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Abstract

Synchronizationisanimportant issuefor thedesign of ascalablepar-
allel computer, and some systemsinclude special hardware support
for control messages or barriers. The cost of synchronization has a
high impact on the design of the message passing (communication)
services. Inthis paper, weinvestigate three different communication
libraries that are tailored toward the synchronization services avail-
able: (1) aversion of generic send-receive message passing (PVM),
which relies on traditional flow control and buffering to synchronize
the data transfers; (2) message passing with pulling, i.e. a message
is transferred only when the recipient is ready and requests it (as,
e.g., used in NX for large messages); and (3) the decoupled direct
deposit message passing that uses separate, global synchronization
to ensure that nodes send messages only when the message data
can be deposited directly into the final destination in the memory
of the remote recipient. Measurements of these three styles on a
Cray T3D demonstrate the benefits of the decoupled message pass-
ing with direct deposit. The performance advantage of this style is
made possible by (1) preemptive synchronization to avoid unneces-
sary copies of the data, (2) high-speed barrier synchronization, and
(3) improved congestion control in the network. The designers of
the communication system of future parallel computersare therefore
strongly encouragedto provide good synchronizationfacilities in ad-
dition to high throughput data transfers to support high performance
message passing.

1 Introduction

Thetrend to use off-the-shelf processors as compute engines for su-
percomputers implies that the communication system distinguishes
parallel systems. For example, the Cray T3D, Intel Paragon, IBM

SP2, TMC CM-5, and networksof workstationsare all based on stan-
dard microprocessors but use dramatically different communication
systems.
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One of the key issuesin the design of a communication system
iswhat servicesor primitivesto include. For example, both the T3D
and the CM-5 include special hardware support for fast synchroniza-
tion (in the form of hardwired barrier trees), whereas such support
is absent in the Paragon and networks of workstations.

The importance of synchronization hardware goes beyond the
obvious use for explicit synchronization. When compiling a High
Performance Fortran (HPF) program, it is often necessary to in-
sert synchronization steps to ensure that the communication opera-
tions of one statement (or group of statements) do not conflict with
the communication operations of another. A programmer who di-
rectly controls the operation of the nodes of a parallel system (i.e.,
who does not use a parallelizing compiler) faces the same prob-
lems. For example, when implementing a transpose, judicious use
of synchronization speeds up the routing and data transfers[8], and
when switching between different connection setups for different
phasesof acomputation, synchronizationis necessary to avoid race
conditions[6].

Theavailability of fast synchronizationimpactsthe performance
of the message passing system that provides the basic data transfer
services. In the absence of a fast global synchronization facility,
the message passing system must rely on transport-level acknow!-
edgements to ensure that messages have been delivered.! Such
transport-level acknowledgementsare just another type of message.
If there existsafast global synchronization mechanism, the compiler
or the programmer can in many cases replace such transport-level
acknowledgement messages with a single global synchronization
step, significantly reducing the overhead associated with inter-node
communication.

To get a better understanding of the importance of synchroniza-
tion in practice, we investigate three message passing systems that
are adapted to three different scenarios. Section 2 describes these
systems and discusses their reliance on synchronization. Section 3
further developsthe ideas of data transfer and synchronization. We
measure key parameters of these communication systemsto quan-
titatively assess the impact of good or bad synchronization, and
discuss how the data transfer and synchronization services can be
decoupled.

To factor out the differences in implementation technology of
the various parallel systems, we use a single parallel system as our
testbed. It would be difficult to separate clock rate differences from
architectural differences if we compared message passing libraries
with synchronization on one system against message passing li-

1A system may aso include link-level acknowledgementsto deal with problems
at the link level, e.g. loss or corruption during a transfer. However, only a transport-
level acknowledgement can guaranteethat a message has been buffered or stored at the
recipient.



braries without synchronization on another system. Since we are
interested in the impact of architectural support, we choose a pow-
erful system that provides a wide range of options, the T3D. In
Section 4, we report on the performance of the different communi-
cation systems on the T3D. We discuss the results and present our
conclusionsin Section 5.

2 Background

In message passing parallel systems, either the user or the compiler
explicitly moves datafrom one node to another, thereby “renaming”
the data. That is, as data is moved from one node to another,
its name (address) is changed. In contrast, shared address space
systems preserve the name of a data item as it is moved to another
node. A data item may appear in the local memory (cache) of a
node after a transfer, but its name (address) is still the same as it
was before the transfer. The relative advantages of both machines
have been discussedin numerous papers, and there exist anumber of
machinesfor either style. There are also proposalsto integrate both
approaches in a single machine. This paper concernsitself solely
with message passing communication.

