
Earthquake Ground Motion Modeling on Parallel Computers

Hesheng Bao
Computational Mechanics Laboratory, Department of Civil and Environmental Engineering

Carnegie Mellon University
Pittsburgh, PA 15213
hbao@cs.cmu.edu

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/hbao/www/home.html

Jacobo Bielak
Computational Mechanics Laboratory, Department of Civil and Environmental Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

bielak@cs.cmu.edu
http://www.ce.cmu.edu/user/faculty/bielak.html

Omar Ghattas
Computational Mechanics Laboratory, Department of Civil and Environmental Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

oghattas@cs.cmu.edu
http://www.cs.cmu.edu/˜oghattas

Loukas F. Kallivokas
Computational Mechanics Laboratory, Department of Civil and Environmental Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

loukas@cs.cmu.edu

David R. O’Hallaron
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
droh@cs.cmu.edu

http://www.cs.cmu.edu/˜droh/

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
jrs@cs.cmu.edu

Jifeng Xu
Computational Mechanics Laboratory, Department of Civil and Environmental Engineering

Carnegie Mellon University
Pittsburgh, PA 15213
jxu@cs.cmu.edu

http://www.cs.cmu.edu/afs/cs/user/jxu/www/documents/home.html

1

Abstract. We describe the design and discuss the performance of a parallel elastic wave propagation simulator that is being used

to model earthquake-induced ground motion in large sedimentary basins. The components of the system include mesh generators,

a mesh partitioner, a parceler, and a parallel code generator, as well as parallel numerical methods for applying seismic forces,

incorporating absorbing boundaries, and solving the discretized wave propagation problem. We discuss performance on the Cray

T3D for unstructured mesh wave propagation problems of up to 77 million tetrahedra. By paying careful attention to each step of

the process, we obtain excellent performance despite the highly irregular structure of the problem. The mesh generator, partitioner,

parceler, and code generator collectively form an integrated toolset called Archimedes, which automates the solution of unstructured

mesh PDE problems on parallel computers, and is being used for other unstructured mesh applications beyond ground motion

modeling.

Keywords. absorbing boundaries, computational geometry, finite element methods, local site effects, mesh generation, parallel

unstructured PDE solvers, parallelizing compilers, seismic wave propagation, strong ground motion.

1 Introduction

The reduction of the earthquake hazard to the general population is a major problem facing the U.S. and
other countries. To this end, it is essential that within earthquake-prone regions new facilities be designed to
resist earthquakes and existing structures be retrofitted as necessary. Assessing the free-field ground motion
to which a structure will be exposed during its lifetime is a critical first step in the design process. Ground
motion is usually specified through seismic design spectra, which essentially prescribe an equivalent lateral
force that the structure must withstand without failure. This force is based upon (i) past seismic history
in the general geographic location, (ii) position with respect to possible earthquake sources such as active
faults, (ii) expected earthquake magnitudes, and (iv) general geologic conditions.

Observations of ground motion during recent strong earthquakes have shown, however, that three-
dimensional local site effects, which are normally given only passing attention in design, can be extremely
significant, and can adversely affect structural safety. Three common effects often observed in basins or
sedimentary valleys are an amplification and significantly longer duration of the surface ground motion with
respect to that in rock. In addition, there is a more rapid spatial variation of the ground motion that can
cause large differential base motion of extended structures such as bridges or dams.

Examples of these effects are plentiful. Perhaps the most dramatic recent occurrences are those in
Mexico City in 1985 and within the San Francisco Bay area during the 1989 Loma Prieta earthquake. For
both of these events and their aftershocks, amplifications greater than 4 or 5 and durations of up to 15 to
30 seconds greater than the corresponding motion on rock were quite common, due to local site conditions.
Studies of these and other earthquakes indicate that the presence of large sediment-filled basins significantly
amplifies the strength of the waves observed within the basins.

It is now generally recognized that while one- and two-dimensional local models can help explain
observed behavior in certain situations, a complete quantitative understanding of strong ground motion
in large basins requires a simultaneous consideration of three-dimensional effects of earthquake source,
propagation path, and local site conditions. See [1] for a general overview, and [12, 11, 22, 8, 9, 18, 16], for
instance, for representative recent work in this field. The large scale associated with modeling strong ground
motion in large basins places enormous demands on computational resources, and renders this problem
among the “Grand Challenges” in high performance computing.

2 Numerical approximation issues

Simulating the earthquake response of a large basin is accomplished by numerically solving the partial
differential equations (PDEs) of elastic wave propagation, i.e. Navier’s equations of elastodynamics. A

2

variety of numerical methods have been used for approximating the solution of these problems. While
boundary element methods have been popular for moderately-sized linear models, the inhomogeneity,
nonlinearity, and large scale of such basins as the Greater Los Angeles Basin preclude their use here. On the
other hand, uniform grid domain methods such as finite differences become impractical for the very large
problem sizes involved.

To see why uniform grids are impractical, consider the Los Angeles Basin. For a shear wave velocity
of 0.4 km/s and a frequency of 2 Hz, a regular discretization of the elasticity operator would place grid
points 0.02 km apart to achieve second order accuracy. The region of interest has dimensions 140 km 100
km 20 km; thus, a regular discretization, governed by the softest layer, requires 35 billion grid points with
three displacement components per grid point. At least a terabyte of primary memory would be needed,
and on the order of 1013 operations would be required at each time step. The stability condition associated
with explicit time integration of the semidiscrete equations of motion imposes a time increment at least as
small as 0.004s. Thus, a computer would have to perform at a sustained teraflop per second for two days to
simulate a minute of shaking.

