
Appears in: Proceedings of the 22nd International Symposium on Computer Architecture,
June 21-25, 1995, Santa Marguerita di Ligure, Italy

Optimizing Memory System Performance for Communication in Parallel
Computers

T. Stricker1 and T. Gross1;2

1School of Computer Science 2Institut fuer Computer Systeme
Carnegie Mellon University ETH Zuerich

Pittsburgh, PA 15213 CH 8092 Zuerich, Switzerland

Abstract

Communication in a parallel system frequently involves moving
data from the memory of one node to the memory of another;
this is the standard communication model employed in message
passing systems. Depending on the application, we observe a
variety of patterns as part of communication steps, e.g., regular
(i.e. blocks of data), strided, or irregular (indexed) memory
accesses. The effective speed of these communication steps is
determined by the network bandwidth and the memory band-
width, and measurements on current parallel supercomputers
indicate that the performance is limited by the memory band-
width rather than the network bandwidth.

Current systems provide a wealth of options to perform
communication, and a compiler or user is faced with the diffi-
culty of finding the communication operations that best use the
available memory and network bandwidth. This paper provides
a framework to evaluate different solutions for inter-node com-
munication and presents the copy-transfer model; this model
captures the contributions of the memory system to inter-node
communication. We demonstrate the usefulness of this simple
model by applying it to two commercial parallel systems, the
Cray T3D and the Intel Paragon.

In particular we identify two methods to transfer data be-
tween nodes in these two machines. In buffer-packing transfers,
a contiguous block of data is transferred across the network. If
the data are not stored contiguously, they are copied to (gath-
ering) or from (scattering) buffers in local memory before and
after the transfer. Chained transfers perform gathering, transfer
and scattering in one step, reading the data elements with some
non-sequential pattern and immediately transferring them on to
the destination.

Our model and measurements indicate that chaining of the
gather, transfer, and scatter operations results in better perfor-
mance than buffer packing for many important access patterns.
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Most standard message passing libraries (like MPI, PVM or
NX) force the parallelizing compiler (or the programmer) to
employ the buffer-packing communication operations. How-
ever, the addition of hardware support dedicated to communi-
cation (e.g., DMAs, line-transfer units) now gives the compiler
a wider range of options.

1 Introduction

Communication is a key issue for the design of a parallel com-
puter, and the properties of the communication system have a
high impact on the class of applications that profitably run on a
parallel or distributed system.

Communication systems sometimes pay more attention to
the network (i.e., the links, busses, or switches that connect the
nodes in the parallel system) than to the suppliers and consumers
of the data. Most communication steps in parallel systems in-
volve moving data from the memory of one node to the memory
of another node. The effective performance of the memory sys-
tem is therefore (at least) as important as the performance of
the communication system, and improving the network perfor-
mance beyond what can be supported by the memory system
does not increase overall performance.

The issue of transferring data between a node and its net-
work is more complicated than just increasing the memory
bandwidth. Although there is a clear trend towards increased
memory bandwidth both in the nodes of parallel computers and
in other systems (i.e., workstations), a large part of this perfor-
mance improvement is due to widening the path between the
processor and the memory. This change increases the memory
bandwidth for contiguous (or almost contiguous) accesses, but
does not increase the “reference bandwidth” (i.e., the number
of references per instruction or cycle), nor does it improve the
latency. Both of these aspects however are important if the data
are accessed in some strided or irregular fashion.

The memory systems of modern parallel systems are com-
plicated, and the performance of a sequenceof accessesdepends
on a number of factors. Also, most parallel machines provide
more than one way to implement the communication steps re-
quired by the program. Depending on the machine, there may
be a choice of portable communication libraries (e.g., PVM
or MPI), custom libraries, or low-level transfer operations like
“put” and “get”. A compiler or user is faced with a number of
options, and it is not always easy to find the most efficient one.

This paper attempts to provide some answers to designers of
the interface between the network and the memory/processor,
as well as to compiler writers who want to custom-tailor a com-
piler’s communication operations to a specific parallel system.
We start with a brief review of communication in a parallel



system to summarize the kind of data transfers that are required
when applications are mapped onto modern parallel systems.
Then we develop the copy-transfer model of inter-node com-
munication; this model is simple enough to hide many details
of the memory and communication systems, yet it allows us to
characterize real parallel systems.

In the copy transfer model each communication step is writ-
ten down exactly as it is carried out by the hardware. The formal
description is end to end and must include all copies needed to
gather and scatter the data, if buffered or non-contiguous ac-
cesses are involved. The model also captures whether a copy
transfer is done in parallel or in sequence. As an example con-
sider the transfer of a contiguous block of items that are then
stored as a sequence with a constant stride of 64 on the remote
system. If this operation (1Tfer64: starting stride 1, final stride
64) is implemented as a block transfer, followed by a copy to
unpacking at the receiver, then this operation is written as:

1Tfer64 = 1Network1 � 1Copy64:

Each basic transfer on the right side of our definition is asso-
ciated with a measured throughput figure for a specific parallel
system. The model contains a set of simple assumptions and
rules to derive an estimated throughput for the transfer as de-
scribed later.

After introducing a compiler view of communication in par-
allel systems and common memory access patterns, we define
our model and show how to derive performance from measured
basic transfer rates. We validate the model for two current par-
allel systems, the Cray T3D and the Intel Paragon and use it
to evaluate two different ways to program communication op-
erations. The methods based on our model (and confirmed by
our experiments) are different from what is currently offered by
the vendor software. We quantify the significance of our find-
ing with measured performance of three common applications
kernels.

2 Communication in parallel systems

In message passing systems, either the user or the compiler
explicitly moves data from one node to another, thereby “re-
naming” the data. That is, as data are moved from one node
to another, its name (address) is changed. In contrast, shared
address space systems preserve the name of a data item as it is
moved to another node. A data item may appear in the local
memory (cache) of a node after a transfer, but its name (ad-
dress) is still the same as it was before the transfer. The relative
advantages of both machines have been discussed in numerous
papers, and there exist a number of machines for either style.
This paper concerns itself solely with message passing com-
munication, because (1) any improvement to message passing
communication helps current[1, 13, 3] and future machines[7]
that provide this communication model, even if these machine
support other models as well, (2) a number of commercial sys-
tems are based on message passing (including all systems with
a large number of nodes), and (3) the hardware/software solu-
tions offered for communication on these systems are far from
satisfactory.