2.1 Control and data transfer messages

The key function of the communication system for a parallel com-
puter is to transfer data, as well as to provide explicit synchroniza-
tion. However, transferring data can be tricky: if data are sent too
early, the datamay haveto be buffered. If they are sent too late, the
receiver nodes must wait.

Conventional messagepassing program usethe samemechanism
for control and data transfers: they send messages. We classify
messages as either control or data messages, based on their content
and purpose in the program.

Most control messagesare linked to synchronization. Therecep-
tion of such acontrol message containsan assertion that somedatais
ready, that some buffer isavailable to receive more data, or even that
somedatamadeit or did not maketo its destination, in case our com-
munication system requires retransmission. Therefore, all messages
implicitly issued by protocols are control messages. Despite its im-
plementation in hardware, we classify a barrier synchronization as
a form of control message, since it also communicates assertions
between nodes.

Messages that contain data are called data transfer messages.
They typically contain a significant amount of data that is moved
between nodes within the parallel program. Since the amount of
datais usually too largeto be stored in special-purposeregisters, the
message passing system must pay attention to the buffering of data
in memory. Typically the source of the data is in the user process’
memory on one hode, and the destination is in the user’s memory at
another node.

In some rare cases messages contain data as well as control. We
call these hybrid messages, but we suggest that such a message is
classified and handled either as a data transfer messageor as control
message, depending on the amount of data it contains. Hybrid
messages can be generated in two cases. Many flow control and
other protocol implementations piggyback control information such
as acknowledgement or choke packets onto data messages flowing
into the other direction. In this case, the messages contain data
and must be handled like data transfer messages. Hybrid messages
also occur in global data parallel operations that perform little data
transfer and computation but synchronize the machine. An example
of such a parallel operation is a scan or reduction. These messages
can be handled like a control message, since they do not contain
large amounts of data.

2.2 User models

As stated above, we consider all communication that renames the
data to be message passing. We include the <shmem_put> remote
store operation on a T3D? in this category, in contrast to operations
on a shared memory machinelike the Silicon Graphics Power Chal-
lenge, where node programs do not distinguish between local and
remote addresses.

There are many models of message passing. We provide here
a broad classification based on the degree of involvement by the
sender and the receiver node.

Rendezvousmodel The sender and receiver perform a handshake
to transfer a message. Consequently, every data transfer en-
forces a complete synchronization between the sender and
receiver. Themodel is popular for theoretical work and forms
the basis of Occam [12]. One of the drawbacks of this model
isthe overly tight synchronization imposed on sender and re-
ceiver for the transfer of every data word. Therefore, this
model is not considered any further in this paper.

Postal model Both the sender and receiver participate in amessage
exchange. The sender performs a send operation and the
receiver issues a receive operation. These operations can be
invoked in either order. That is, messages can be sent at any
time without waiting for thereceiver; the datais buffered until
the receiver acceptsit [2].

The postal model is implemented in the message passing li-
braries of many parallel systems, e.g. PVM [4], MPI [17],
and NX [11]. However, there are important implementation
differences. For example, NX may delay the transfer of data
for large messages until the receiver is ready. When a node
issues a receive operation, the communication system pulls
the data over from the sender. This optimization simplifies
buffer management and improves performance (since thereis
never aneed to copy dataon the receiver side). Thedifferent
optimizations and their impact on the precise semanticsof the
send and receive calls are beyond the scope of this paper and
are discussedin [14].

Deposit/fetch models Only one of the two nodes (sender, receiver)
actively participatesin the datatransfer. In the deposit model,
the sender “drops’ the data into the address space of the re-
ceiver, without participation of thereceiver process. Thefetch
model is the dual of the deposit model: the receiver retrieves
the message data. Both models allow a clean separation of
control and data messages. In the deposit model, control
messages or hardware barriers are used to deal with explicit
synchronization, and datamessagesare sent only whenthere-
ceiver has signaled its willingness to accept them. Similarly,
in the fetch model, control messages establish when data is
ready to be fetched, and then the datatransfer can take place.

This model can be implemented in software with active mes-
sages [16], where the sender node just sends the data, and
a handler is invoked on the receiver to move the data to its
final destination. However, our model suggests that a gen-
eral control transfer in the form of an RPC should be avoided
and that implicit synchronization is sufficient. The benefits
of separating control and data transfers as an optimization for
RPC in client/server computing is argued in [15]. The direct
deposit model suggests that the handler is implemented di-
rectly in hardware as, e.g., by the custom circuitry to handle

2This operation takes alocal addressin the address space of one node and a remote
addressin the address space of another, and moves a copy of the data from one address
spaceto another. See[3] for more details.



