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Abstract

Sensor-based computations are an important and often overlooked application domain for HPF.
These applications typically perform regular operations on dense arrays, and often have latency and
throughput requirements that can only be achieved with parallel machines. We have written a number
of sensor—based applications using adialect of subset HPF that was developed at Carnegie Méellon. The
applicationsinclude FFT, synthetic aperture radar, narrowband tracking radar, multibaseline stereo, and
magnetic resonance imaging. We have found that good performance is possiblefor these applicationson
commercial machines such as the Intel Paragon. In the paper we identify three core operationsthat are
key to achieving good performance for sensor—based computations: parallel 1oops, index permutations,
and reductions and we discuss the implicationsfor HPF compilers. We a so introduce some simpletests
that HPF programmers and implementors can use to measure the efficiency of the loops, reductions, and
permutations produced by an HPF compiler.

1. Introduction

Thereis an increasingly important class of computer applications that manipulate inputs from the physical
environment. The inputs are continuously collected by one or more sensors and then passed on to the
computer, where they are manipulated and interpreted. The sensors are deviceslike cameras, antennas, and
microphones. The manipulation of the sensor inputsis variously referred to as signal processing or image
processing, depending on the dimensionality of the inputs. We refer to the entire class of applications as
sensor—based computationsto emphasize this common quality of processing inputs from the natural world.

Sensor—based computations have traditionally been found in military applications like radar and sonar,
and there are an increasing number of interesting commercia applications such as medical imaging, surveil-
lance, and rea-world modeling. For example, a rea—world modeling application could use a stereo
a gorithm to acquire depth informati on from multiple cameras and then use theinformationto build redistic
3D models of the environment. The models could then be used for things like virtual 3D conferencing,
building wa kthroughs, or experiencing a sporting event from the point of view of one of the players.
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Science Foundation under Grant ASC-9318163, and in part by grants from the Intel Corporation. Authors email addresses:
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Sensor—based computations are an interesting and often overlooked application domain for High Perfor-
mance Fortran (HPF). The computations, which typically consist of regular operations on dense arrays, are
naturally expressed in HPF. Furthermore, there are often stringent latency and bandwidth requirements that
demand parallel processing. For example, a stereo program that extracts depth information from multiple
cameras can process only a few frames per second on a powerful RISC workstation, which iswell below
the standard video rate of 30 frames per second. If the results of a sensor—based computation are used to
control some process, then there will also be some minimal latency that can be tolerated. For example, an
online medical imaging application that gathers and processes multiple images might automatically adjust
the scanner to compensate for movement by the patient. The importance of minimizing latency, rather than
just maximizing throughput, isone of thekey propertiesthat distingui shes sensor—based computationsfrom
batch—oriented scientific computations [18].

This paper describes the results of an empirical study of the performance of HPF sensor—based applice-
tions on acommercial parallel computer. The results were obtained using a prototype compiler, devel oped
a Carnegie Mélon, for adiaect of HPF running on an Intel Paragon. There are severa main points. First,
contrary to the fears of many in the HPF community, performance for the HPF applications we studied is
good. Second, afew core computational patterns (paralel DO loops, reductions, and index permutations)
dominate sensor-based applications. HPF implementors can realize great benefits by focusing on these
patterns. Third, there are some simple tests that HPF programmers and devel opers can use to eva uate the
efficiency of the paralld DO loops, reductions, and index permutations that are so crucia to the effective
execution of sensor—based computations. Fourth, since the data setsin sensor—based computations are often
fixed by properties of the sensors, scaability can be an issue. Finally, the same patterns that appear in
sensor—based computations also appear in scientific applications. In particular, we examine a Fx regional
air quality modeling code and an Fx earthquake ground motion modeling based on the method of boundary
elements.

In Section 2 we give a brief overview of the prototype HPF compiler (the Fx compiler) that was used
in the study. Section 3 describes the applications that we implemented in Fx and their performance on the
Intel Paragon. Sections 4, 5, and 6 describe some key issues in generating efficient code for HPF DO
loops, reductions, and permutations, and introduce some simple tests for measuring the efficiency of these
operations. Section 7 discusses the issue of scalability in sensor—based computations. Finaly, Section 8
shows how the same DO loops, reductions, and permutations that are crucial to sensor—based also appear
in scientific computations.