Instead, we use unstructured mesh finite element methods that tailor the mesh size to the local wavelength
of propagating waves. The wavelength is given by the product of the shear wave velocity and the period of
excitation. The shear wave velocity is a property of the soil type; for a basin such as Los Angeles, it varies
from 0.22 km/s to 4.5 km/s throughout the basin. Since in three dimensions mesh density varies with the
cube of shear wave velocity, and since the softest soils are concentrated in the top layers, this means that an
unstructured mesh method may yield three orders of magnitude fewer equations than with structured grids.
Modeling the Los Angeles Basin for values of earthquake period and wave velocity that are desirable for
engineering purposes thus becomes practical on the largest of today’s parallel supercomputers.

We favor finite element methods for their ability to efficiently resolve multiscale phenomena, the
ease with which they handle stress boundary conditions, and their firm theoretical foundation. For temporal
approximation, we have studied both explicit and preconditioned conjugate gradient-based implicit methods.
For hyperbolic problems, explicit methods become unstable if the time step is greater than the time it takes
an elastic wave to cross any element—the Courant condition. Implicit methods, on the other hand, are
unconditionally stable, implying that larger time steps can be taken. However, the very characteristic that
makes them stable—the fact that the solution at time requires information from all nodes1 at time —
renders them unattractive on distributed memory computers, since this implies global information exchange.
We have found that our mesh generators give us such good control over mesh resolution that the Courant
condition for explicit methods is not onerous. The result is that the more readily parallelizable explicit
methods perform better for elastic wave propagation problems. In this paper we discuss only a single-step
explicit time integration method.

While unstructured mesh methods for simulating wave propagation through heterogeneous media result
in many fewer equations, they introduce a number of computational difficulties that must be overcome.
First, mesh resolution must closely follow wavelength; too coarse a resolution will introduce error, too fine
will result in unnecessary computation as well as excessively small time steps (when explicit integration
methods are used). Second, element aspect ratios must remain small; large aspect ratios will eventually
result in instability in the time integration scheme. Highly heterogeneous basins, in which wavelengths vary
rapidly in space, introduce special difficulties when trying to follow the wavelength change without severely
stretching the mesh. Third, unstructured mesh methods are not easy to program on parallel computers; their
irregular data structures require nontrivial mappings onto parallel machines, and irregular communication
patterns are generated. Thus, we have had to develop fast, robust computational geometry and mesh
generation techniques for highly spatially-variable meshes as well as compilers and tools that simplify the
programming of unstructured mesh methods on parallel systems.

1In this paper, we use the term node in the finite element context, i.e. a vertex in the finite element mesh.

3

In the remainder of this paper, we present numerical methods, algorithms, and implementations for mod-
eling earthquake-induced ground motion modeling in highly heterogeneous basins, and give performance
results on the Cray T3D. We also describe Archimedes, a toolset/compiler we have built for automated
solution of unstructured mesh PDE problems on parallel distributed memory computers. For an alternative
approach to parallel ground motion modeling on distributed memory machines, see the work of Olsen,
Archuleta, and Matarese [17], which employs finite differences on regular grids. See also the references
to prior finite difference modeling work on sequential machines contained therein. In addition to the fi-
nite element method we describe in this paper, there have been recent efforts to endow finite difference
wave propagation methods with multi-resolution capabilities. See the work described in [14], which uses
composites of regular grids to achieve variable resolution.

3 Algorithms

In this section we discuss the numerical and geometric algorithms necessary for modeling earthquake-
induced ground motion in large, heterogeneous basins. In the next three subsections, we briefly discuss
a mesh generation technique capable of resolving local wavelengths, a mesh partitioner that rapidly pro-
vides asymptotically optimal partitions, and several initialization steps that are carried out prior to parallel
solution of the discrete wave propagation equations. The last subsection provides the governing equations
and overviews spatial and temporal discretization strategies appropriate for distributed memory parallel
computers.

3.1 Mesh generation

As we have seen, seismic wave propagation problems place special demands on mesh generators, including
the need for tight control over mesh resolution and aspect ratio, and the need to support extremely large
problem sizes. We have developed a fast, stable, and efficient meshing algorithm for generating very large
scale meshes, suitable for the large basins we target. Since repeated computations will be performed with
a single mesh (one or two dozen earthquake scenarios, each involving thousands of time steps), we have
decided to generate and partition each mesh sequentially. However, care must be taken in designing and
implementing efficient algorithms for these steps, lest they become bottlenecks.

Mesh generation begins with a database of the material properties of the soil and rock within and around
a particular basin. These material properties—the shear wave velocity, the dilatational wave velocity, and the
density—are estimated throughout the basin from soil borings, from geological records, and from seismic
prospecting studies. Figure 1 shows the variation in shear wave velocity at a depth of three meters from
the valley fill surface in a region surrounding the San Fernando Valley in Southern California. The material
property model on which this image is based was provided by H. Magistrale and S. Day at San Diego State
University [13]. The figure shows a variation in shear wave velocity of at least a factor of seven. Since
element width is inversely proportional to velocity, a regular grid method can have up to 73 343 times
more points per unit volume than an unstructured mesh for this material model.

The meshing algorithm comprises two steps. First, we generate an octree that resolves the local
wavelength of shear waves. The wavelength is known from the shear wave velocity and the frequency of
excitation. Based on numerical experiments with homogeneous problems and on some theoretical analysis,
we have found that 8–10 nodes per wavelength is sufficient for “engineering”, or 95%, accuracy when using
linear finite elements. (In Section 3.4 we make precise what we mean by 95% accuracy.) When constructing
the octree, we enforce the rule that adjacent cells may not differ in edge length by more than a factor of two,
producing a balanced octree. This is crucial for producing elements with bounded aspect ratios. Bounding

4

1000 1500 2000 2500 3000 3500
m/s

34.05

34.1

34.15

34.2

34.25

Degrees Longitude

D
eg

re
es

 L
at

itu
de

Figure 1: Surface distribution of shear wave velocity in the San Fernando Valley.

the aspect ratio of elements is important because aspects ratios far from one lead to poorly conditioned
stiffness matrices, which can lead to instability in time integration.