Modern message passing computers provide a variety of
communication options, ranging from “get/put” or remote load
and store to a traditional message passing interface (e.g., as
encapsulated in libraries like PVM, NX, MPI, etc.). The com-
munication styles found in these systems cover a wide range.

The hardware of message passing computers provides a
high nominal communication bandwidth between nodes – the
T3D has a hardware peak bandwidth of 300 MB/s on the wires
between a pair of nodes, and the Paragon a peak hardware

bandwidth of about 200 MB/s. In reality, control information
(e.g., routing information, message delimiters) reduces this fig-
ure to about 160 MB/s for both machines. But even if we use
a minimal protocol and a bare-bones runtime system, eliminate
overhead through appropriate compiler technology, or hand-
craft the communication code, we do not observe even these
measurable bandwidths for applications.

Figure 1 depicts the measured performance for PVM and
low level libraries for the T3D and the Paragon. PVM provides
buffered message passing with general send/receive semantics,
while the lower level primitives in the vendor specific libraries
libsma.a on the Cray and libnx.a on the Paragon (SUNMOS)
allow fastest transfers with semantic restrictions, such as ex-
ecuting receives before the sends or relying on user managed
cache consistency.

Experimental studies of actual applications indicate that the
effective communication throughput never reaches peak band-
width, even if applications are scaled to giant problem sizes.
After a careful examination of overheads, we find that it is
not the constant per message overhead due to the operating or
runtime system that is to blame (if this was the cause of our
problems, we would observe a steady performance increase as
we scale the size of the benchmarks sets), but rather overheads
that occur for each byte transferred.

All data transfers start and end in memory. So the perfor-
mance of the memory system for communication plays a crucial
role in determining the overall performance of applications run-
ning on parallel machines. We observed that there are many
applications for which the difficult, non-sequential memory ac-
cess patterns occur mostly in connection with communication.
For example, when mapping a 2D FFT (consisting of 1D FFTs
and a transpose) onto a parallel computer, the 1D FFTs can be
organized to run with locality out of caches, and the memory
accesses without locality are part of the transpose. Since the
performance of the memory system is so important for com-
munication, we now turn our attention to the generator of the
communication operations, the compiler.

2.1 Compiler view of communication

To map an application onto a parallel system, the compiler must
determine how data and computations are to be distributed over
the nodes of the parallel system. Recently, the High Perfor-
mance Fortran (HPF) effort has resulted in a set of user direc-
tives that assist the compiler in performing its tasks[5]1. HPF
focuses on block-cyclic distribution of arrays, where the two
variants, the block and cyclic are the most common [15]. The
distributions included in standard HPF are well-suited to de-
scribe regular data layouts. However, many applications are
irregular in that the access pattern cannot be described with
a few parameters. Instead, the access pattern is contained in
another data structure, usually referred to as an index array. A
typical example is A[1:n] = B[X[1:n]] where X contains
some permutation of 1..n (i.e., there are no duplicate entries
in X). A great deal of compiler effort is required to deal with
the complexities of such code; after all, A, B, and X might all
be distributed over multiple nodes. However, the bottom line is
that the compiler at some time has to access the elements of B,
using some intermediate index array T, as depicted in Figure 2.

From a compiler’s point of view, data are moved between
the address spaces of nodes, and these data can be contiguous
blocks, slices, intersections of slices[15], or irregular blocks of

1Our work is done in collaboration with the implementation of an HPF
compiler[6], but the details of HPF are irrelevant to this study. Our results
apply to any system that moves data from the local memory of one node to the
remote memory of another.
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Figure 1: Measured application throughput for simple communication operations with a portable, general library (PVM) and with
vendor specific or third party libraries that offer best throughput.
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Figure 2: Access with an index array.

data described by an index array. The compiler generates syn-
chronization (or control) instructions separately (e.g., before
and after a complete array redistribution) [16]. This organiza-
tion allows us to focus in this paper on speeding up the data
transfers. There are two principal approaches to organizing the
data transfers. Either the compiler invokes communication op-
erations as provided by a conventional message passing library
(and posts all receives before starting the send operations to
streamline processing of incoming messages). Or the compiler
uses remote stores to “put” the data to their destination. It can
generate the addresses for the loads and stores on either node,
the sender node or the receiver node.

2.2 Memory reference patterns

The code generated by the compiler for each node to transfer
data attempts to take a number of factors into account: the
specific distribution, the size of the array (if known), and the
size of the parallel system (if known). From the perspective of
the memory system of a node, we can observe three different
types of memory access in support of communication:

Contiguous The memory access to is a contiguous block of
data. Our basic unit of transfer is a 64bit word, often
a double precision floating point number. This pattern
commonly results from block distributions.

Strided The memory access consists of strided data words or
blocks of data words (e.g., 2 words for complex numbers,
6 words for 3D tensors), with a constant stride s � 2.
This pattern results, e.g., from cyclic or block-cyclic dis-
tributions.

Indexed An arbitrary sequence of words is accessed. The spe-
cific array accesspattern is determined by indices given in
a separate index array. Reading the indices is overhead;
reading the index is considered to be part of the mem-
ory access operation and does not count towards what we
report as the effective memory access bandwidth for an
application. Indexed patterns are common for irregular
distributions and sparse matrix representations[14].

Although strided accesses are often the consequenceof a cyclic
or block-cyclic distribution, it is also possible that they result
from a blocked distribution.

2.3 Memory systems of parallel computers

For this paper we present a simplified view of the node architec-
ture that focuses attention on the basic architectural components
relevant to our parallel compilation model. We assume a basic
local memory system with a primary cache in the micropro-
cessor and a DRAM-based memory system. We also assume
that data are sent and received through a simple transfer to the
network interface (e.g. load/store to a FIFO). For the model it is
important to capture parallel operation of additional functional
units capable of doing memory operations such as DMA con-
trollers or fetch/deposit engines that process incoming get and
put requests without the involvement of a processor. In Section
3.5 these general concepts are related to actual hardware in the
Cray T3D and Intel Paragon.