<shmem_put> and <shmem_get> primitives on the T3D [3].
On this machine, custom hardware moves data across the net-
work whenever a node explicitly copies data from the local
address space to the remote address space of a selected other
node. For this paper we use <shmem_put> exclusively and
werefer to the hardware executing the transfers at the receiver
side as the deposit engine.

We select three representative message passing libraries, implement-
ing the postal and the deposit models:

PVM, standar d message passing: Anexampleof theclassical post-
al model with traditional sends and receives.

RRMSG, request-response message passing: A variant of thepostal

model, optimized by buffering dataat the sender and “ pulling”
large messagesonly when they are needed.

DM SG, deposit messagepassing: A message passing implemen-
tation that exploitsthe decoupling of control and datatransfers
and that relies on decoupled synchronization services.

This last aspect, separating synchronization and data transfer, is
reviewed in more depth in the next sections.

2.3 Synchronization properties and buffering

Any message passing system inherently provides a simple one-way
synchronization between the sending and thereceiving process. data
must be produced and sent before it can be received. But the syn-
chronization does not go in the other direction; it is common in
message passing systems for a node to finish sending a message
and continue before the receiving process has invoked the receive
routine. A long message cannot be allowed to fill the network and
needlessly consume communication resources; in fact, most net-
works are only deadlock free under the assumption that the receivers
continuously and unconditionally remove incoming messages [5].
Thus in practice, some storage space (on either the sender or the
receiver) for messagesis necessary to allow sends to complete be-
fore the corresponding receive is posted. Such storage space can be
supplied through either user program or system buffers.

In practice, storage spacefor communication buffersis bounded,
thusrequiring long messagesto bebroken downinto smaller packets.
As aresult, a flow control protocol must be used to send requests
for buffers, replies, and acknowledgmentsin messages. With such
aprotocol, a message passing system can ensure that buffers do not
overflow.

Theflow control protocol can beused to provide synchronization
(beyond buffer management), but doing so is expensive, because
each data transfer has implications on the management of buffer
storage. The coupling of datatransfer and synchronizationincreases
the cost of the datatransfers, since each transfer may involve storage
management decisions.

3 Decoupling synchronization and data transfers

Separation of synchronization and data transfer is the key to com-
munication performancein parallel supercomputers. Therearethree
principal reasonsto separate synchronization from datatransfers:

1. If synchronization and data transfers are coupled, a control
message may involve costly storage management operations,
since those are necessary for data transfers.

2. If no system buffers are provided and the data transfers are
fully under user control (desirable to avoid copying), then we
cannot rely solely on the synchronization provided by data
transfers.

3. If we want to target the data directly to its final destination
(desirableto avoid copying), synchronizationis required prior
to data transfers.

Decoupling synchronization from data transfers creates addi-
tional opportunities for improvement in the communication system.
Compiler-generated parallel programs can manage the buffers in-
volved themselves and can include synchronization code. There-
fore, these programs do not have to rely on the synchronization
provided by data transfers. It is no longer necessary to acknowl-
edge each individual buffer allocation request; acknowledgements
must be provided for a buffer pool that is managed as a unit by the
compiler.

Combining protocol messages

With the global knowledge of a compiler, protocol messages of
several nodes can be combined, resulting in a drastic reduction
in the number of protocol messages (e.g., for flow control). For
example, a complete exchange (or personalized all-to-all commu-
nication) among » nodes implies n? data transfers, one for each
sender-receiver pair. A connection-oriented request/reply flow con-
trol protocol must send O(n?) messagesto request and acknowledge
the data transfers between all sendersand receivers. However, since
the compiler has global knowledge about the communication step, it
can use a simple tree reduction to propagate the acknowledgements
to all processors with atotal of just 2n messagesin 2logn steps.
Figure 2 depicts the impact on the T3D; we delay the discussion
until the end of this section.

Using barriers and specialized messages

The flow control messages for many communication patterns are
highly regular. Since the structure of the pattern is known, each
node has detailed knowledge about which resources (buffers) are
involved. Therefore, the flow control messages convey only se-
guencinginformation, so empty messagescan be sent, provided they
are identified as control messages. Specialized hardware for short
messages and message combining exists in some supercomputers.
Suchreduction or synchronizationtreesare the optimal candidatesto
propagate the synchronization and flow control information among
the computation nodes.

Traditionally, the messagepassing hardwareis designedto trans-
fer large amounts of data efficiently. Control and synchronization
have different characteristics (small size,immediate use at receiver)
and should be handled by different mechanisms; e.g., barrier syn-
chronization hardware or combining trees.