Once a balanced octree is created such that no cell is wider than one-tenth the length of the wave
that passes through it, a finite element node is placed at each cell vertex. Figure 2 depicts the nodes
generated by the balanced octree for the San Fernando Basin properties of Figure 1. This set of nodes is
then triangulated (more properly, tetrahedralized) according to the Delaunay criterion.2 Figure 3 shows the
resulting mesh of tetrahedra. Delaunay tetrahedralization is performed by a straightforward implementation
of the Bowyer/Watson incremental algorithm [5, 23], which constructs a triangulation by adding one node
at a time and locally adjusting the mesh to maintain the Delaunay criterion.

We have found that the Bowyer/Watson algorithm is occasionally sensitive to floating-point roundoff
error; tetrahedral mesh generation can fail dramatically because of roundoff when processing near-degenerate
geometric features. Such failures became increasingly common for us as the size of our meshes grew. To
overcome this problem, we have developed a method for fast exact arithmetic that is particularly well-suited
for certain tests that arise in computational geometry codes [19]. Our method is used to construct predicates
that determine whether a point falls to the left or right side of a line, or whether a point falls inside or outside
a sphere. These predicates are adaptive in the sense that they only use exact arithmetic to the extent it is
needed to ensure a correct answer. Hence, if a point falls very close to a line, high precision arithmetic may
be needed to resolve which side of the line it falls on; if a point is far from a line, approximate arithmetic
will suffice, so the test can be performed quickly. Because the latter case is far more common, our exact
arithmetic predicates are on average only slightly slower than ordinary, nonrobust floating-point predicates,

2We could have used a hexahedral mesh directly from the octree, but the elements would have required special treatment to
make them conforming.

5

Figure 2: Nodal distribution for the San Fernando Valley. Node generation is based on an octree method that locally resolves

the elastic wavelength. The node distribution here is a factor of 12 coarser in each direction than the real one used for

simulation, which is too fine to be shown, and appears solid black when displayed. However, the relative resolution between

soft soil regions and rock illustrated here is similar to that of the 13 million node model we use for simulations.

and our Delaunay tetrahedralization code runs quickly while ensuring the integrity of its results.
Our use of the Delaunay tetrahedralization of the vertices of a balanced octree guarantees that element

aspect ratios are bounded, and that element sizes are chosen appropriately so that wavelengths are sufficiently
resolved without unnecessary resolution (provided the material properties do not vary too rapidly).

We have used our mesh generator to create a mesh of the San Fernando Basin with a 220 m/s shear wave
velocity in the softest soil for an earthquake with a highest frequency of 2 Hz. The mesh contains 77 million
tetrahedra and 13 million nodes, and was generated in 13 hours on one processor of a DEC 8400, requiring
7.7 Gb of memory. It has a maximum aspect ratio of 5.5 and exhibits a spatial resolution variability of an
order of magnitude. This mesh is perhaps the largest unstructured mesh generated to date.

3.2 Mesh partitioning

Once a mesh is generated, the set of elements that comprise it must be partitioned into subdomains. Each
subdomain can then be mapped onto a processor of a parallel machine. The goal of mesh partitioning is to
minimize communication time while maintaining load balance. In an explicit method, communication is
associated with the nodes that lie on the boundaries between subdomains and are shared by more than one
processor. Processors sharing a node must communicate six words per shared node for each matrix-vector
multiply, i.e. twice each time step in our method. Communication time depends on both the message sizes,
which increase with the number of shared nodes, and the number of messages, which increases with the
number of adjacent subdomains. The load on a processor for explicit solution of linear wave propagation

6

Figure 3: Tetrahedral element mesh of the San Fernando Valley. Maximum tetrahedral aspect ratio is 5.5. Again, the mesh

is much coarser than those used for simulation, for illustration purposes.

problems is easy to predict: it is proportional to the number of nodes on that processor. Prediction becomes
more difficult when nonlinearities are present, such as with the soil plasticity models that we are currently
introducing into our code. In these cases, the work per node is solution-dependent. Nevertheless, for our
purposes, we consider a mesh partitioner desirable if it produces subdomains of nearly equal size (where size
is measured by number of elements and not by volume) and with as few nodes shared between processors
as is reasonably possible.

The partitioner we use is based on the algorithm of Miller, Teng, Thurston, and Vavasis [15]. This
algorithm uses geometric information to construct a separator, i.e. a set of nodes whose removal separates
the mesh into two pieces of roughly equal size. Each of these pieces is then recursively partitioned until
the desired number of subdomains is reached. The Miller et al. algorithm produces separators that are
asymptotically optimal; their length is of order 2 3 in three dimensions, where is the number
of nodes. Theoretically, the algorithm runs in randomized linear time; in practice, the algorithm rapidly
produces high quality partitions.

As an illustration, our implementation of this algorithm partitioned the 77 million element mesh described
above into 256 subdomains in about 3.8 hours on one processor of the DEC 8400, and required 7.9 Gb of
memory. The resulting partition (again for a factor of twelve coarser mesh) is shown in Figure 4. The figure
shows the circular cuts produced by the partitioner. Despite the high spatial variability of the mesh, the
partitions appear to be well-shaped.

7

Figure 4: Mesh partitioned for 64 subdomains.