3 The copy-transfermodel for communication sys-
tem performance

Even a simplified view of the memory system allows for a
rich set of choices for a compiler to organize the inter-node
communication. The objective of a compiler is to obtain high-
est possible communication performance for transfers with the
communication and memory access patterns required by paral-
lel programs. In this section we introduce a model to reason
about different sequences of operations involved in such data
transfers. This model can be used to estimate the maximal
transfer performance (throughput) as well as to determine rules
for generating the best code by a parallel compiler.

3



3.1 A throughput-oriented model

Massively parallel computers typically have just one level of
cache. This organization is mandated by the pressure to keep
the cost of the nodes down. The cost of interleaved or banked
memory systems, as they are common in vector machines or
supercomputers, seems to be too high for a node of a massively
parallel machine.

In general the performance of cached memory systems can-
not be specified by memory access bandwidth and latency alone.
The memory system performance critically depends on tem-
poral locality. Traditionally the need to accurately analyze
the memory system performance for compilers lead to trace
driven investigations of the cached memory system. In sum-
mary, operand reuse and temporal locality work well to improve
the performance of computation if blocked algorithms and op-
timized kernels (like BLAS3) are used. However, we observe
that temporal locality plays only a small role in the memory
accesses for communication. We devise a throughput oriented
model, that is easier to use for a compiler writer than mem-
ory access traces, and that nevertheless reflects the performance
experienced by applications.

The importance of throughput is not surprising given the
properties of communication related memory accesses. In data
parallel programs, parallelism is exploited by operation on large
collections, with the data distributed over a large number of
processors[2]. In practice, these collections can be quite large
and a compiler cannot assume that the local data structure on
any node fits entirely into the local cache of a node.

The large amount of data involved in realistic applications
further implies that many elements need to be exchanged be-
tween any two processors in a communication step. Once the
elements for a remote store are determined, and the communi-
cation is started, the transfer mainly depends on the maximal
throughput of that copy transfer as a whole rather than on the
latency and overhead for transferring a single element.

While the temporal locality does not influence the perfor-
mance of communication related memory transfers, the spatial
locality is an important factor. Some memory systems perform
contiguous accesses faster than strided accesses, and strided
accesses with constant strides are again performed faster than
accesses with arbitrary strides supplied from an index array.

3.2 Basic transfers

All compiler-generated communication operations can be de-
composed into basic transfers or steps. We now introduce some
terminology to capture the key aspects of these basic steps,
which concentrate on common access patterns encountered in
parallelizing compilers. A transfer T moves data using a source
pattern r and a destination pattern w. The source and destina-
tion patterns capture the memory access patterns, i.e. how the
data are read and written. The read (load) and write (store)
locations are always on the same node, unless explicitly noted.
To concisely represent such a step T , we mark the read pattern
as a left subscript and the write pattern as a right subscript, i.e.
rTw . Typical patterns are 1 for contiguous accesses, 2; 3; : : :
for strided access with constant strides of 2; 3; : : :, and ! for
indexed accesses. We use the access pattern 0 if the source or
destination is a fixed location in memory (e.g., the head or tail
of a FIFO) .

The key transfers necessary to perform the communica-
tion operations demanded by a compiler are local, intra-node
transfers (from memory to network interface, from the network
interface to memory) and inter-node transfer (across network
links):

xCy local memory-to-memory copy This transfer is charac-
terized by a read access pattern, x, and a write access
pattern y and includes all possible access patterns for
reads as well as for write, so x and y can assume val-
ues of 1 for contiguous, n for strided, or ! for indexed
accesses. The transfer is realized by an optimized (i.e.
unrolled and optimally scheduled) load/store loop, exe-
cuted by the processor to allow general access patterns.

xS0 load-send This basic transfer copies data form the mem-
ory system to a fixed communication system port. The
communication port is a constant location, e.g. a FIFO.
Since the accesses are done by the processor, x can be
any access pattern.

xF0 fetch-send This basic transfer is similar to the basic load-
send operation,but the fetch-send is performed in parallel
in the background by additional hardware, such as a DMA
or fetch engine. There may be restrictions on what read
access patterns x are allowed by an implementation,but at
least contiguous or constant strides are usually included.

0Ry receive-store This basic transfer corresponds to the load-
store transfer. This transfer accomplishes a copy of data
from the communication system into the memory and is
performed by the processor. Therefore, y includes the
full range of possible access patterns.

0Dy receive-deposit This basic transfer on the receiver side
corresponds to fetch-send. On some architectures, in-
coming messages can be automatically received in the
background,without involvement of the processor. Some
systems can handle any access pattern by processing
address-data pairs received from the network, while a
simple DMA engine puts a restriction on the access pat-
tern y.

These are the basic intra-node transfers. To accomplish
inter-node communication, data have to traverse the network.
We distinguish between two network transfers since various
parallel systems deal with these two cases differently.

Nd data-only network TheNd transfer moves only data across
the network.

Nadp address-plus-data network The Nadp transfer captures
those inter-node transfers where a remote store address is
sent along with the data. Depending on implementation
details, these remote store addresses can be passed along
as “address data pairs” or compressed as addresses for
a block of data. However, all current systems (if they
support this transfer at all) choose the address-data-pair
variant.

3.3 Estimating throughput for communication op-
erations

We can now composecommunication operations for a variety of
access patterns by concatenating basic transfers. We establish
two concatenation rules and operators: Two transfers using the
same resources (e.g., the processor) must be concatenated in
sequence �. The write (left subscript) access pattern of the first
transfer must match the read (right subscript) access patterns of
the second transfer. Transfers that use disjoint communication
resources can occur in parallel k.