2. Fxoverview

TheFx project was started in Fall 1991 with the goal of learning how to generate efficient code for programs
written in the emerging HPF standard® Theinput languageisadialect of subset HPF and consistsof F77 with
HPF datalayout statements, array assignment statementswith support for general CY CLIC(K) distributions
in an arbitrary number of array dimensions [13, 14], an index permutation intrinsic, and a parallel DO
loop that is integrated with arbitrary user—defined associative reduction operators [19]. Fx also provides a
mechanism for mixing task and data parallelism in the same program [5, 17, 16]. The initia target was the
Intel iWarp. Fx was later ported to the IBM SP/2, the Intel Paragon, and workstation clusters.

Much of the early work on Fx was driven by the 2D fast Fourier transform (FFT) and algorithms for

Although the first meeting of the HPF Forum was not until January 1992, preproposals from Rice, Vienna, and ICASE were
already circulating during Summer 1991, so the general form of the HPF programming model was already clear by Fall 1991.
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Figure 1: The structure of sensor—based computations.

desired form. The back—end interprets the results of the front—end and either display them or initiates some
action. For example, in aradar tracking application, the front—end might transform input phase histories
from an antenna array into an image in the spatial domain, and the back—end would manipulate thisimage
to name, identify and track objects of interest.

The front—end processing typically consists of numerous, regular, data paralel operations on dense
arrays, requires high MFLOPS rates, and the operations performed are usually data—independent. Com-
putations such as the fast Fourier transform (FFT), convolution, scaling, thresholding, data reduction, and
hi stogramming are common operations. The back—end processing istypically more dynamic, irregular, and
data—dependent, with real—time scheduling of processes. In this paper, we are concerned with the front—end
processing, where HPF on aparallel system is most appropriate. For the remainder of the paper, when we
refer to sensor—based computations we are referring to the front—end.

Oneof thenicequalitiesof sensor—based computingisthat many applicationshave similar computational
patterns. The similarities allow us to focus on a few small application kernels, with the assurance that
anything that we learn about compiling these small programswill be accrue benefitsin larger, morerealistic
programs. Two examples that capture most of the key computationa patterns, and were of tremendous
help in the development of the Fx compiler, are the 2D FFT (FFT2) and the image histogram (HIST). The
high-level parallel structure of these computations are shown in Figure 2.

Figure 2 depicts the course—grained parallelism that is available in FFT2 and HIST. The vertical lines
denict indenendent onerations on arrav columns and the horizontal lines denict indenendent onerations on



(b) HIST — Image histogram

Figure 2: Sensor—based computation exemplars

the processors, then each column or row operation can run independently. In HPF, the FFT2 example can
be written as:

COVPLEX a(N, N), b(N, N)
| HPF$ DI STRI BUTE (*, BLOCK):: a,b

| HPF$ | NDEPENDENT
DO k=1, N

call fft(a(:,k))
ENDDO
b = TRANSPOSE( a)
| HPF$ | NDEPENDENT
DO k=1, N

call fft(b(:,k))
ENDDO
a = TRANSPCSE( b)

Notice the use of the TRANSPOSE intrinsic to exploit locality. The HIST example consists of a collection
of independent loca histograms on the columns of an array, followed by a plus—reduction operation that
addsthelocal histogram vectorsto form the final result. This might be written in HPF as:

REAL a(N,N),h(MN),r(™M
'HPF$ DI STRI BUTE (*,BLOCK):: a

h =00
| HPF$ | NDEPENDENT
DO j =1, N
DO i =1, N
h(i,j) =h(a(i,j),j) +1
ENDDO



The FFT2 and HIST capture the the core computational patterns in sensor—based computations: paralléel
DO loops, reductions, and index permutations. FFT2 isa pair of paralel DO loops followed by an index
permutation (the TRANSPOSE intrinsic). HIST is a parallel DO loop followed by a reduction. These
patterns occur again and again in the sensor—based computations we have studied.