3.3 Parceling

After a mesh is partitioned into subdomains, there remain several operations that have to be performed on
the partitions to prepare the input for the parallel program. We refer to these steps collectively as parceling.
The steps include generating (i) the communication schedule for each processor, (ii) the global-to-local
mapping information, which allows identification of a node or element number on a processor by its global
number, and (iii) the nonzero structure of the stiffness matrix on each processor. The last item could be
performed in parallel, but it takes little time and provides us with useful statistics on the mesh, so we perform
it sequentially. Parceling requires about 2.3 hours and 7.7 Gb memory on the DEC 8400 for the 77 million
element San Fernando Basin mesh. The communication graph generated by the parceler is shown in Figure
5. Each vertex represents a subdomain and corresponding processor; each edge represents communication
between two processors.

3.4 Governing equations and discretization

Whereas the mesh generation, partitioning, and parceling steps are currently performed sequentially, the
wave propagation equations are solved on a parallel machine. This section describes the numerical techniques
we use. Navier’s equations of elastodynamics for an isotropic, heterogeneous medium are

()
2

2 (1)

where u is the displacement vector field, is the density, and and are elastic material constants, which
depend on the shear and dilatational wave velocities.

8

Figure 5: Communication graph for the partitioned element mesh depicted in Figure 4.

The domain of the problem is an elastic halfspace, i.e. semi-infinite. In order to render the computational
domain finite, we introduce absorbing boundaries at the bottom and sides of the basin that are local in both
space and time [4, 10]. These boundaries allow the passage of outgoing waves with minimum reflection.

Since, in many cases, the earthquake source can be outside the computational domain, its effect must
be introduced into the region. This is carried out as described in [3, 6] by means of effective forces. In
short, for an arbitrary earthquake excitation these forces are determined in terms of the free-field motion by
introducing a fictitious auxiliary surface that surrounds the basin. Across this auxiliary surface one imposes
the conditions of continuity of displacement and traction. By selecting the total displacement vector field as
the unknown in the resulting interior region and the scattered displacement field in the exterior region, the
free-field displacement and traction now appear explicitly in the continuity conditions, which become jump
conditions, with the free-field displacement and traction on the righthand side. These non-homogeneous
terms on the righthand side are the ones that give rise to the effective forces upon spatial discretization.
If, on the other hand, the seismic source is located inside the computational domain, say as a kinematic
dislocation across the fault, one can select the fault itself as the auxiliary surface. The procedure is similar,
but now one uses the total displacement everywhere as the unknown field; thus, the displacement field again
experiences a jump across the interface, but the traction remains continuous. Notice that with this technique,
whether the source is originally located inside or outside the computational domain, only outgoing waves
will impinge upon the absorbing boundary. Both types of source are implemented in our code.

We also model material damping in the basin via viscous damping. With these modifications, standard
Galerkin discretization in space by finite elements produces a system of ordinary differential equations of
the form

(2)

where M is the mass matrix, C is the damping matrix associated with the absorbing boundary and material
damping, K is the stiffness matrix, and f is the effective force vector. Here, M, C, and K are block matrices;
the th block of M is a 3 3 matrix given by

(3)

9

and the th block of K is given by

(4)

where is the finite element global basis function associated with the -th node.
Damping is introduced through a proportional damping approximation at the element level, i.e. we take

(5)

where and are scalar constants and the superscript indicates an element matrix. The first term leads
to as damping factor that is inversely proportional to frequency, and the second to one that is linear in
frequency. The constants and , which may vary within the basin according to the type of material, are
chosen to best fit a prescribed attenuation law.

Given appropriate initial conditions, this system of ODEs can be integrated in time using central
differences, yielding the explicit method

2
2 2 2

2
(6)

This method exhibits second-order accuracy in time, and when coupled with linear finite elements, we
obtain second-order accuracy in space as well. We use a lumped mass approximation to M, which amounts
to numerically integrating (3) with integration points at element vertices. This results in a diagonal mass
matrix. To render the lefthand side operator of (6) diagonal, we further evaluate the off-diagonal components
of at rather than . Inversion of the time stepping operator thus requires only a scaling of the
righthand side of (6), which is carried out just once prior to time stepping. Forming the products of K
and C with vectors comprises the major computational effort associated with iterating on (6). The sparsity
structure of K is dictated by the underlying finite element mesh, and is thus very irregular. If shear waves
are not over-resolved, the time step necessitated by stability is of the order of the time step dictated by
accuracy, which is what an implicit method would take. By choosing an explicit method we avoid solving
linear systems at each time step. Thus, overall, the explicit method is superior for our application, especially
on a parallel computer.

We have tried several different choices of basis function order, and have concluded that piecewise-linear
functions are the most efficient for problems requiring engineering accuracy. Our conclusion is based on
numerical experimentation using plane Ricker wavelets on unstructured homogeneous meshes (in which
case we know what the exact solution should be), but a simple argument can be given as follows. We
recognize first that (spatial) approximation errors are bounded from above by interpolation errors. We then
ask, for a given order of basis function and a given acceptable level of infinity-norm error, how many nodal
points are required to produce a piecewise-polynomial interpolant of a simple harmonic wave. Next, we
convert the required number of nodes per wavelength to an estimate of the storage and work required for
an iteration of the explicit method (6). For example, if is the total number of nodes, one can show that
trilinear hexahedra require 163 5 words of storage and 498 flops/time step, while triquadratic hexahedra
necessitate 367 words and 1164 flops/time step. So, for example, triquadratic elements should require
at least 2.2 times fewer nodes in order to be preferred (for storage reasons) over trilinear elements. However,
one-dimensional interpolation theory tells us that 5% error requires 10 nodes per wavelength using linear
elements or 9.4 nodes using quadratics. Thus, in three dimensions, triquadratics only allow 10 9 4 3 1 2
times fewer nodes than trilinears, and are thus not warranted. An opposite conclusion is reached if one
demands 99% accuracy. Our confidence in the values of material properties and in the fidelity of the source
models for this problem does not warrant solution accuracies greater than 95%. Thus, we conclude that for
this level of accuracy, the powers of higher-order interpolation are offset by their increased cost, both in
storage and in increased work.