Avoiding copying and buffering

Figure 1 shows all possible copies due to buffering steps within a
general purpose library like PVM. The steps are labeled with the
terms used later in our measurements of PVM and RRMSG over-
heads. Note that all buffers are in user space; there are no copies
due to protection domain crossings on supercomputer nodes dedi-
catedto asingleuser. PVM implementations require buffering steps
either at the sender or the receiver node to maintain the semantics
of a message passing model with implied synchronization proper-
ties of every data transfer. In such a model, send operations are
legal even before the matching receive is posted. Furthermore, the
built-in buffer management in PVYM and RRMSG can only handle
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Figure 1: Possible copiesof data occurring in traditional message passing (e.g. PVM) due to bad synchronization and buffering.

contiguous blocks of data, resulting in a mandatory copy to gather
possibly strided or indexed data elements out of the array structures
at the sender. Similarly, a scattering copy at the receiver is needed
to deliver the data elementsto their final destination.

On parallel supercomputers, interconnection networkscan trans-
fer data at rates close to the local memory bandwidth. Buffering at
the end points through copying is therefore alimiting factor to com-
munication performance, since the traffic to and from data buffers
traverses the memory bus multiple times. A quantitative study of
memory system performance in message passing system can be
foundin [?].

In our decoupled deposit message passing system, all messages
are taken directly from memory (user space) at the sender and are
automatically directed to their final destination in memory at the
receiving end. If buffers are used, they are under compiler/user
control while synchronization messagesare generated separately. In
the deposit model, we cannot rely on the synchronization properties
associatedwith datatransfersbecausethere existsapossibility of live
data being overwritten. Some additional form of synchronization
is needed, and our DMSG library relies on hardware barriers for
synchronization. The RRMSG library uses short protocol messages
for the same purpose.

Based on these three observations, the Fx compiler for a dialect
of HPF [7] achieves its best performance with the DMSG library.
Using aglobal picture of the communicationsteps, the compiler back
end replaces the synchronization effects of numerous data transfers
by more efficient collective communication primitives (e.g., barrier
synchronizations). The resulting message passing systemis able to
focus on and optimize the data transfers. No buffering services are
providedinthe messagepassinglibrary, sincethe buffer management
is taken care of by the compiler and most of the synchronizationis
done globally by barriers.

Cost of synchronization

Figure 2 depicts the cost of different synchronization options for
all-to-all communication on a T3D. Three different ways to propa-
gate synchronization information among all communication nodes
are considered. In the first method (ctrl-msgs), each data transfer is
accompanied by arequest, areply, and an acknowledge control mes-
sage, thus ensuring that the buffers can be managed easily. In the
second method (ctrl-msg-tree), all requests, replies, and acknow!-
edgements are carried out in a collective communication operation,
using combining trees. The third method (hw-barrier) invokes the
subset barrier hardware of the machine.

These measurements of control message exchanges illuminate
the importance of paying attention to the cost of control messages.
Exchanging O(log n) messagesinstead of O(n?) resulted in signif-
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Figure 2: Costs of different mechanisms for flow control in an all-
to-all communication step.

icantly improved performance, as expected. Although both the hw-
barrier and ctrl-msg-tree implementationsusethe same <shmem_put>
remote store mechanism, the further improvement for hw-barrier is
due to the dedicated barrier synchronization hardware. The results
show that an optimized path for zero length messagesisaworthwhile
option to handle control messages.

4 Evaluation

We chose two application kernels, 2D-FFT and SOR, to run on the
T3D, to quantitatively verify our claim that decoupling synchroniza-
tion and datatransfer is the key to message passing performanceand
application scalability.

Parallel programs are sometimes classified as either embarrass-
ingly parallel, coarsegrain parallel, or finegrain parallel. Inthefirst
case, communication performance does not matter, and networks
of workstations or arrays of cheap signal-processors are sufficient
to achieve good performance. But in the latter two classes of pro-
grams, communication performanceis afunction of the problemsize
and has significant impact on overall performance. Our application
kernels and their input sizes (both with sixteen million elements,
i.e.adk x 4k 2D-FFT and a4k x 4k SOR) are motivated by two
supercomputing grand challenge applications that are currently un-
der investigation at CMU. The two application kernels differ in the
amount of data sent and most importantly in the complexity of the



communication pattern. The SOR kernel has a larger amount of
data to be exchanged, but the data is contiguous and only sent to
two neighbors. The size of messagesis not affected by the num-
ber of nodes used and the total amount of data sent increases with
the machine size. By contrast, the 2D-FFT performs a dense all-
to-all communication pattern with smaller messages. Appendix A
provides more details.