Figure 3 shows a collection of sensor—based applications. All but ABI (Figure 3(b)) have been im-
plemented in Fx, and could be ported to HPF with small changes. The STEREO program, developed
by the Carnegie Mélon Vision Group, extracts depth information using the images from multiple video
cameras [8]. The RADAR program was adapted from a C program developed by MIT Lincoln Labs to
measure the effectiveness of various multicomputers for their radar applications[12]. The SAR program
was adapted from a Fortran 77 program devel oped by Sandia National Laboratories[11]. The MR program
was devel oped from an algorithm by Doug Noll at Pitt Medical Center [10].

A striking aspect of Figure 3 isthe number of parallel DO loops that operate independently along one
dimension or another of the array. Each application contains at least one of these loops. The pointwise
scaling operation in RADAR is aso another form of parallel DO loop, which is usually expressed as an
array assignment. Another common pattern from the FFT2 exampleis. (1) operate aong one dimension,
then (2) operate along another dimension. This pattern, which occursin FFT2, ABI, RADAR, SAR, and
MR, istypicaly implemented with a TRANSPOSE between (1) and (2). Reductions are found in HIST,
STEREO, ABI, and RADAR. The point is that FFT2 and HIST capture the basic computational structure
of awiderange of sensor—-based computations.

There has been some concern about the performance that can be expected from HPF programs. However,
in our experience, the performance of HPF programs using the Fx compiler on Paragon is good, even for
moderately sized problems. Figure 4 shows the absol ute performance of representatively sized FFT, HIST,
and SAR programs. FFT1 isaparale 1D FFT program, FFT2 isthe FFT exemplar, and FFT3 isa pardl€
3D FFT program; each is computed in away similar to FFT. The programs in Figure 4 scale reasonably
well (athough not linearly) and running timeis not dominated by communication overhead. In the case of
the SAR program, communication accounts for less 10% of the running time.

While certainly not exhaustive, Figure 4 offers some hope that good performance can be expected from
HPF sensor—based computations. In the remaining sections, we will discussthe issuesinvolved in ensuring
good performance.

4. Paralld loops

The DO loop is the workhorse of sensor—based applications and the main source of potentia parallelism.
Generating efficient parallel DO loopsiskey to achieving good performance in these codes.

DO loops in the sensor—based computations that we have studied can be efficiently parallelized using
avariation on the ssimple FORTRAN D copy—in copy—out model [7]. The computation in the main body
of the program is modeled as a single thread operating on a globa data space. Each iterationinaloopis
modeled as a separate thread operating on its own local data space. When control reaches the loop, the
contents of the global data space are (conceptually) copied in to each of the local data spaces. Each loop
iteration then works independently onitslocal copy of the global data space. When al of the loop iterations
have terminated, the contents of the local data spaces are (conceptually) copied out of the local data spaces
back into the global data space. If multipleiterations write to the same address in the local address space,
then the values are merged with a user—defined binary associative reduction operator before copying back



(e) MR — Magnetic resonance image reconstruction.

Figure 3: Other Fx/Paragon sensor—based applications
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to the glocal address space. Thisloop model, called the PDO model, is described in more detail in [19].

A parallel DO loop based on the PDO model can be characterized in terms of the addresses that it
references, with R¢ denoting the set of addresses read by iteration k and Wy denoting the set of addresses
written by iteration k. If each Ry is digoint, then the loop has digoint reads, otherwise the loop has
overlapped reads. Similarly, if each W is digjoint, then the loop has disjoint writes, otherwise the loop has
overlapped writes.

The most common form of loop in sensor—based computations has disjoint reads and writes. Every
applicationin Figures 2 and 3 has at least one loop with disjoint reads and writes, and FFT2 (Figure 2(a)),
SAR (Figure 3(d)), and MR (Figure 3(e)) consist exclusively of these kinds of loops. For example, the
FFT2 exemplar consists of HPF DO loops of the form:

I HPF$ | NDEPENDENT

DO k=1, N
CALL fft(a(:,k))
ENDDO

Each invocation of thef ft () subroutine performs an inplace 1D FFT on the kth column of an array,
reading and writing only elementsin the kth column. Althoughf f t () isacomplicated subroutineroutine
with a complex pattern of array references, and might even be an assembly language library routine, the
pattern of array references between loop iteration is extremely simple: the kth iteration references the
kth column. This dichotomy of complicated intra—iteration reference patterns and simple inter—iteration
reference patternsis a recurring theme in sensor—based computation, with important implications for HPF
implementations.