10

Runtime Library

Partitioned Mesh

Parallel System

Problem Geometry

MVPRODUCT(A,x,w);
DOTPRODUCT(x,w,xw);
r = r/xw;

Finite Element Algorithm

Triangle/Pyramid

Parcel

Slice

Finite Element Mesh

Archimedes

Author

C Compiler

Figure 6: The Archimedes system.

4 Archimedes: A system for unstructured PDE problems on parallel
computers

Archimedes [7, 2] is a general-purpose toolset for the efficient mapping of unstructured mesh computations
arising from numerical solution of PDEs onto parallel systems. Archimedes is designed to insulate the user
from issues of parallelism and communication, and to allow easy and natural expression of unstructured mesh
finite element methods and solvers. Its component tools are based on the algorithms for mesh generation,
partitioning, and parceling described above. Archimedes also includes a code generator called Author that is
targeted to the sorts of computations arising in the solution of PDE problems by unstructured finite element
methods [21].

The Archimedes system is depicted in Figure 6. Input to Archimedes includes (i) the problem geometry,
and (ii) a sequential program containing an element-level description of the finite element approximation
as well as a high-level description of the solution method. The input program is written in C, augmented
with finite element-specific and linear algebraic primitive operations that include vector and matrix assem-

11

bly, imposition of boundary conditions, sparse matrix-vector products, dot products, and preconditioning.
Additional functions are specific to elastic wave propagation, and include absorbing boundaries, damping,
and seismic input incorporation. Archimedes programs contain no explicit communication statements, and
thus can be written without any knowledge of the parallel machine’s underlying communication system.
The set of primitives that Archimedes understands is rich enough to express algorithms for solution of linear
and nonlinear scalar and vector PDEs, using arbitrary-order finite elements in space and either explicit or
implicit methods in time. For implicit methods, the Archimedes language provides for expression of various
stationary iterative solvers as well as Krylov subspace methods. Furthermore, users can add new primitives
as the need arises.

Triangle [20] is a two-dimensional quality mesh generator in the Archimedes toolset. Triangle operates
on a description of the input geometry and produces a two-dimensional triangular mesh with guaranteed
angle bounds that satisfies user-specified bounds on element size. These element size bounds can vary
spatially, and can be set a priori, based on features of the problem geometry, or a posteriori, within a
solution-adaptive scheme. Archimedes also includes a rudimentary three-dimensional mesher, Pyramid.
We use Pyramid’s Delaunay capability to tetrahedralize the node sets generated by the octree algorithm,
as described in Section 3.1. This is sufficient for basin meshes, since the geometry is simple but the
physics drives the mesh resolution. Other finite element applications, for example solid mechanics and
aerodynamics, will require support for more complex geometries. Extensions to Pyramid to allow for
arbitrary geometry are underway. Sequential mesh generation as we have implemented it in Archimedes
on the DEC 8400 is adequate for up to 100–200 million tetrahedra. For the largest problems, such as the
Greater Los Angeles Basin at a frequency of 2Hz, sequential mesh generation may become a bottleneck.
We may parallelize this task in the future.

Archimedes’ toolset also includes Slice, an implementation of the asymptotically optimal mesh par-
titioner [15] discussed in Section 3.2. Once Slice partitions a mesh into subdomains, its output is fed to
Parcel, which prepares input for the parallel program. Parcel generates the communication schedule for
each processor, the global-to-local mapping information for the mesh nodes and elements, and the local
stiffness matrix structure. As with mesh generation, sequential execution (on the DEC 8400) of the mesh
partitioning and parceling tasks is sufficiently quick for the large scale problems we target. For problems
requiring more than 100–200 million elements, we may have to parallelize partitioning and parceling, more
for memory reasons than speed. Unlike meshing, parallelizing these two tasks is relatively straightforward.

The output of Parcel is a single file containing mesh information; this is read by the parallel program.
The only program output we are interested in regards free surface displacements and velocities, rather than
volume information; thus output is not as significant a problem here as it is in such applications as fluid
mechanics. In the interest of portability, we have not yet parallelized I/O. As problem size continues to
grow in the future, parallel I/O may become necessary.

Archimedes’ parallelizing compiler generates code for any parallel system with C and MPI implemen-
tations, including networks of workstations (using the Argonne/Mississippi State MPICH implementation),
Intel’s Paragon (also using MPICH) and the Cray T3D (using the CRI/EPCC MPI implementation). Finally,
Archimedes includes Show Me, an X-Windows based unstructured mesh visualization system. This allows
3D display of nodal distributions, meshes, partitions, communication graphs, and solutions. Such basic
capabilities as rotation, shading, zooming, cutaway views, and PostScript output are supported. Figures 2,
3, 4, and 5 were generated by Show Me.

Our decision to build Archimedes was undertaken for several reasons. First, such a system allows
application specialists to focus on what they do best: designing numerical methods and concentrating on
the physics of the problems at hand. Archimedes also ensures that their simulations will still be running
when today’s parallel hardware is obsolete. Indeed, earthquake engineering students in our lab have been
writing Archimedes parallel programs and running them on the T3D without any concern for the underlying

12

parallel hardware or system software. This insulation has not come at the price of performance; we regularly
observe 30 megaflops per processor on the T3D, which is quite good for irregular sparse matrix calculations.