We measurethe computationand communication performance of
our kernels running under three different message passing systems.

PVM 3.3 The PVYM library providesthe conventional send and re-
ceive primitives, which combine synchronization and data
transfer services. It is important to note that PVM 3.3 isa
specialized library version of PVM for communication com-
pletely within the T3D distributed memory parallel computer
[9], as opposed to a more general version that is also capable
of communicating over a network of heterogeneous systems.
This PVM library was written and optimized by the vendor
under the assumption of exclusive processor use and full ac-
cess to the communication system. Thus, all our programs
run in physical memory and communicate directly from user
spaceto user space. The results reported for this implementa-
tion of PVM are alsoindicative of the performance that can be
obtained with a native implementation of MPI, the evolving
message passing standard.

DM SG: Deposit model message passing Our secondcommunica-
tion serviceis based on theideaof service decompositioninto
control and data transfers. DMSG allows deposits into the
address space of any other node. At the destination node,
the deposit engine executesthe remote store asynchronously,
without any participation from the receiving node. The sender
keeps track of when remote stores complete. For all further
synchronization, the compiler relies on the hardware barrier,
which can synchronize all processors within afew microsec-
onds.

RRMSG: request/response message passing Withthethirdlibrary
we study the case of machineswhere control and datatransfers
are optimized separately, but thereis no direct support for syn-
chronization through hardware barriers (e.g., Intel Paragon or
SP2). Werefer to this model as*RRMSG”. Thisstyle mirrors
closely the operation of NX for long messages on a Paragon
running under OSF/1 or an iPSC860. For every data trans-
fer there are three control messages. a request by the sender
for transfer, a responsein which the receiver confirms buffer
reservation, and a final acknowledgement by the receiver con-
firming thereception of thedata. Theseextracontrol messages
are necessary to free the user from potentially complicated
buffer management decisions. In some cases, buffering and
copying can be avoided with the exchange of a few synchro-
nization messages. The RRMSG model incorporates ideas
from both worlds: the conventional message passing systems
(e.g., PVM) and the highly efficient direct transfers of the
deposit model (e.g., DMSG).

All three implementations rely ultimately on the built-in T3D
remote store commands to implement data transfers. The differ-
ences that we report in the next section are due to the different
synchronization schemes, emphasizing the importance of adequate
synchronization support in parallel systems.

4.1 Performance impact of fast synchronization

The scalability of application kernels dependscritically on the mes-
sage passing style and hardware support for synchronization. In

Figures 3, 4, 5, and 6 we graph the total aggregate performance and
the Per-node performancefor the different messagespassing systems
on different machine sizes. These performance figures include all
communication overheads due to parallel execution.

The performance of the 2D-FFT kernel executing on PVM falls
sharply as we move to machines with more than 64 nodes, due to
lower communication speeds. Better scalability and good sustained
performance can be achieved with the decoupled modelsthat are the
basis of DMSG and RRM SG. (See Figures 3 and 4.)
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Due to separate synchronization, DMSG is able to make use of
the good architectural support for hardware barriers and fast direct
deposit data transfers. In DM SG, the deposit model library, the per-
node performance remains near peak for both applications (2D-FFT
and SOR), even at machinessizes as large as 512 nodes, as depicted
in Figures5 and 6.

For a more detailed analysis of communication performance,
we measured the achievable throughput of both applications during
communication phasesindependent of the computation part. These
numberscan be usedto relate the net throughput (after all overheads)
to the peak communication performance of the T3D hardware, spec-
ified at about 130 MByte/s per link, or about 65 MByte/s for each of
the paired nodes, if both processors communicatate simulatanously.

The communication performance is more important for appli-
cations with transpose steps (e.g., FFTS) than for applications with
simple next-neighbor overlap exchanges (e.g., solvers like SOR).
The performance improvement noted by such applicationsis mainly
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due to the substitution of a large number of control messages by
hardwarebarriersin the all-to-all communication step. Furthermore,
well-synchronized programscan benefit from the better performance
of direct deposit data transfer for strided local access pattern.

The aggregate communication transfer rates are shown in Fig-
ures 7 and 8, and the per-node communication transfer rates are
shown in Figures 9 and 10. Communication performance in PVYM
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seems limited even with large problem sizes and smaller machines.
For larger machines, PVM seems completely limited by the constant
per-message overhead spent on buffer allocation and the implicit
synchronization of each data transfer. The overheads for control
messages are also present in RRMSG, but the per element over-
heads can be avoided, and the constant overhead seems smaller.
Therefore the performance does not drop as fast as the number of
nodesincreases, resulting in improved scalability.