Another important form of DO loop has overlapped reads and disjoint writes. Loops of this form are
typically used to perform convolution operations such as the error computation in STEREO (Figure 3(a)).
A similar pattern occurs in relaxation algorithms from scientific computing. For example, a simple 1D
convolution isof the form:

REAL a(N), b(N), h(3)
I HPF$ | NDEPENDENT

DO k=2, N 1
b(k) = a(k-1)*h(1) + a(k)*h(2) + a(k+1)*h(3)
ENDDO

Finaly, loopswith overlapped writes are typically used by sensor—based computationsto implement reduc-
tions. We discuss thisimportant class of loopsin Section 5. The remainder of this section discusses only
loops with digjoint writes.

4.1. Implicationsfor HPF implementations

Generating efficient code inside parallel loops is key to achieving good performance with sensor—based
HPF programs. And since parallel loopswith disjoint writes are so common, occurring in every application
we have studied, generating efficient code for these loopsis especially important.
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Although loops with digjoint writes are often dismissed as “embarrassingly paralel”, it is nontrivia to
generate efficient paralel codefor them. There are anumber of reasons, all complicated by the fact that loop
bodies of real applicationstypicaly contain alot of code, with complex intra—iteration reference patterns,
callsto externa library routines, and even inlined assembly language inserts.

First, the compiler must somehow determine that the write sets are disjoint and that addresses that are
written by one iteration are not read by another iteration. The HPF INDEPENDENT directiveisabig help
here. Thisinformsthe compiler that no address iswritten by oneiteration of aDO loop and read or written
by another iteration. However, the loop can have either disoint or overlapped reads. In Fx, werely on a
new PDO keyword for thisinformation. The HPF INDEPENDENT directive conveysthe sameinformation
and is more compatible with standard FOO compilers, so is abetter approach.

Second, the HPF compiler must ensure that the read and write sets are aligned with the loop iterations
before the iterations are executed. If the read and write sets are aligned before the loop iterations execute,
then all reads and writes are to local data. Aligning the data sets before executing the loops is key to
achieving good performance because it allows the programmer to use arbitrary sequential code in the loop
body, including calls to efficient sequential math libraries written in assembly language. For example, in a
Paragon HPF implementation, thef f t () routine called by the FFT2 loop might be an assembly language
routine hand—crafted for the i860 microprocessor.

Finaly, the HPF compiler must compute local 1oop bounds and translate global array indicesinthe loop
body to local indices. If not handled properly, these computations can be a significant source of runtime
overhead.

4.2. Loop efficiency

Thereisasimpletest that implementersand users alike can use to measure the overhead introduced by HPF
compilersin the loop bodies of paralel loops. Consider the following canonical parallel DO loop:

REAL a(N, N)
I HPF$ DI STRI BUTE (*, BLOCK):: a

I HPF$ | NDEPENDENT

DO k=1, N
a(:,k) =k
ENDDO

Thisloop requires no communication at runtime, but issomewhat subtleto translate because the lhsinstance
of k must be converted from aglobal index to alocal index, but the rhsinstance must remain aglobal index.
If we compileand run theloop on P nodes, where P divides N evenly, then thetotal running timeisbounded
from below by the running time of the following sequential DO loop:

COWPLEX sa(N, N/ P)

DO k=1, NP
sa(:,k) =k
ENDDO
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Figure 5: Fx/Paragon loop efficiency (N x N canonical loop).

If Lp(N,P) is the running time of the canonical parallel DO loop with N iterations and P nodes, and
Ls(N, P) the running time of the corresponding sequential DO loop with N/P iterations, then Ejoop(N, P) =
Ls(N, P)/Lp(N, P) is the loop efficiency of the paralel DO loop generated by the HPF compiler. Loop
efficiency is a useful measure because it provides a way to isolate the runtime loop overheads that are
introduced by the compiler, without having to instrument the generated code. It isimportant to realize that
loop efficiency is not the same as the speedup over the single-node version of the parallel code. Instead,
we are comparing to the performance of the tightest sequential version of the loop.