The second reason for creating Archimedes is that it eases the process of prototyping different numerical
algorithms. With the basic library of primitives in place, we can quickly experiment with different time
integration schemes, preconditioners, and element types. During the course of our research, we studied
implicit versus explicit methods, lumped versus consistent mass matrices, first-order versus second-order
absorbing boundaries, linear versus quadratic finite elements, and bubble-mode-enhanced versus standard
Lagrange elements. The ability to express numerical algorithms in an intuitive, sequential manner was
crucial in allowing us to study the implications of our numerical decisions, before we settled on our current
choices. The functionality of the Archimedes language continues to grow in response to new algorithmic
needs.

Our final motivation in designing Archimedes is that a number of the numerical and computational
issues faced in modeling earthquake-induced ground motion are shared by many other applications in
computational science and engineering. Unstructured mesh methods are useful for PDE problems that are
characterized by complex geometries or that exhibit multiscale phenomena, such as transonic flows, crack
propagation, large deformation materials processing, and pollutant transport, or . Our goal was to make
Archimedes useful for this broader class of problems. Indeed, Archimedes is now being used in several
areas other than ground motion modeling.

Many researchers do not wish to bother with low level details of programming a parallel machine, yet
still want the efficiency associated with message-passing code. The Archimedes code generator is designed
so that it can be extended by users without having to rebuild the system. For example, users can write their
own parallel preconditioner routines and register them with the Archimedes compiler without recompiling
any code. This provides a mechanism for the system to grow and evolve.

5 Performance on the Cray T3D

In this section we provide timings that characterize the performance of our parallel explicit wave propagation
code on the Cray T3D. We are currently using the code to study the earthquake-induced dynamics of the San
Fernando Valley in Southern California. The San Fernando simulations involve meshes of up to 77 million
tetrahedra and 40 million equations. The largest mesh corresponds to the case of a lowest shear wave velocity
of 220 m/s and a maximum frequency of 2 Hz; the code requires nearly 16 Gb of memory and takes 6 hours
to execute for 40,000 times steps on 256 processors of the Cray T3D at the Pittsburgh Supercomputing
Center (PSC). Results of a typical simulation, in which the basin was subjected to a vertically-incident plane
wave Ricker pulse with a central frequency of 1 Hz, indicate a factor of amplification of eight in the softer
parts of the basin compared to the maximum displacement on rock. This suggests substantially greater
damage in these regions. A typical result is shown in Figure 7, which depicts the amplification induced by
the soft soil. Simulations of this type are essential to better predict the local site effects within soft basins
such as those on which Los Angeles, San Francisco, Mexico City, and Tokyo are situated.

The relevant scenario for assessing the performance of our earthquake simulations as the number of
processors increases is one in which the problem size increases proportionally, because unstructured PDE
problems are typically memory-bound rather than compute-bound. Given a certain number of processors,
we typically aim at full use of their memory; as the number of processors increases, we take advantage
of their additional memory by increasing the problem size. In order to study the performance of our
earthquake ground motion simulation code with increasing problem size, we have generated a sequence of
increasingly-finer meshes for the San Fernando Basin. These meshes are labeled sf10, sf5, sf2, and
sf1, and correspond to earthquake excitation periods of 10, 5, 2, and 1 second, respectively. Additionally,
the mesh sf1b corresponds to a geological model that includes much softer soil in the top 30m, and thus

13

Figure 7: Surface distribution of ground motion amplification factors in the San Fernando Valley. The amplification factors

have been calculated by comparing the surface to the bedrock motion.

necessitates an even finer mesh. Note that mesh resolution varies with the inverse cube of period, so that
halving the period results in a factor of eight increase in the number of nodes. Characteristics of the five
meshes are given in Table 1.

Our timings include computation and communication but exclude I/O. We exclude I/O time because in
our current implementation it is serial and unoptimized, and because the T3D has a slow I/O system. I/O
time involves the time at the beginning of the program to input the file produced by Parcel, as well as the
time to output results every tenth time step to disk. With the availability of the Cray T3E at PSC, we plan
to address parallel I/O in the future.

We begin with a traditional speedup histogram, for which the problem size is fixed and the number of
processors is increased. Figure 8 shows the total time, as well as the relative time spent for communication
and computation, for an earthquake ground motion simulation, as a function of the number of processors.

Table 1: Characteristics of San Fernando Basin meshes.

mesh nodes equations elements
sf10 7,924 21,882 35,047
sf5 30,169 90,507 151,173
sf2 378,747 1,136,241 2,067,739
sf1 2,461,694 7,385,082 13,980,162
sf1b 13,422,563 40,267,689 76,778,630

14

16 32 64 128
0

1000

2000

3000

4000

5000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

PEs

95%

5%

93%

7%

90%

10%

83%

17%

computation

communication

Figure 8: Timings in seconds on a Cray T3D as a function of number of processors (PEs), excluding I/O. The breakdown of

computation and communication is shown. The mesh is sf2, and 6000 time steps are carried out.

The mesh used for these timings is sf2. On 16 processors, the time spent for communication is 5% of the
time spent for computation, which is quite good for such a highly irregular problem. There are about 24,000
nodes per processor, which results in about half the memory on each processor being used. As the number
of processors doubles, the percentage of time spent communicating relative to computing increases, as
expected. For 128 processors, the communication time has increased to one-fifth of the total time. However,
we are only utilizing 1 16 of the local memory on a processor; practical simulations will generally exhibit
performance more like the left bar of Figure 8.

We can quantify the decrease in computation to communication ratio for a regular mesh. Suppose there
are nodes on a processor, where is the number of processors. Suppose further that the regular grid
is partitioned into cubic subdomains of equal size, one to a processor. Since computation for an explicit
method such as Equation 6 is proportional to the volume of nodes in a cube (subdomain), and communication
is proportional to the number of nodes on the surface of the cube, the computation to communication ratio
is proportional to 1 3, i.e. the ratio of total nodes to surface nodes of the cube. Thus, for fixed ,
the ratio is inversely proportional to 1 3, at least for cubically-partitioned regular grids with large enough
numbers of nodes per processor. Clearly, it is in our interest to keep as large as possible, if we want
to minimize communication time.