In DMSG we incorporate all advantages of decoupled synchro-
nization. We use hardware barriers, direct deposit for datatransfers,
and additional barriers for congestion control in the network. Di-
rect deposit eliminates buffering aswell asthe gather/scatter copies.
With fast barrierson the T3D, thereisminimal synchronizationover-
head, and high messagetransfer rates make application performance
scale up without loss as more processing nodes are added.

For the SOR application kernel, which uses a simple next neigh-
bor pattern and transfers large contiguous blocks of memory, we
still note significant performance differences. The reduced synchro-
nization overheadsof DM SG and RRM SG are lessvisible, but with
PVM, thedataisstill copied several times due to the standard inter-
face to the library. While DMSG and RRMSG achieve throughput
numbersfrom 48 to 50 MByte/s, PVM islimited to 20 MByte/s, due
to copying.

At transfer rates of 20 MByte/s per node, there is no network
congestionfor all-to-all communication onaT3D, except for the ba-
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sic reduction of the link speed by afactor of two.® Despitethe higher
transfer rates of DMSG, the congestion in the router can be mini-
mized with additional barriers for machine sizes up to 1024 accord-
ing to amethod described in [8]. Congestion control is impractical
for PVM and RRMSG because the protocol messages synchronize
each sender and receiver pair independently rather than with aglobal
barrier.

4.2 Detailed analysis of communication time

To understand the full impact of the message passing style on the
performance of our applications, we must quantify thetimes spentin
communication-related work in more detail and investigate whether
performance is lost through constant per-message overhead (e.g.,
startup or protocol overheads) or through linear per-byte cost (e.g.,
copies during buffering). To see the impact of data copies in the
different styles, we examine large problem sizesin particular. We
expect the constant per-message overheadsto be more more visible
at small problem sizes.

Figures 11, 12, 13, and 14 show the fraction of time our appli-
cation kernels spend in computation and in communication. On the
left, each figure depicts the total execution time in seconds. On the
right, the communication time is further broken down into: data
transfer, the time to actually transfer the data across the network;
barriers/control, the time spent in synchronization; gather/scatter,
the time required to gather all data into one contiguous block and
scatter it into its final location; and pack/unpack, the fraction of time
PVM spends to prepare the messages (pvm_fpack, pvm_funpack
calls). Figure 1in Section 3 illustrates this processfor PVM.

2D-FFT: large problem size

As Figure 11 indicates, for the larger problem size of 2D-FFT, the
DMSG communication is almost a factor of four faster than PVM.
The RRM SG case without hardware barriersis still about a factor of
two faster than PVM.

The amount of time spent doing the actual transfer of dataacross
the network is virtually the same in all cases. The data transfer
part of the DMSG library is somewhat slower since it includes
the gather/scatter step, depositing strided data directly to its final
destination. TheRRM SG and PV M casespay asignificantadditional
cost to separatethetwo datatransfer and gather/scatter. Furthermore,

3This reductionis dueto the node architecture of the T3D. A s ngle network access
point is shared among a pair of processing nodes.
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Figure 11: 2D-FFT (4096 x 4096) for different message passing
models: detailed breakdown of execution time [128 nodes].

in DMSG and RRMSG, all buffer management can be done by the
compiler, thusincurring no additional overhead during runtime. For
PV M, the measurementsquantify the cost of buffer management and
copy overheadsin the pack/unpack times.

The amount of time spent in synchronization and protocol pro-
cessing is so small for DMSG, which uses fast hardware barriers
for synchronization, that it is not visible in the figure. Thetime is
larger for PVM, but becausethe PVM data transfer functions are in-
tegrated, we cannot separate the synchronization/protocol costsfrom
the pack/unpack costs. The RRMSG synchronization cost includes
the cost of a control message that synchronizes every data transfer
in advance, which adds up to much more time than a single barrier.

SOR: large problem size

Not all applications have dense and communication-intensive pat-
terns like the transpose in 2D-FFT. In some applications, the nodes
just exchange an overlapping region of data with their immediate
neighbors; SOR is such an application. With very few messages
exchanged in the large SOR case, the benefits of decoupled syn-
chronization and fast barriers come indirectly through less copying
rather than directly through elimination of overheads, as depictedin
Figure 12.
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Figure12: SOR (4096 x 4096) for different messagepassingmodels:
detailed breakdown of execution time [128 nodes).

While DMSG and RRMSG transfer the contiguous blocks of
data end-to-end without copying, PVM does not have enough syn-
chronization information to store data directly into its destination
(i.e., it cannot risk overwriting live data), and it seems to make at
least one copy to an intermediate buffer. Thisis visiblein the mea-
sured overall communication time. For the vendor implementation
of PVM, the measured breakdown into transfer time and buffering



overhead in the graph is meaningless. The measurements indicate
that some of the actual datatransfers and buffering are delayed until
the pvm_unpack calls are made.