If we record loop efficiency for different values of N and P, we get an interesting family of curves.
Figure 5 shows the resultsfor the Fx version of the canonical loop on the Intel Paragon.

The family of curvesin Figure 5 provides some intestesting insight into the quality of the parallel loops
generated by the compiler. Loop efficiency is bounded from above by the curve for 1 node and bounded
from below by the curve for 32 nodes, so in general it is only necessary to plot two curves. In Figure 5 the
loop efficiency for 1 node is almost unity. For a single node the compiler introduces amost no overhead,
which tells us that the loop is nearly as tight as the corresponding sequential loop. The curve for 32 nodes
convergesto near unity, which tellsusthat the overheads are being amortized acrossloopiterations. Further,
the 32—node curve converges quite rapidly, with Ejgop > 0.5 at N = 256 and Ejoop > 0.8 a N = 512. Thus
the Fx compiler isintroducing minimal overheads that are quickly amortized. Thisconclusion is confirmed
by inspecting the F77 code generated by Fx for N = 1024 and P = 8:

IF (fxcellid.LT.8) THEN
fxl oopstart0 = (MAX(((fxcellid * 128) + 1),1))
fxl mdx0 = | FXLM f xadesc, 1, f x| oopst art0)
DO k = fxloopstart0, MN(((fxcellid * 128) + 128),1024), 1
DO fxindexl = 1, 1024, 1
a(fxindex1, fxl m dx0) = (k)
ENDDO
fxlmdx0 = (fxImdx0 + 1)
ENDDO
ENDI F

The paralel loop overhead consists of afew statements before the loop that computethe local 1oop bounds,
a function call that computes the initial local index value. The only overhead in the loop body of is a
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statement that increments the local index value. A similar approach to index conversion is first described
in[3]. Itishard to imagine atighter loop.

In summary, a primary goa of an HPF implementation should be to generate paralel loop bodies that
are as efficient as their sequential counterparts. In particular, implementors should focus on minimizing the
overhead parald loops with disjoint reads and writes. The loop efficiency test provides a simple way to
characterize these overheads.

5. Reductions

In sensor—based computations, loops with overlapped writes are used primarily to implement reductions.
For example,

DO k=1, N
v = v + a(:,k)
ENDDO

A common pattern in sensor-based computations is to operate independently on the columns of an array,
and then reduce the columns into a single column by adding them together. The HIST, STEREO, ABI,
and RADAR program all perform this type of simple reduction. However there are important sensor—
based computations, from global image processing, that require a mechanism for the programmer to define
generalized reduction operations. For example, a connected components algorithm can be written as a
paralel 1oop over the rows of the image, where each iteration computes a segment table for itsrow. Thisis
followed by a reduction step that merges the segment tabl es.

5.1. Implicationsfor HPF implementations

For most sensor—based computationstheHPF SUM intrinsicissufficient. However, HPF providesno support
for operationslike connected componentsthat require generalized reductions. Achieving good performance
in these cases will require sophisticated compiler analysis that recognizes the reductions [4]. In Fx, we
avoid this analysis by incorporating a mechanism for defining arbitrary binary associative reductions into
the parallel loop construct [19].

5.2. Reduction efficiency

A user or implementer can measure the quality of the parallel reduction loops generated by an HPF compiler
using atest similar to the loop efficiency test in Section 4.2. Consider the following loop that adds the
columnsof anN x N array.

REAL a(N,N), v(N)
| HPF$ DI STRI BUTE (*, BLOCK):: a

v = 0.0
DO k=1, N

11
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v = v + a(:,k)
ENDDO

The performance of this loop on P nodes is bounded from below by the performance of the following
sequential HPF DO loop:

REAL sa(N, N P),v(N

v =0.0

DO k=1, N P

v = v + sa(:,k)
ENDDO

If Ro(N, P) isrunning time of the parallel reduction of an N x N array on P nodes and R(N, P) the running
time of the corresponding sequential reduction of an N x N/P array, then Ereduce(N, P) = Rs(N, P)/Ry(N, P)
isthe reduction efficiency of theparallel reduction generated by the compiler.? Reduction efficiency exposes
the runtime overheads that are incurred by performing the reduction in parallel. Unlike loop efficiency,
which is completely determined by the compiler, reduction efficiency is a function of overheads due to the
compiler, as well as overheads due to the underlying communication system.

