
Draft for Scientific Programming Special Issue on HPF Implementations

Performance Issues for Sensor–Based HPF Programs

David R. O’Hallaron, Jon Webb, Jaspal Subhlok

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Sensor–based computations are an important and often overlooked application domain for HPF.
These applications typically perform regular operations on dense arrays, and often have latency and
throughput requirements that can only be achieved with parallel machines. We have written a number
of sensor–based applications using a dialect of subset HPF that was developed at Carnegie Mellon. The
applications include FFT, synthetic aperture radar, narrowband tracking radar, multibaseline stereo, and
magnetic resonance imaging. We have found that good performance is possible for these applications on
commercial machines such as the Intel Paragon. In the paper we identify three core operations that are
key to achieving good performance for sensor–based computations: parallel loops, index permutations,
and reductions and we discuss the implications for HPF compilers. We also introduce some simple tests
that HPF programmers and implementors can use to measure the efficiency of the loops, reductions, and
permutations produced by an HPF compiler.

1. Introduction

There is an increasingly important class of computer applications that manipulate inputs from the physical
environment. The inputs are continuously collected by one or more sensors and then passed on to the
computer, where they are manipulated and interpreted. The sensors are devices like cameras, antennas, and
microphones. The manipulation of the sensor inputs is variously referred to as signal processing or image
processing, depending on the dimensionality of the inputs. We refer to the entire class of applications as
sensor–based computations to emphasize this common quality of processing inputs from the natural world.

Sensor–based computations have traditionally been found in military applications like radar and sonar,
and there are an increasing number of interesting commercial applications such as medical imaging, surveil-
lance, and real–world modeling. For example, a real–world modeling application could use a stereo
algorithm to acquire depth information from multiple cameras and then use the information to build realistic
3D models of the environment. The models could then be used for things like virtual 3D conferencing,
building walkthroughs, or experiencing a sporting event from the point of view of one of the players.

This research was sponsored in part by the Advanced Research Projects Agency/CSTO under two contracts: one monitored by
SPAWAR (contract number N00039-93-C-0152), the other monitored by Hanscom Air Force Base (contract number F19628-
93-C-0171), in part by the Air Force Office of Scientific Research under contract F49620–92–J–0131, in part by the National
Science Foundation under Grant ASC-9318163, and in part by grants from the Intel Corporation. Authors’ email addresses:
droh@cs.cmu.edu, webb+@cmu.edu, jass@cs.cmu.edu.

1



Sensor–based computations are an interesting and often overlooked application domain for High Perfor-
mance Fortran (HPF). The computations, which typically consist of regular operations on dense arrays, are
naturally expressed in HPF. Furthermore, there are often stringent latency and bandwidth requirements that
demand parallel processing. For example, a stereo program that extracts depth information from multiple
cameras can process only a few frames per second on a powerful RISC workstation, which is well below
the standard video rate of 30 frames per second. If the results of a sensor–based computation are used to
control some process, then there will also be some minimal latency that can be tolerated. For example, an
online medical imaging application that gathers and processes multiple images might automatically adjust
the scanner to compensate for movement by the patient. The importance of minimizing latency, rather than
just maximizing throughput, is one of the key properties that distinguishes sensor–based computations from
batch–oriented scientific computations [18].

This paper describes the results of an empirical study of the performance of HPF sensor–based applica-
tions on a commercial parallel computer. The results were obtained using a prototype compiler, developed
at Carnegie Mellon, for a dialect of HPF running on an Intel Paragon. There are several main points: First,
contrary to the fears of many in the HPF community, performance for the HPF applications we studied is
good. Second, a few core computational patterns (parallel DO loops, reductions, and index permutations)
dominate sensor–based applications. HPF implementors can realize great benefits by focusing on these
patterns. Third, there are some simple tests that HPF programmers and developers can use to evaluate the
efficiency of the parallel DO loops, reductions, and index permutations that are so crucial to the effective
execution of sensor–based computations. Fourth, since the data sets in sensor–based computations are often
fixed by properties of the sensors, scalability can be an issue. Finally, the same patterns that appear in
sensor–based computations also appear in scientific applications. In particular, we examine a Fx regional
air quality modeling code and an Fx earthquake ground motion modeling based on the method of boundary
elements.