2D-FFT: small problem size

Figure 13 showsthe 2D-FFT performance on a small problem size
(256 x 256). Becauseof thelarge number of small messages, thecon-
stant per-message overhead for synchronization protocol and buffer
management dominates the PVM and RRMSG times. With arela-
tively small amount of computation to do, the overall performance of
the 2D-FFT is critically dependent on the message passing system
used: DMSG is about 30 times faster than PVM, while RRMSG
outperforms PVM by afactor of about 10.
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Figure 13: 2D-FFT (256 x 256) for different message passing mod-
els: detailed breakdown of execution time [128 nodes].

PVM spends most of its communication time in the basic data-
transfer routines pvm_send and pvm_receive, which include both
synchronization and actual data transfer. The extra cost of scat-
tering/gathering and buffer packing is relatively small but visible.
RRM SG incursasignificant synchronization overhead, becausesyn-
chronization with control messagesis quite costly in dense commu-
nication patterns. DMSG is faster becauseit relies on aglobal syn-
chronization with fast hardware barriers; even with asmall 2D-FFT
problem size, the time of the barriersis not visible.

SOR: small problem size

In SOR, each node exchangesdata only with two neighbors. There-
fore, in comparison to the 2D-FFT communication pattern, we ex-
pect to see a reduced impact of per-message synchronization over-
head, but a bigger impact of extra copies in PVM, which always
buffers data. Figure 13 illustrates the SOR performance for a small
(256 x 256) problem size.

For SOR with smaller problem sizes, PVM seems to transfer
data a bit faster to its internal buffers than DMSG and RRMSG can
transfer dataend-to-end. However, PV M incursalarge overheaddue
tointernal copyingtriggered by the pvm_pack and pvm_unpack calls.
For simple, sparse patterns like SOR, synchronization can be done
with control messagesat areasonableextra cost on machinesthat do
not have built-in barriers. Thus the extra synchronization overhead
in RRMSG is small compared to the overall communication time.

Summary

For each application, the amount of data transferred is identical
regardless of the message passing library used. We can therefore
comparethe time spentin communicationto explain why DM SG has
the highest transfer rates and the lowest communication overhead in
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Figure 14: SOR (256 x 256) for different message passing models:
detailed breakdown of execution time [128 nodes).

both applications with both problem sizes. The scalability curves
for our application kernelsfollow from the characteristic overheads
of the different message passing libraries.

5 Conclusions

Our data show that by decoupling synchronization and data trans-
fer, the message passing library can use good architectural support
for fast synchronization and high throughput in data transfers to
significantly reduce the time parallel programs spend in communi-
cation. Such architectural features are essential for the scalability
of application programs to large parallel machines. Without decou-
pling and good architectural support, even programsthat usescalable
algorithms cannot exploit large machine sizesin practice. The com-
munication overheads of the message passing libraries put a ceiling
on performance on large machines.

Separating synchronization and data transfers opens the door
to a more efficient implementation of inter-node communication.
As long as traditional message passing systems like PVM or MPI
tie synchronization, buffer management, and data transfer together,
communication will be expensive. A streamlined message passing
model, like deposit message passing, reduces the communication
cost by efficiently using hardware support for fast global barriers
and direct deposit data transfer. This model also provides the op-
tion for a compiler to implement and optimize buffer management
and synchronization protocols using detailed information about the
structure and dependences in the program. Such information is
readily available in modern compilersfor data parallel programs.

The foundation of this fast communication system is a de- di-
cated synchronization subsystem that handles all control transfers
and makes surethat the dataitself and the storagelocation at the des-
tination node are ready before any datais transferred. We identified
three benefits of good synchronization support. First, unnecessary
copies of data can be avoided. In the deposit model, even non-
contiguous, strided data elements can be transferred directly from
source location to destination location without coalescing, pack-
ing, or buffering. On the T3D, the remote stores provide excellent
hardware support for this kind of data transfer. The high commu-
nication throughput figures of deposit message passing underline
this advantage. Second, the overheads of protocol processing and
handshaking are drastically reduced by replacing the large number
of empty control messageswith a global barrier tree. On the T3D,
thereis hardware support for such barriers. Third, in dense commu-
nication patterns, like all-to-all communication (e.g., due to array
transposes), the deposit message passing system implementation in-
sertsadditional barriersfor congestion control in the network. These
barriers cost little, but are responsible for increased throughput in
large machineswith 128, 256, or 512 nodes.