Figure 6 shows the results for a simple plus—reduction using the Fx compiler on Paragon. As with the
loop efficiency graph, reduction efficiency is bounded from above by the curve for 1 node and from below
by the curve for 32 nodes. Surprisingly, the reduction efficiency for a single node actually decreases as the
problem size increases. This suggests a problem in the Fx implementation of the reduction. Idedly, the
efficiency on asingle node should be closeto unity. Another point of concern isthe slow convergence of the
curves for 16 and 32 nodes. Since the local computation step of each parallel reduction grows as roughly
N? /P and the communi cation step growsasroughly N log N, we might expect these curvesto convergefaster
than they do. Yet even for arelatively large N, the reduction efficiency is below 50%. While the reduction
efficiency does not pinpoint the source of the overhead, it does point out an opportunity for improvement in
the Fx Paragon implementation.

2An alternative formulation of the reduction efficiency test is to use the HPF SUM intrinsic for the parallel reduction. In this
case, the sequential reduction must use the same local computational kernel as the SUM intrinsic.
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6. Index permutations

Aswe saw in Section 3 the following computational pattern occurs in many sensor—based computations:
(1) operate independently along one dimension of an array, then (2) operate independently along another
dimension. The FFT2, ABI, RADAR, SAR, and MR programs all exhibit this pattern. For example, FFT2
performsalocal FFT on each column of an array, then performsalocal FFT on each row. In order to exploit
locality, this pattern is usualy implemented with an index permutation (also referred to as a transpose or
corner turn) between steps (1) and (2):

DO k=1, N

call fft(a(:,k))
ENDDO

b = TRANSPCSE( a)
DO k=1, N

call fft(b(:,k))
ENDDO

a = TRANSPOSE( b)

Although most of the sensor—based applicationsthat we have studied permute 2D arrays, there areimportant
cases where permutes of higher—dimensional matrices are necessary. In particular, 2D arrays of complex
variables are often implemented as 3D arrays of real variables, and for d > 1, a d—dimensional FFT must
permute two indices of a d—dimensional complex array between each local FFT step.

6.1. Implicationsfor HPF implementations

Efficient index permutation is crucia to achieving good performance in sensor—based computations. In
general, an index permutation induces a complete exchange, where each node sends data to every other
node. The standard Fortran 90 TRANSPOSE intrinsic adopted by HPF provides an opportunity to optimize
this important operation, but unfortunately it is only defined for 2D arrays. So for the general case, HPF
implementationswill either need to provide an index permutation extrinsic function, or be able to generate
efficient code for index permutations that are implemented with a combination of array assignments and
DO loops:

REAL a(N, N), b(N, N)
'HPF$ DI STRI BUTE (*,BLOCK):: a
'HPF$ DI STRIBUTE (BLOCK, *):: b

b =a

I HPF$ | NDEPENDENT
DO k=1, N

a(:, k) = b(k,:)
ENDDO

The Fx compiler provides an index permutationintrinsic. The advantage of thisapproach isthat anintrinsic
can leverage off of the existing code for generating array assignment statements. Writing an extrinsic with
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Figure 7: Fx/Paragon permutation efficiency (N x N 2D transpose).

the same functionality requires duplicating the compiler’s array assignment code in the run—time library.
Furthermore, capturing the index permutation in an intrinsic alows the compiler to exploit significant
optimizations on systems with toroidal interconnects [6]. The disadvantages of our approach are that an
index permutation intrinsic is not defined in HPF, which makes it harder to port Fx codes to HPF, and the
inherent complexity of describing a complex operation like permutation through an intrinsic..