In Section 2 we give a brief overview of the prototype HPF compiler (the Fx compiler) that was used
in the study. Section 3 describes the applications that we implemented in Fx and their performance on the
Intel Paragon. Sections 4, 5, and 6 describe some key issues in generating efficient code for HPF DO
loops, reductions, and permutations, and introduce some simple tests for measuring the efficiency of these
operations. Section 7 discusses the issue of scalability in sensor–based computations. Finally, Section 8
shows how the same DO loops, reductions, and permutations that are crucial to sensor–based also appear
in scientific computations.

2. Fx overview

The Fx project was started in Fall 1991 with the goal of learning how to generate efficient code for programs
written in the emerging HPF standard1 The input language is a dialect of subset HPF and consists of F77 with
HPF data layout statements, array assignment statements with support for general CYCLIC(k) distributions
in an arbitrary number of array dimensions [13, 14], an index permutation intrinsic, and a parallel DO
loop that is integrated with arbitrary user–defined associative reduction operators [19]. Fx also provides a
mechanism for mixing task and data parallelism in the same program [5, 17, 16]. The initial target was the
Intel iWarp. Fx was later ported to the IBM SP/2, the Intel Paragon, and workstation clusters.

Much of the early work on Fx was driven by the 2D fast Fourier transform (FFT) and algorithms for

1Although the first meeting of the HPF Forum was not until January 1992, preproposals from Rice, Vienna, and ICASE were
already circulating during Summer 1991, so the general form of the HPF programming model was already clear by Fall 1991.

2



global image processing. The system was generating inefficient versions of the FFT by Spring 1992 and
efficient versions of the FFT by Fall 1992. By Spring 1993 task and data parallelism were integrated into
the compiler, and by Fall 1993 arbitrary user–defined reductions were integrated into the parallel DO loop.
The first significant Fx applications were written in Summer 1994: a multibaseline stereo program (from
scratch) and a spotlight synthetic aperture radar program (from F77 code supplied by Sandia Labs). By
Spring 1995 there were a number of additional Fx applications, including a stereo front-end for a real–
world modeling application developed by the second author (from scratch), a magnetic resonance image
reconstruction program (from scratch), an earthquake ground motion modeling program (from F77 code
developed at Southern California Earthquake Center), and a regional air quality modeling program (from
F77 code derived from the CIT airshed model).

3. Sensor–based computations

Sensor–based applications typically have the high–level two–stage pipelined structure shown in Figure 1.
The front–end accepts a stream of inputs from one or more sensors and manipulates these inputs into some

S a c
Computations

y
Computations

Figure
1:

T
he

structure
of

sensor–based
com

putations.

desired
form

.
T

he
back–end

interprets
the

results
of

the
front–end

and
either

display
them

or
initiates

som
e

action.
For

exam
ple,

in
a

radar
tracking

application,
the

front–end
m

ight
transform

input
phase

histories
from

an
antenna

array
into

an
im

age
in

the
spatialdom

ain,and
the

back–end
w

ould
m

anipulate
this

im
age

to
nam

e,identify
and

track
objects

of
interest.

T
he

front–end
processing

typically
consists

of
num

erous,
regular,

data
parallel

operations
on

dense
arrays,

requires
high

M
FL

O
PS

rates,
and

the
operations

perform
ed

are
usually

data–independent.
C

om
-

putations
such

as
the

fast
Fourier

transform
(FFT

),
convolution,scaling,thresholding,data

reduction,and
histogram

m
ing

are
com

m
on

operations.
T

he
back–end

processing
is

typically
m

ore
dynam

ic,irregular,and
data–dependent,w

ith
real–tim

e
scheduling

ofprocesses.
In

this
paper,w

e
are

concerned
w

ith
the

front–end
processing,w

here
H

PF
on

a
parallel

system
is

m
ostappropriate.