The formal description of the communication operations
as basic transfers allows us to estimate the maximal transfer
throughput for several implementations of a communication
operation. We use the following three rules to derive an estimate

4



for the effective throughput jZj of a communication operation
Z based on the throughput of the basic transfers involved.

k Parallel composition If two transfers occur in parallel, the
composite throughput is the minimum of the two through-
put figures, i.e. jZj =min(jXj; jY j).

� Sequential composition If two transfers cannotoccur in par-
allel because they share a resource,the composite through-
put is the reciprocal sum of the two throughput figures,
i.e. jZj= 1=(1=jXj+ 1=jY j).

< Resource constraint In performance estimates the model
can consider additional resource constraints to limit the
total throughput of certain transfers that can occur in par-
allel. For example, if the processor and the DMAs share
a common system bus, the total bus bandwidth cannot be
exceeded. Resource constraints are given as inequality of
bandwidth parameters. If a resource constraint cannot be
met, the throughput parameter of the participating basic
transfers must be reduced until the constraint is met.

3.4 Example: Bu�er-packing transfers, PVM style

The performance critical communication operation used by the
communication code of a parallel compiler is a local memory
to remote memory copy xQy . Depending on the distributions
of the array operands of an array assignment, different access
pattern may be encountered for load accesses (x) at the source
and store accesses (y) at the destination.

xQy captures the most common, data intensive communi-
cation operation, performed by a compiled program. One way
to implement this operation is to perform a local “gather” copy
operation C that reads the items to be transferred and stores
these data into a contiguous block of local memory. Then this
block of data is transferred to the network interface (i.e., a
load-send S is done), followed by a network transfer N . On
the remote node, the data are extracted from the network into
some buffer (via a receive-store transfer R or via a contiguous
deposit-store D), and a final “scatter” copy C moves the data
to the intended location. We call this implementation of xQy

buffer-packing communication, here written as a concatenation
of basic transfers:

xQy = xC1 � (1S0kNdk0D1) � 1Cy

It might appear that for contiguous transfers (1Q1) the first
and the last memory copy (1C1) are unnecessary. This is true
in principle, but message passing libraries like PVM force the
programmer/compiler writer to copy the data elements in all
cases to comply with the standard application programming
interface. Of course, there may be different ways to implement
xQy , especially if constraints are placed onto x and y, and
we return to this topic in Section 5. But first we discuss how
to obtain the throughput figure of interest for communication
operations composed by the compiler from the basic transfers.

3.4.1 Throughput of bu�er-packing transfers

This simple technique works because the same number of data
elements is moved through all steps of a communication oper-
ation. As an example we estimate the throughput for conven-
tional message passing with buffer packing on the T3D for an
array transpose of an n� n array (i.e., b[i][j]=a[i][j]).
The first case captures the behavior of a program using the
vendor-supplied custom PVM library, the latter case is an ex-
ample of the communication operations produced by expert
programmers or high-quality compilers. The access pattern re-
sults in blocks of contiguous loads and strided stores, i.e. 1Qn.

We compute the bandwidth by applying the bandwidth rules
to our formulas for contiguous transfers. For buffer-packing
message passing we obtain:

j1Qnj =
1

1
j1C1j

+
1

min(j1S0j;jNd j;j0D1j)
+

1
j1Cn j

For many patterns, e.g. next-neighbor or all-to-all per-
sonalized communication (AAPC), every node is sending and
receiving at the same time. Therefore we must check that the
memory system store bandwidth of the parallel operation does
not exceed the total memory bandwidth (j0Cxj).

(2 � jxQyj) < j0Cxj

Evaluation of this formula with the numbers for a transpose
of a 1024 x 1024 matrix on the T3D results in:

j1Q1024 jest =
1

1
93 +

1
min(j126j;j69j;j142j) +

1
j67:9j

= 25:0MB/s

For comparison, measurements of the same communication
operation on a 64-node T3D yield

j1Q1024 jmes = 20:0MB/s:

3.5 Architecture support for communication op-
erations

We briefly review the Paragon and the T3D. We take the liberty
to omit the description of those parts that are irrelevant for our
study, e.g. the support for remote loads, fetch and increment,
or atomic swaps on the T3D, or that are not supported by the
current software system and are therefore not accessible to any
application or measurement tool. We refer the interested reader
to the reference literature about these machines for further tech-
nical details[1, 3, 12].

The compiler demands communication with transfers xQy

for all access patterns x and y, including strided and indexed.
To move data from one node to another, several parallel systems
include some form of hardware support to “drop” or “deposit”
the data into the memory of the destination node. This hard-
ware may also be usable to “pull” or “withdraw” data from
the memory of the source node, but we emphasize the deposit
aspect since we observed higher performance in practice. 2

We refer to the hardware support for receiving remote stores as
a deposit engine. The sole purpose of a deposit engine is to
take data from the network and store it to the memory system
on behalf of the communication system. It is important that
these transfers take place automatically, without further node
involvement, i.e. in the background of whatever computation
or communication takes place on the node. This requirement
to operate concurrently with send operations distinguishes de-
posit engines from handlers, as found in software solutions like
active messages[17]. Handlers attempts to provide a solution to
a more general problem; their invocation may involve a control
transfer or even crossing of protection boundaries (e.g. as part
of an RPC). In contrast, a deposit engine is geared towards a sin-
gle task, remote stores and can perform this task independently,
in parallel and efficiently at the full speed of the network.

2Briefly stated, the reason for this is that when depositing data, address infor-
mation and data travel once together over the network. When withdrawing data,
the latency is higher since address information has to travel first to the node that
holds the data.

5



3.5.1 Cray T3D

A T3D node consists of a 64bit DEC Alpha microprocessor,
a local memory system, a memory mapped network interface
to send remote stores to the network, and a deposit engine
called the annex. The memory of a T3D node is a simple non-
interleaved memory system built from DRAM chips. Unlike
workstations, the node has no virtual memory.