6.2. Permutation efficiency

Just as with loops and reductions, there is asimpletest for measuring the efficiency of HPF index permuta-
tions. The execution time of aparallel index permutation of an N x N array (using either the TRANSPOSE
intrinsic, a permutation extrinsic, or an assignment statement and a DO loop) is bounded from below by the
time to sequentially permutean N x N/P array on asingle node:

REAL sa(N P, N, sb(N, N P)

DO k=1, N P
sa(k,:) = sb(:,k)
ENDDO

If To(N, P) is the running time of the parallel index permutation of an N x N array and T¢(N, P) is the
running time of the corresponding sequential permutation of an N x N/P array, then Epermute(N,P) =
Ts(N, P)/To(N, P) is the permutation efficiency of the parallel index permutation generated by the HPF
compiler.® Permutation efficiency isarough measure of the percentage of effective local memory bandwidth
that isrealized by the paralel permutation. Like reduction efficiency, permutation efficiency is influenced
by overheads due to the compiler, as well as overheads due to the underlying communication system.

Figure 7 shows the results for a 2D transpose of an N x N array using the Fx compiler on Paragon.
The graph provides a couple of interesting insights. There is substantial overhead even for the single-
node version of the parallel transpose, which achieves only 85% of the effective local memory bandwidth

3As with the reduction efficiency test, if anintrinsic or extrinsic is used for the parallel permutation, then care must be taken to
use the same local copy mechanism in the sequential version.
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for large problems. The multiple-node versions of the parallel permutation converge at about 30% of
the effective local memory bandwidth. This suggests that the parallel permutation on the Paragon is
communication—bound, and that further improvementswill require a new message passing library.

The performance loss is largely due to overhead from the underlying communication system and it
is tempting for us to wash our hands of responsibility for its performance. However, in our experi-
ence, significant performance benefits can be realized in compiler—generated code by tailoring the runtime
communication libraries [14, 15]. Developers need to be aware of the communication overheads for a
particular target machine, and measuring reduction and permutation efficiency isauseful way to expose the
performance impact of these overheads.

7. Scalability

Sensor-based computations are composed of collections of functions that process continuous streams of
datasets. The sizesof the data sets are determined by external factors such asthe type of sensor, the number
of sensors, and the frequencies of interest. For example, theimage size of the STEREO applicationis fixed
at 240 x 256 by the camera system and cannot be modified by the programmer, the magnetic resonance
scanner used by the MR application processes 512 x 512 images (oversampled from 256 x 256 input), and
the radar subsystem used by the RADAR application produces 512 x 10 data sets.

The fixed size of the data setsis an important property of sensor—based computationsthat distinguishes
them from scientific computations. Since the data set sizes are fixed, the degree of parallel slackness
decreases as the number of nodesincreases, and if adata paralldl function performs a nontrivial amount of
internal communication, then the efficiency of the function will tend to decrease as the number of nodes
increases. ThisbehaviorisshowninFigure7 fora512 x 512 loca FFT loop, a512 x 512 image histogram,
and a 512 x 512 transpose. Thelocal FFT function contains no communication, and thus scales perfectly
with the number of nodes. However, the histogram and transpose functions contain internal communication
and their efficiency decreases significantly as the number of nodesincreases.

If efficient use of processing nodes is a goa (as it is in embedded systems where additional nodes
increase the cost, size power, and weight of the system) then we want to use a smaller number of nodes for
functions like the histogram and transpose. But if we have a large paralel system with many nodes, how
then do we effectively use the remaining nodes? One approach that has been proposed is to use a mix of
task and data paralelism[17, 1, 2, 5].
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(b) AIR —Finite element air quality modeling.

Figure 9: Complex scientific codes with simple data parallel structure

The QUAKE and AIR programs reinforce an important point that we touched on in Section 4: compli-
cated programs with complicated inner loops can nonetheless have a simple data parallel structure that is
straightforward to parallelize. The AIR program takes this to extremes. each iteration of the paralld DO
loop in each of the ghorizontal transport steps solves an independent sparse and irregular finite element
problem. We normally assume that HPF is not a good target for sparse codes, but AIR is an example of a

o p—



9. Summary and conclusions

We identified sensor—based computations as an important application domain that is generally well suited
for HPF. The performance of these codesis generally determined by the efficiency of three key operations:
parallel DO loops, reductions, and index permutations, and these operations can aso be important for
scientific codes. HPF devel opers who focus on these three operations will reap large rewards.

We aso pointed out that scalability can be an issue in sensor—based computations because of the fixed
sizes of the data sets. Using amix of task and data parallelism can help, but HPF does not yet address this.
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