For
the

rem
ainder

of
the

paper,w
hen

w
e

refer
to

sensor–based
com

putations
w

e
are

referring
to

the
front–end.

O
ne

ofthe
nice

qualitiesofsensor–based
com

puting
is

thatm
any

applicationshave
sim

ilarcom
putational

patterns.
T

he
sim

ilarities
allow

us
to

focus
on

a
few

sm
all

application
kernels,

w
ith

the
assurance

that
anything

thatw
e

learn
aboutcom

piling
these

sm
allprogram

s
w

illbe
accrue

benefits
in

larger,m
ore

realistic
program

s.
Tw

o
exam

ples
that

capture
m

ost
of

the
key

com
putational

patterns,
and

w
ere

of
trem

endous
help

in
the

developm
entof

the
Fx

com
piler,are

the
2D

FFT
(FFT

2)
and

the
im

age
histogram

(H
IST

).T
he

high–levelparallelstructure
of

these
com

putations
are

show
n

in
Figure

2.

Figure
2

depicts
the

course–grained
parallelism

that
is

available
in

FFT
2

and
H

IST.T
he

vertical
lines

depictindependentoperations
on

array
colum

ns
and

the
horizontallines

depict
independentoperations

on
row

s.
T

he
FFT

2
program

is
collection

of
independentlocal1D

FFT
s

on
the

colum
ns

of
an

array,follow
ed

by
a

collection
of

independentlocal1D
FFT

s
on

the
row

s.
If

these
colum

ns
or

row
s

are
distributed

across

3



input outputrow FFTscol FFTs

m

n

(a)
FFT

2
–

2D
fastFourier

transform

(b)
H

IST
–

Im
age

histogram

Figure
2:

Sensor–based
com

putation
exem

plars

the
processors,then

each
colum

n
or

row
operation

can
run

independently.
In

H
PF,the

FFT
2

exam
ple

can
be

w
ritten

as:

C
O
M
P
L
E
X

a
(
N
,
N
)
,
b
(
N
,
N
)

!
H
P
F
$

D
I
S
T
R
I
B
U
T
E

(
*
,
B
L
O
C
K
)
:
:

a
,
b

!
H
P
F
$

I
N
D
E
P
E
N
D
E
N
T

D
O

k
=
1
,
N

c
a
l
l

f
f
t
(
a
(
:
,
k
)
)

E
N
D
D
O

b
=

T
R
A
N
S
P
O
S
E
(
a
)

!
H
P
F
$

I
N
D
E
P
E
N
D
E
N
T

D
O

k
=
1
,
N

c
a
l
l

f
f
t
(
b
(
:
,
k
)
)

E
N
D
D
O

a
=

T
R
A
N
S
P
O
S
E
(
b
)

N
otice

the
use

of
the

T
R

A
N

SPO
SE

intrinsic
to

exploitlocality.
T

he
H

IST
exam

ple
consists

of
a

collection
of

independent
local

histogram
s

on
the

colum
ns

of
an

array,
follow

ed
by

a
plus–reduction

operation
that

adds
the

localhistogram
vectors

to
form

the
finalresult.

T
his

m
ightbe

w
ritten

in
H

PF
as:

R
E
A
L

a
(
N
,
N
)
,
h
(
M
,
N
)
,
r
(
M
)

!
H
P
F
$

D
I
S
T
R
I
B
U
T
E

(
*
,
B
L
O
C
K
)
:
:

a

h
=

0
.
0

!
H
P
F
$

I
N
D
E
P
E
N
D
E
N
T

D
O

j
=
1
,
N

D
O

i
=
1
,
N

h
(
i
,
j
)

=
h
(
a
(
i
,
j
)
,
j
)

+
1

E
N
D
D
O

E
N
D
D
O

r
=

S
U
M
(
h
,
2
)

4



The FFT2 and HIST capture the the core computational patterns in sensor–based computations: parallel
DO loops, reductions, and index permutations. FFT2 is a pair of parallel DO loops followed by an index
permutation (the TRANSPOSE intrinsic). HIST is a parallel DO loop followed by a reduction. These
patterns occur again and again in the sensor–based computations we have studied.