The interface between the computation agent and the main
memory is an 8KB primary cache, which is implemented on-
chip within the Alpha microprocessor. The memory system
and its interface to processor and communication are shown in
Figure 3. External read-ahead circuitry (RDAL) can be turned
on by the programmer at load-time to improve performance of
contiguous load streams; we have measured improvements of
approx. 60%. For writes, the default configuration of the cache
is write-around, and support for writes consists of the write back
queue (WBQ) provided by the microprocessor. The documenta-
tion of the Cray T3D Application Programmers Course [4] spec-
ifies the local read bandwidth at 55 MB/s for non-contiguous
single word transfers, and up to 320 MB/s for contiguous read-
ing of cache lines with read-ahead. The latency of a load from
main memory is around 150ns.

The interface between the processor and communication
system on the Cray T3D consists of the annex, a memory
mapped communication port, which maps some range of free
address space to the physical memory of another node in the
system; this node is then selected as a communication partner.
The communication partner can be switched with a fixed over-
head by modifying the appropriate annex entry. Once a store
operation is issued to the communication port, the communica-
tion subsystem takes over the specified address and data, and it
sends a message out to the receiver. Remote loads are handled
in a similar way.

Every node has some fetch/deposit circuitry that handles in-
coming remote operations (loads and stores) with their memory
accesses on behalf of the communication system. These ac-
cesses can happen without involvement of the processor at the
receiver node (i.e., there is no requirement to generate an inter-
rupt). This circuitry can store incoming data words directly into
the user space of the processing element, since both address and
data are sent over the network. The on-chip cache of the main
processor can be invalidated line by line as data is stored into
local memory or can be invalidated entirely when the program
reaches a synchronization point.

Transfers from the processor to the communication system
can be performed at a rate of approximately 125 MB/s, and if
multiple nodes perform remote stores of contiguous blocks to a
single node, these transfers can be processed at the full network
speed (160 MB/s)[12].

3.5.2 Intel Paragon

The node of a Paragon system contains multiple processors shar-
ing a common memory. Our investigation is based on a system
with 2 processors/node, but systems with 3 processors/node
have been built as well. Except for the mechanisms to support
multiple processors, the memory system of the Paragon system
is surprisingly similar to the Cray T3D. The memory system
and its interface to processor and communication are depicted
in Figure 3.

The processors of a Paragon node are two Intel i860XP pro-
cessors. Both processors have their own primary on-chip data
cache and are connected to the local memory system over a 400
MB/s high speed bus. The data cache is 16 KB, organized 4-
way associative, write-back or write-through. Under SUNMOS
[10] (the operating system of choice for low-latency communi-

cation) the caches are write through. The i860XP processors
contain support for higher bandwidth through pipelined loads
(using the PFQ) that bypass the caches.

The interface between the processors and the communica-
tion system is realized by memory mapped ports, which are
mapped to the FIFOs of the network interface. A remote store
can be performed from the processor to the communication
system through the main high speed bus.

The memory system contains two DMA controllers (also
known as line transfer unit), which can serve as deposit en-
gines (with some restrictions). The two DMA controllers can
handle both in-coming and out-going transfers, but are not as
powerful or as flexible as the annex circuitry of the T3D. They
require a processor for setting up a transfer and also for han-
dling page boundaries or exceptions, which is a quite expensive
solution. Most importantly the Paragon DMAs can handle only
well aligned, contiguous block-transfers.

4 Measuring throughput �gures for basic trans-
fers

Although the detailed mechanics of the architectural support
for each basic transfer are quite complex for each system, the
performance can be measured in simple experiments using fine
grain timers. These measurements result in a throughput figure
for every basic transfers of Section 3.2.

The following tables and figures give the key bandwidth
and throughput parameters for the T3D and the Paragon, mea-
sured on “live” systems in real time. The measurements of the
effective bandwidth for the basic transfers are highly accurate
and consistently reproducible. The basic transfers are defined
in such a way that the throughput is based on the array ele-
ments transferred, and auxiliary data like headers, addresses,
and even index loads are factored into the throughput figure.
That is, these operations, although possibly consuming “raw”
bandwidth, do not contribute to the net bandwidth an appli-
cation is interested in. The model is optimistic in terms of
interleaving the instructions and accesses of all basic transfers
within a node and its memory system. It is assumed the usage
of processor and memory system is spread evenly, over the du-
ration of the whole communication operation. In practice, this
is often obtained through pipelining.

4.1 Throughput of local copies

The throughput for the basic local memory-to-memory transfers
xCy critically depends an the access pattern as seen in Table 1.

j1C1j j1C64j j64C1j j1C! j j!C1j

T3D 93 67.9 33.3 38.5 32.9
Paragon 67.6 27.6 31.1 35.2 45.1

Table 1: Throughput of selected local memory-to-memory
transfers (MB/s) for large blocks.

The graph in Figure 4 show the different characteristics
of the memory systems on T3D and Paragon, when strides
are involved. On the T3D strided stores are better supported
because of the write back queue. On the Paragon strided loads
can be pipelined and benefit from the pre-fetch queue.

4.2 Throughput of send/receive copies

The throughput for the network access depends partly on local
memory-to-memory transfer and partly on network limitations.
The measured figures are given in Tables 2 and 3. Since the
numbers do not vary for large strides, we assume for simplicity
that the throughput for stride 64 applies to any larger stride.
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Figure 4: Throughput for strided local memory-to-memory
transfers (MB/s).

j1S0j j1F0j j64S0j j!S0j

T3D 126 - 35 32
Paragon 52 160 42 36

Table 2: Throughput figures for sending network transfers
(MB/s).

4.3 Congestion and throughput of the network

Network congestion is absent from our model. This may seem
surprising at first, since none of the machines of interest to us

j0R1j j0D1j j0R64j j0D64j j0R!j j0D!j

T3D - 142 - 52 - 52
Paragon 82 160 38 - 42 -

Table 3: Throughput figures for receiving network transfers
(MB/s).

provides a fully scalable bisection bandwidth as e.g. the CM-
5[9]. Both machines use a simple mesh topology with fast links
for their communication networks. In our experience, the raw
link speed in the network significantly exceeds the effective
throughput achievable in useful data transfers. For most appli-
cations, the machines will not be network-congestion limited
unless we move to very large machines. There are however
two quirks: On the T3D, two adjacent nodes share a single
communication port to the network. This design feature intro-
duces congestion at the access point, and therefore the minimal
congestion is two unless half of the processors remain unused.
For the Paragon, the unfortunate aspect ratio of certain machine
sizes (e.g., 112x16) and the lack of torus links can cause con-
gestion for some patterns. In general, next neighbor patterns
like cyclic shifts cause just a small congestion of one or two, and
even dense patterns like the complete exchange or personalized
all-to-all communication can be scheduled with minimal con-
gestion on T3D tori of up to 1024 (2x8x8x8) compute nodes[8].