Let us extend this analysis to explicit methods on unstructured meshes. Suppose remains constant
for increasing and , i.e. the number of nodes per processor remains constant. Now suppose that we
have a partitioner that guarantees that the number of interface nodes remains roughly constant as and

increase proportionally. Then we can expect that the computation to communication ratio will remain
constant as the problem size increases.3 In this case, we have a method that scales linearly: the amount of
time required to solve a problem that is doubled in size is unchanged if we double the number of processors.
How close do we come to this ideal situation? First, we plot the log of the computation to communication
ratio against the log of the number of processors, using the data in Figure 8. A least-squares fit yields a line
with slope 0 39. For a regular grid with perfect partitioners, we have seen in the previous paragraph that

3To the extent that communication time is governed by the number of words communicated (as opposed to the number of
messages, or to the route between communicating processors.)

15

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300

A
gg

re
ga

te
 M

V
 M

F
LO

P
S

 (
s.

p.
)

PEs

ideal

sf1b

sf1

sf2
sf5

sf1b: 256 PEs
 62,718 nodes/PE
 31 MFLOPS/PE

sf1: 128 PEs
 21,632 nodes/PE
 29 MFLOPS/PE

sf2: 32 PEs
 13,120 nodes/PE
 29 MFLOPS/PE

sf5: 2 PEs
 15,506 nodes/PE
 31 MFLOPS/PE

sf10: 1 PE
 7,294 nodes/PE
 32 MFLOPS/PE

Figure 9: Aggregate performance on Cray T3D as a function of number of processors (PEs). Rate measured for matrix-vector

(MV) product operations (which account for 80% of the total running time and all of the communication) during 6000 times

steps.

this slope should be 1 3. This suggests that the idealized analysis is roughly applicable here.
Next, let us attempt to hold the number of nodes per processor roughly constant, and examine the

aggregate performance of the machine as the problem size increases. It is difficult to maintain a constant
value of , since processors are available in powers of two on the T3D. However, we can still draw
conclusions about scalability. Figure 9 shows the aggregate performanceof our code on the T3D in megaflops
per second, as a function of number of processors (and, implicitly, problem size). Megaflops are those that
are sustained by matrix-vector product operations (which account for 80% of the total running time and all
of the communication) during a San Fernando simulation, exclusive of I/O. This figure shows nearly ideal
scalability, which is defined as the single processor performance multiplied by the number of processors.
These results show that excellent performance is achievable, despite the highly heterogeneous mesh. This
behavior requires a partitioner that keeps the number of interface nodes relatively constant for problem size
that increases concomitantly with number of processors.

An even better measure of scalability is to chart the time taken per time step per node. If the algo-
rithm/implementation/hardware combination is scalable, we expect that the time taken will not change with
increasing problem size. Not only must the partitioner produce “scalable” partitions for this to happen,
but in addition the PDE solver must scale linearly with . This happens when the work per time step is

. This is obvious from the iteration of Equation 6—vector sums, diagonal matrix inversions, and
sparse matrix-vector multiplies require operations.

Figure 10 depicts the trend in unit wall clock time as the number of processors is increased. Unit wall
clock time is measured as microseconds per time step per average number of node per processor, which
includes all computations and communications for all time steps, but excludes disk I/O. As we have said

16

1 2 32 128 256
0

10

20

30

40

(m
ic

ro
se

co
nd

s/
tim

e
st

ep
)/

(n
od

es
/P

E
)

PEs

sf10 sf5
sf2 sf1

sf1b

Figure 10: T3D wall-clock time in microseconds per time step per average number of nodes per processor (PE), as a function

of number of processors. This figure is based on an entire 6000 time step simulation, exclusive of I/O. The sf1b result is

based on a damping scheme in which 0 in Equation 5 so that only one matrix-vector product is performed at each time

step.

above, for a truly scalable algorithm/implementation/hardware system, this number should remain constant
as problem size increases with increasing processors. The figure demonstrates that we are close to this ideal.
Ultimately, wall clock time per node per time step is the most meaningful measure of scalable performance
for our application, since it is a direct indicator of the ability to solve our ultimate target problems, which
are an order of magnitude larger than the San Fernando Basin problem we have described in this paper.

6 Concluding remarks

We have described our approach to modeling the earthquake-induced ground motion in large, heterogeneous
basins on parallel computers. By paying careful attention to the impact on parallel execution of all
components of the code, we are able to obtain excellent performance on highly unstructured mesh problems.
In particular, through the use of (i) space- and time-localized absorbing boundaries; (ii) seismic input
in the form of effective boundary or interior forces applied at the element level; (iii) explicit numerical
techniques for the wave propagation problem; (iv) strict control of mesh resolution and aspect ratio; and
(v) an asymptotically optimal mesh partitioner, we obtain excellent scalability of the parallel code. The
Archimedes toolset integrates the basic components necessary for solving general PDE problems involving
static unstructured meshes on parallel distributed memory systems. These components include meshing,
partitioning, and parallel code generation. Archimedes has been instrumental in allowing us to quickly build
and test parallel ground motion simulation codes.

We currently solve the meshing, partitioning, and parceling problems sequentially on a large shared-
memory machine. Our ultimate target problem—the Greater Los Angeles Basin with an excitation of 2 Hz
and with soil deposits having shear wave velocities as low as 200 m/s—will require meshes on the order
of hundreds of millions of elements. Despite the fact that our sequential meshing and partitioning codes
are fast, we may have to parallelize these steps in order to solve the target problem, primarily for memory
reasons. The scalability of the parallel portion of our code indicates that our target problem is within reach.