On modern machines like the T3D, using the deposit model
for compiler generated communication takes advantage of existing
hardware support to improve the communication performance of
applications. In the benchmark case of a sixteen million point 2D-
FFT on 512 nodes, the deposit communication performs 30 times
better than PVM, the conventional, vendor-supplied message pass-
ing library, and a factor of 3 times better than RRMSG, a highly
optimized request/response library. For the 2D-FFT, the improved
communication translates into an overall performancegain of afac-
tor of almost ten, from 1103 MFLOPS (PVM) to 10112 MFLOPS
(DM SG). Such improvements provide a strong incentive to include
appropriate synchronization support in future parallel machines.
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A Experimental setup

A.1 The host system

The network of the T3D is a 3-dimensional bidirectional torus with
a measured peak speed of 126 MByte/s between any two nodes
in the torus. The nodes do not have paged virtual memory, and the
operating systemonthe nodesislimited to asmall runtimekernel [1].

The key low-level hardware primitive for communication is
<shmem_put>, a remote store or block transfer operation. This
operation forms the core of all our message passing communication
systems, so performance differences are due to design differences,
not artificial implementation properties. In the published literature
the maximal measured transfer bandwidth is reported to be 126
MByte/s and an message overhead or latency to be 2.7 1.s based on
the <shmem_put> primitives [10]. We verified the maximal mea-
sured bandwith but achieved a lower pure latency figure of 1.33 us
with the underlying hardware primitives, but we measured the soft-
ware overhead and latency to be 3.80 1.s. Weincludethese numbers
to allow the reader to calibrate our data with measurements on his
or her own T3D.

A.2 Applications used in the evaluation

To evaluate the impact of different passing implementation targets,
we chosetwo kernels: onewith adense communication pattern and
one with a sparse, nearest neighbor pattern.

2D-FFT Thefirst kernel is a two-dimensional Fast Fourier Trans-
formation (2D-FFT) on an N x N array of single precision
complex numbers. The columnsof thearray aredistributed by
block.* During the first computation phase, each node inde-
pendently performs a one-dimensional FFT operation on each
column residing on that node. Next comes a communication
phase, in which we transposethe array. This transpose results
in adenseall-to-all communication, in which each node sends
adistinct data block to every other node. After the transpose,
we once again perform a set of 1D-FFT operations on each
column. Finally, we transpose the array again, resulting in

4We:;mumeacolumn—major memory layout of arrays, asin Fortran. In C, wewould
distribute by rows.



another all-to-all communication. This example also captures
the communication behavior of large one-dimensional FFTs.
On parallel systems, theseare often broken up in thisway into
artificial “rows” and “columns’ for better performance.

A typical application then proceeds with a series of filtering
operationsand possibly performs another 2DFFT to transform
the data back to the original domain at the end.

Our second application kernel is an example of such afilter,
the computation of a k-point stencil over a two-dimensional
N x N block-distributed array. This kernel is also used in
successiveover relaxation (SOR) iterative solvers. Thestencil
computations have simple communication patterns, exchang-
ing data only with a few neighbors (typically one in each
direction). The algorithm usually iterates multiple times until
convergenceis reached; our kernel is measured with 10 itera-
tions of a 5-point stencil, width 4 in each direction. Asinthe
FFT, we mapped only one dimension of the 2D array onto the
nodes regardless of the three dimensional physical structure
of the T3D. A better mapping could improve the application
kernel further.

Table 1 showsfor both applications the overall performance per
node and the aggregate performance for 512 nodes. We also list the
dataratesto show theimpact of communication performancein more
detail. Therelativefraction of communicationandlocal computation
work and the effect of communication style on scalability is studied
with common problem sizes of oneto sixteen million elements(e.g.,
4096 x 4096 for 2D-FFT and SOR). We determined this problem
size by looking at grand challenge applications in earthquake and
airshed modeling.

Two-dimensional FFT
Problem Size: 4096 x 4096 on a512 node T3D

Msg Passing | MFLOPS | MFLOPS | MByte/s | MBytels
System per node total | per node total
PVM 21 1103 0.64 326
RRMSG 13.6 6938 9.39 4809
DMSG 171 8755 20.27 10379

Two-dimensional SOR (5pt stencil)
Problem Size: 4096 x 4096 on a512 node T3D

Msg Passing | MFLOPS | MFLOPS | MByte/s | MBytels
System per node total | per node total
PVM 117 5977 211 10845
RRMSG 154 7882 47.3 24243
DMSG 155 7939 484 24822

Table 1: Results for the application kernels for message passing
Ssystem comparison.
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