Because of these two problems in the T3D and Paragon
networks, communication runs at a congestion of two in many
cases, and we use the measured throughput for this congestion,
when using our model to compute overall throughputs. For
completeness, Table 4 shows network performance at conges-
tion one, two, and four. Congestion two means a network link
is traversed by twice as much data as it can support at peak
speed. For a throughput oriented model it is irrelevant whether
the data are multiplexed at a per flit or a per message level.

For the network throughput, it is more important whether
just the data words are transferred, or if the addresses for remote
stores are transferred along with the data words (address-data
pairs). We have therefore measured the network bandwidth for
large block transfers for both options (data only and address-
data pairs) for different fixed congestion factors. The bold data
in Table 4 indicate what we consider to be representative values
for our class of applications.

5 Optimization of communication operations

The large variety of access patterns and hardware capabilities
implies that there are different ways to implement a particular
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Average congestion
data only address data pairs

(Nd) (Nadp)
1 2 4 1 2 4

T3D 142 69 35 62 38 20
Paragon 176 90 44 88 45 22

Table 4: Network bandwidth (MB/s) as a function of a fixed
overall congestion.

communication operation xQy by composing it out of different
basic transfers. Looking at the Cray T3D and the Intel Paragon,
we identify different tradeoffs in the design of the most im-
portant communication operations of a parallelizing compiler.
In both cases the copy-transfer model guides an optimization
towards maximal performance.

5.1 Bu�er-packing vs. chained transfers

Section 3 presents an example of buffer packing, but with ap-
propriate hardware support, the buffer packing/unpacking copy
steps can be eliminated. That is, we can implement the com-
munication operations xQy for the T3D and the Paragon so
that they avoid packing buffer(s). These implementations (and
their bandwidths) are different for the two machines, but the
overall idea is the same. Therefore, a compiler or user has two
options when selecting communication operations to perform a
computation step:

Buffer-packing transfers The buffer packing message pass-
ing libraries (such as PVM) attempt to transfer contigu-
ous blocks at all costs, leaving the packing / unpack-
ing of communication buffers to the application code.
Packing and unpacking is done through a local copy in
memory before and after the transfer across the network.
This arrangement benefits from faster contiguous trans-
fers across the network but suffers from the cost of addi-
tional accesses to local memory. Figure 5 illustrates the
path of data for this style (of course, these operations are
overlapped or pipelined as stated in Section 3.4).

Chained transfers By chaining the slower non-contiguous ac-
cesses to data with the transfer of data from local memory
to the network at the sender side (and vice versa for the
receiver side), we eliminate local copies at the expense
of supplying the data more slowly to the network. The
chained transfers rely on the deposit engine at the receiver
node to perform the stores. Figure 6 illustrates the flow
of data within a node.

The flexibility of chained transfers with strided and indexed
memory accesses occurs at a cost. Transfers with these pat-
terns are expected to be slower than contiguous block transfers
as our measurements indicate and our performance parameters
take into account. This is partly due to the work of gathering
and scattering strided data and partly due to the loss of specific
hardware support when patterns become more complex. Re-
member that the access pattern of DMAs and other dedicated
hardware is often restricted to contiguous transfers.

Counting the number of transfers from and to the mem-
ory system for each case, it becomes evident that the chained
communication results in less copying and therefore in a lower
requirement for memory system bandwidth. However, counting
the accessesdoes not take into account the variation of memory
system bandwidth due to different access patterns in each basic
transfer to and from memory.

5.1.1 Bu�er packing transfers on the T3D

In the previous section, we presented the formula for buffer-
packing message passing. This message passing style is pro-
vided by both the Cray PVM library on a higher level and the
Cray SH MEMPUT library (libsma.a) on a lower level. While
both libraries contain primitives for direct contiguous memory
transfers, both libraries fail to provide adequate direct trans-
fers for strided and indexed transfers without local copying in
memory. Furthermore, the performance of PVM is affected by
additional copies to temporary system buffers

The buffer packing message passing primitive (xQy) on
the T3D is implemented as composition of the following basic
transfer steps:

xQy = xC1 � (1S0kNdk0D1) �1 Cy

Using the model of Section 3, we obtain these performance
estimates:

j1Q1j = 27:9 MB/s j1Q64 j = 25:2 MB/s
j64Q1j = 17:1 MB/s j!Q! j = 14:2 MB/s

The T3D offers hardware support to perform direct user-
space to user-space transfers for all communication patterns:
contiguous, strided, and indexed. This capability potentially
eliminates the buffer packing at the sender and unpacking at the
receiver end even for the more complex access patterns, at the
cost of possibly slowing down the network transfers.

5.1.2 Chained transfers on the T3D

A chained implementation xQ
0
y of the basic inter-node transfer

avoids the local copying steps. On the T3D, such an implemen-
tation must be done at the (dis-)assembler level, and although
this approach is too tedious for a programmer, it may be ap-
propriate for a compiler. Also, a better user interface to the
annex hardware could alleviate some problems. The chained
implementation xQ

0
y exploits the flexibility of the deposit en-

gine to handle all access patterns, including strided and indexed
accesses. Using our basic transfer steps, we have two cases:

1Q
0
1 = 1S0kNdk0D1

xQ
0
y = xS0kNadpk0Dy

Using the concatenation rules of Section 3.3, our model
predicts:

j1Q
0
1j = 70 MB/s j1Q

0
64j = 38 MB/s

j16Q
0
64j = 38 MB/s j!Q

0
!j = 32 MB/s

Figure 7 shows measured throughput rates for buffer pack-
ing and chained transfers on the T3D, for different access pat-
terns. As can be seen, the model predictions match fairly accu-
rately the measured performance.