17

7 Acknowledgments

This research was supported by the National Science Foundation’s Grand Challenges in High Performance
Computing and Communications program, under grant CMS-9318163. Funding comes from the Directorate
for Computer and Information Science and Engineering, the Directorate for Engineering, and the Directorate
for Earth and Atmospheric Sciences. In addition, NSF funding was supplemented with funds from the
Advanced Research Projects Agency. Computing services on the Pittsburgh Supercomputing Center’s Cray
T3D and DEC 8400 were provided under PSC grant BCS-960001P. We thank Harold Magistrale and Steve
Day of San Diego State University for providing the material property model of the San Fernando Valley.

References

[1] K. Aki. Local site effect on ground motion. In J. Lawrence Von Thun, editor, Earthquake Engineering
and Soil Dynamics. II: Recent Advances in Ground-Motion Evaluation, pages 103–155. ASCE, 1988.

[2] http://www.cs.cmu.edu/˜quake/archimedes.html.

[3] Jacobo Bielak and Paul Christiano. On the effective seismic input for nonlinear soil-structure interaction
systems. Earthquake Engineering and Structural Dynamics, 12:107–119, 1984.

[4] Jacobo Bielak, Loukas F. Kallivokas, Jifeng Xu, and Richard Monopoli. Finite element absorbing
boundary for the wave equation in a halfspace with an application to engineering seismology. In
Proceedings of the Third International Conference on the Mathematical and Numerical Aspects of
Wave Propagation, pages 489–498, Mandelieu-La Napoule, France, April 1995. SIAM and INRIA.

[5] Adrian Bowyer. Computing Dirichlet tessellations. Computer Journal, 24(2):162–166, 1981.

[6] Marco G. Cremonini, Paul Christiano, and Jacobo Bielak. Implementation of effective seismic input
for soil-structure interaction systems. Earthquake Engineering and Structural Dynamics, 16:615–625,
1988.

[7] Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. Miller, David R. O’Hallaron, Eric J. Schwabe,
Jonathan Richard Shewchuk, and Shang-Hua Teng. Automated parallel solution of unstructured PDE
problems. To appear, 1996.

[8] Arthur Frankel and John E. Vidale. A three-dimensional simulation of seismic waves in the Santa Clara
Valley, California from a Loma Prieta aftershock. Bulletin of the Seismological Society of America,
82:2045–2074, 1992.

[9] Robert W. Graves. Modeling three-dimensional site response effects in the Marina District Basin, San
Francisco, California. Bulletin of the Seismological Society of America, 83:1042–1063, 1993.

[10] Loukas F. Kallivokas, Jacobo Bielak, and Richard C. MacCamy. Symmetric local absorbing boundaries
in time and space. Journal of Engineering Mechanics, ASCE, 117:2027–2048, 1991.

[11] Hiroshi Kawase and Keiiti Aki. A study on the response of a soft basin for incident S, P, and Rayleigh
waves with special reference to the long duration observed in Mexico City. Bulletin of the Seismological
Society of America, 79:1361–1382, 1989.

[12] Hsui-Lin Liu and Thomas Heaton. Array analysis of the ground velocities and accelerations from
the 1971 San Fernando, California, earthquake. Bulletin of the Seismological Society of America,
74:1951–1968, 1996.

18

[13] Harold Magistrale, Keith L. McLaughlin, and Steven M. Day. A geology-based 3-D velocity model
of the Los Angeles basin sediments. Submitted to Bulletin of the Seismological Society of America,
1996.

[14] Keith L. McLaughlin and Steven M. Day. 3D elastic finite difference seismic wave simulations.
Computers in Physics, Nov/Dec 1994.

[15] Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Automatic mesh
partitioning. In Alan George, John Gilbert, and Joseph Liu, editors, Graph Theory and Sparse Matrix
Computation, volume 56 of The IMA Volumes in Mathematics and its Application, pages 57–84.
Springer-Verlag, 1993.

[16] Kim B. Olsen and Ralph J. Archuleta. Three-dimensional simulation of earthquakes on the Los Angeles
Fault System. Bulletin of the Seismological Society of America, 86:575–596, 1996.

[17] Kim B. Olsen, Ralph J. Archuleta, and Joseph R. Matarese. Magnitude 7.75 earthquake on the San
Andreas fault: Three-dimensional ground motion in Los Angeles. Science, 270(5242):1628–1632,
1995.

[18] Francisco J. Sanchez-Sesma and Francisco Luzon. Seismic response of three-dimensional valleys for
incident P, S, and Rayleigh waves. Bulletin of the Seismological Society of America, 85:269–284,
1995.

[19] Jonathan Richard Shewchuk. Robust adaptive floating-point geometric predicates. In Proceedings of the
Twelfth Annual Symposium on Computational Geometry, pages 141–150. Association for Computing
Machinery, May 1996.

[20] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. In First Workshop on Applied Computational Geometry, pages 124–133. Association for
Computing Machinery, May 1996.

[21] Jonathan Richard Shewchuk and Omar Ghattas. A compiler for parallel finite element methods
with domain-decomposed unstructured meshes. In David E. Keyes and Jinchao Xu, editors, Domain
Decomposition Methods in Scientific and Engineering Computing, volume 180 of Contemporary
Mathematics, pages 445–450. American Mathematical Society, 1994.

[22] John E. Vidale and Donald V. Helmberger. Elastic finite-difference modeling of the 1971 San Fernando,
California, earthquake. Bulletin of the Seismological Society of America, 78:122–141, 1988.

[23] David F. Watson. Computing the -dimensional Delaunay tessellation with application to Voronoı̈
polytopes. Computer Journal, 24(2):167–172, 1981.

19

