions (stream, partial-completers: #(' ', '-'))

 for (command in commands)

 suggest (command, command-name (command))

 end for;

end completing-from-suggestions;

Define Jump-instruction

define macro jump-instruction-definer

 { define jump-instruction ?:name ?options:* end }

 => { register-instruction("j" ## ?#"name",

 make(<instruction>,

 debug-name: "j" ## ?"name",

 ?options)) }

end macro;

define jump-instruction eq cr-bit: 2, commutative?: #t end;

C H A P T E R 1 0

Macros

182 Rewrite Rule Examples