5.1.3 Bu�er packing transfers on the Intel Paragon

On the Paragon, the realization of different implementations
xQy for buffer packing and xQ

0
y for chained communication

are less evident. At first sight, the Paragon, and many other
conventional message passing architectures, appear to support
only transfers of contiguous blocks over the network. So for a
read and write pattern of 1, we can use the DMA as a deposit
engine, but for other patterns, we have to fall back to buffer
packing.

1Q1 = 1F0kNdk0D1

xQy = xC1 � (1F0kNdk0D1) �1 Cy
(2 �x Qy) � 0C1 and � 1C0
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Figure 6: Schematic flow of data for chained communication. Solid lines indicate streams of contiguous data, dashed lines
potentially strided or indexed data.

The data are first gathered in a memory-to-memory copy,
thereafter it is transfered to the network with a send copy. At the
receiver node, the data are stored in a contiguous buffer before
it is scattered with a memory to memory copy. It is important
that the contiguous transfers to the network are performed by
DMAs and therefore they can be partially overlapped. Still, in
practice the DMA engines on the Paragon require permanent
attention of a processor; they need to be “kicked” back on if
they stall either due to crossing a memory page boundary or
due to hardware bugs in the communication interface chips.
A full overlap with buffer packing occurs when the separate
communication processor takes care of attending to the DMA
engines, as is done in OSF/1 and mode 1 (co-processor reserved
for communication) of SUNMOS:

xQy = xC1 � (1F0kNdk0D1)k1Cy
(2 �x Qy) � 0C1 and � 1C0

For these transfers, the model predicts:

j1Q1j = 20:7 MB/s j1Q64 j = 16:1 MB/s
j16Q64j = 14:9 MB/s j!Q! j = 16:2 MB/s

5.1.4 Chained transfers on the Intel Paragon

An efficient implementation of the chained communication
primitive xQ

0
y for arbitrary patterns x and y critically de-

pends on the capabilities of the deposit engine. The current
Paragon nodes provide only an inflexible DMA engine, which
handles only contiguous accesses,has too many alignment con-
straints, and cannot even work across DRAM page boundaries.

This DMA engine therefore does not meet the requirements for
strided and indexed transfers.

A closer look at the node architecture in Figure 3 points
towards a possible solution. The communication co-processor
can be used exclusively as a deposit engine during communica-
tion. With a communication processor at work, remote stores
can be implemented without disturbing other activities; any
send operation can be done by the main processor. With this
change, we obtain parallel execution of the basic transfer steps:

1Q
0
1 = 1S0kNdk0R1

xQ
0
y = xS0kNadpk0Ry

In this case, the model estimates this performance:

j1Q
0
1j = 52MB/s j1Q

0
64 j = 38MB/s

j16Q
0
64j = 38MB/s j!Q

0
! j = 36MB/s

The model numbers tell us that if it is indeed possible to use
the processor and co-processor simultaneously for memory ac-
cesses, the chained model could be a winner. The co-processor
easily performs the task of a deposit engine. The major caveat
comes from resource constraints in the model. If there is, e.g.,
a heavy penalty for bus arbitration between processor or co-
processor, the second processor would be unable to help with
communication work involving memory accesses. Only with
the DMA can the data move over the network at full speed.
This is an advantage on machines with a network that cannot
share the bandwidth of a physical link among multiple virtual
channels by multiplexing.
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Figure 7: Throughput for communication operation with different strided access patterns including contiguous, strided and indexed
for either loads or stores. The buffer-packing implementations (left) result in a lower throughput than the chained implementations
(right).

Figure 8 shows measured throughput rates for buffer pack-
ing and chained transfers on the Paragon. However, due to
difficulties with our buggy A-step network interface parts, the
measurements deviate significantly from our conceptual model
since we were (1) unable to use the pipelined loads (a 30-40%
performance loss) and (2) we did not run sending and receiving
simultaneously at each node. Experiments with simultaneous,
interleaved memory accesses of processor and co-processor in-
dicate that the bus in the current Paragon systems is not equipped
for fine grain interleaving of single word loads and stores, and
that a performance penalty of up to 50% must be expected.

5.2 Strided loads vs. strided stores

When implementing the communication primitive for a two
dimensional array transpose, the compiler can choose between
an access pattern of 1Qn or nQ1 in the remote memory transfer,
as seen in Figure 9.

512x512 complex 2D FFT

PE0

PE1

PE2

PE3

a)

b)

Figure 9: Execution of a 2D FFT includes an array transpose
to change the distribution from row-major into column-major.
Square patches must be moved between the processors. The
patches of data can be moved in two ways, a) or b).

This choice corresponds to the (arbitrary) choice of i or
j as an outer looping variable in a transpose loop with body
b[i][j]=a[j][i]. Both implementation of this transfer
are possible.

Using the bandwidth parameter rules of our copy-transfer
model, the effective bandwidth of the communication opera-
tions is predicted as seen in the Table 5.

This optimization of choosing strided stores on the T3D and
strided loads on the Paragon is not surprising, given the better
performance of strided stores for memory-to-memory copies in
one architecture and strided loads in the other architecture. We
found that both the write back queue of the T3D and the pre-
fetch queue on the DEC Alpha as well as the pipelined loads
of the Intel i860 improve communication performance, espe-
cially for complex indexed pattern. Unfortunately, the standard
single-node compilers do not generate code for these instruc-
tions.

6 Measured performance in application kernels

To evaluate the appropriateness of the copy-transfer model for
applications (and not just basic communication operations as
discussed in Section 5), we choose the communication kernels
of three important applications. Two of these applications are
compiled by a compiler for our dialect of HPF and one by an
application-specific compiler. They are run on the T3D (since it
is easier for us to explore architectural aspects on this machine
than on the Paragon). The three applications were chosen to
observe representative communication patterns.

6.1 Application kernels

The three kernels we used for our evaluation are: an array
transpose, as it occurs in 2D FFT, the communication of a
solver step in a finite element method (FEM) program and the
communication occuring in a successive over-relaxation (SOR)
solver.

6.1.1 Transpose in 2D FFT

Transposes are important to many application. Our example is
taken from an n � n 2D FFT application kernel. We choose
a 1024 � 1024 complex 2D FFT because we observed this
problem size to be common for applications on this class of
machines. The transposes are necessary to provide locality for
the column FFTs after the row FFTs are completed. We en-
countered a transpose of similar size as the performance critical
communication step of a grand challenge application in air-shed
modeling [11]. This code redistributes a 3500� (35� 5) array
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Figure 8: Throughput for communication operation with different strided access patterns including contiguous, strided and indexed
for either loads or stores. The buffer-packing implementations (left) result in a lower throughput than the chained implementations
(right).

T3D model Paragon model T3D measured Paragon measured
MB/s Buffer Chained Buffer Chained Buffer Chained Buffer Chained

packing packing packing packing
1Q16 25.4 38.0 18.3 32 20.8 31.3 20.7 29.7
16Q1 18.4 38.0 20.7 42 14.3 27.4 24.2 39.2

Table 5: Estimated and measured performance for strided loads vs. strided stores.

between one phase that performs numerical chemistry calcu-
lations and another phase that calculates transport phenomena,
and this redistribution is implemented as a generic transpose.

6.1.2 Iterative solver on partitioned Finite Element
graph

The FEM application kernel is derived from a sparse system
solver based on a partitioned finite element graph, representing
a 3 dimensional model of an alluvial valley surrounded by hard
rock. This graph is used by our colleagues to study earthquakes
[14]. Since the structure is an irregular well partitioned grid,
only a fraction of the local data elements is exchanged between
nodes, and the communication involves indexed accesses with
arbitrary strides.

6.1.3 Successive over-relaxation solver

Not all applications require the transfer of strided or indexed
data. SOR methods distribute data as contiguous blocks. A
common technique is to replicate and overlap a region between
neighbor processors to allow the computation to span across
node boundaries. After every computation (relaxation) step,
the overlap region is exchanged, using a shift communication
step. In this case, we deal with matrix of size 256 � 256.

6.2 Measurements

For each application kernel we determine the throughput of the
communication step for both buffer-packing communication
and chained communication. Table 6 shows the throughput
estimate of our model as well as the actual measurement on a
64-node partition of a T3D.

To put the numbers in Table 6 into perspective: these figures
are very good numbers for these applications on the T3D. Us-

Buffer-packing Chained
measured model measured model

Transpose 20.0 25.2 29.5 38.0
FEM 12.2 14.2 20.2 32.0
SOR 26.2 27.9 68.1 70.2

Table 6: Measured data transfer rates of our application on a
64-node partition of a 512-node T3D, (MB/s per node).

ing the standard vendor supplied message passing system, the
performance is significantly less. Due to the constant overhead
for sending a message in standard message passing libraries
like PVM, the buffer packing numbers decrease drastically if
we use Cray PVM3 . The PVM3 application performance is
approximately 2 MB/s for FEM, 6 MB/s for FFT, and 25 MB/s
for SOR.

7 Conclusions

Parallel supercomputers provide a high raw communication
bandwidth, but applications realize only a fraction of the stated
peak bandwidths. Since the data to be transferred from one
node to another are moved from the memory of one node to the
memory of another node, we follow the path of data through
the system and discover that the memory system performance is
actually the limiting factor for many applications. Particularly
applications that move strided blocks, or use an index array to
look up the elements to be transferred are susceptible to memory
system performance.

Modern parallel systems are complex and therefore pose a
challenge to any compiler writer who wants to keep down the
overhead cost of communication. To assist compiler writers,
we developed the copy-transfer model to allow tradeoffs be-
tween different implementation strategies for communication
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operations. This model is driven by throughput figures for the
three different memory access patterns generated by compilers,
as well as by a few key performance parameters of the commu-
nication network. We applied the model to two current parallel
systems, the Intel Paragon and the Cray T3D to analyze both
basic communication operations as well as the kernels of some
key applications. Although simple, the model is highly accurate
in the cases that we have evaluated so far.

Improving the performance of the memory system at each
processing node is not feasible on installed machines, and de-
sign changes may or may not be economical for a massively
parallel system. We therefore focus our conclusion on software
options for optimizing the memory performance of communi-
cation operations.

Depending on the details of the memory system and the
addressing pattern of the application, it may be more advan-
tageous to transfer the data directly from their home location,
without first compacting them into a contiguous block of mem-
ory. We call this “chained” communication and relate it to
“buffer-packing” communication, as it is done by many con-
ventional message passing system. The insight that “chained”
communication can perform better was first demonstrated by the
our simple model and then verified in practice for two modern
parallel systems, the Cray T3D and the Intel Paragon. For three
relevant application kernels, these tests confirm that “chained”
communication results in 40-60% higher performance for ac-
cess pattern other than contiguous accesses on the Cray T3D.

“Chained” communication relies on the design of the de-
posit engine (e.g., block transfer engines, line transfer units, or
DMAs) to handle receiving the data in the background. Ad-
ditional hardware support is only useful to the extent that it
supports the demands of a parallelizing compiler. That is, such
engines must take into account that not all transfers are contigu-
ous blocks of compact data. Furthermore, engines that have a
large unit of transfer (say more than 4 operands, or even pages)
may not deliver the expected performance in application, be-
cause the transfer will be limited by memory access necessary
to prepare the communication operation.

The crucial role of memory system performance is not novel
to the supercomputing world. As has been observed in studies
of vector-supercomputers, it is often the memory system that
makes or breaks an application. The same holds true for par-
allel systems. The parallelism exploited in applications is no
panacea and cannot cover up inadequate memory system per-
formance. To the contrary, as the interconnect bandwidths and
latencies of parallel computers improve, the demands on the
memory system are going to increase. We observed the utility
of write back buffers and pipelined loads, contributing to better
memory performance. It is important that the designers of such
systems pay attention to the memory system demands of par-
allelizing compilers if they want to build a hospitable platform
for applications.
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