Figure 3 shows a collection of sensor–based applications. All but ABI (Figure 3(b)) have been im-
plemented in Fx, and could be ported to HPF with small changes. The STEREO program, developed
by the Carnegie Mellon Vision Group, extracts depth information using the images from multiple video
cameras [8]. The RADAR program was adapted from a C program developed by MIT Lincoln Labs to
measure the effectiveness of various multicomputers for their radar applications [12]. The SAR program
was adapted from a Fortran 77 program developed by Sandia National Laboratories[11]. The MR program
was developed from an algorithm by Doug Noll at Pitt Medical Center [10].

A striking aspect of Figure 3 is the number of parallel DO loops that operate independently along one
dimension or another of the array. Each application contains at least one of these loops. The pointwise
scaling operation in RADAR is also another form of parallel DO loop, which is usually expressed as an
array assignment. Another common pattern from the FFT2 example is: (1) operate along one dimension,
then (2) operate along another dimension. This pattern, which occurs in FFT2, ABI, RADAR, SAR, and
MR, is typically implemented with a TRANSPOSE between (1) and (2). Reductions are found in HIST,
STEREO, ABI, and RADAR. The point is that FFT2 and HIST capture the basic computational structure
of a wide range of sensor–based computations.

There has been some concern about the performance that can be expected from HPF programs. However,
in our experience, the performance of HPF programs using the Fx compiler on Paragon is good, even for
moderately sized problems. Figure 4 shows the absolute performance of representatively sized FFT, HIST,
and SAR programs. FFT1 is a parallel 1D FFT program, FFT2 is the FFT exemplar, and FFT3 is a parallel
3D FFT program; each is computed in a way similar to FFT. The programs in Figure 4 scale reasonably
well (although not linearly) and running time is not dominated by communication overhead. In the case of
the SAR program, communication accounts for less 10% of the running time.

While certainly not exhaustive, Figure 4 offers some hope that good performance can be expected from
HPF sensor–based computations. In the remaining sections, we will discuss the issues involved in ensuring
good performance.

4. Parallel loops

The DO loop is the workhorse of sensor–based applications and the main source of potential parallelism.
Generating efficient parallel DO loops is key to achieving good performance in these codes.

DO loops in the sensor–based computations that we have studied can be efficiently parallelized using
a variation on the simple FORTRAN D copy–in copy–out model [7]. The computation in the main body
of the program is modeled as a single thread operating on a global data space. Each iteration in a loop is
modeled as a separate thread operating on its own local data space. When control reaches the loop, the
contents of the global data space are (conceptually) copied in to each of the local data spaces. Each loop
iteration then works independently on its local copy of the global data space. When all of the loop iterations
have terminated, the contents of the local data spaces are (conceptually) copied out of the local data spaces
back into the global data space. If multiple iterations write to the same address in the local address space,
then the values are merged with a user–defined binary associative reduction operator before copying back

5



input reduce

error
(1)

difference
(1)

m

n

error
(16)

difference
(16)

output

(a)
ST

E
R

E
O

–
M

ultibaseline
stereo.

input row FFTs adaptive
power

outputreduction

b

s

b’

(b)
A

B
I

–
Sonar

adaptive
beam

interpolation.

input row FFTs scale threshholdreduction

r

d

c

output

(c)
R

A
D

A
R

–
N

arrow
band

tracking
radar.

input range
interpolation

m

n

cross-range
interpolation

row FFTs col FFTs

Polar Reformatter Inverse fast Fourier transform

output

(d)
SA

R
–

Synthetic
aperture

radar
im

age
reconstruction.

input phase
correction

column
resampling

m

n

row
resampling

row FFTs col FFTs

Inverse fast Fourier transformSpiral Resampling Blur removal

image
sum

output

(e)
M

R
–

M
agnetic

resonance
im

age
reconstruction.

Figure
3:

O
ther

Fx/Paragon
sensor–based

applications



1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4

S
ec

on
ds

Nodes

local FFTs

permutes

(a) 256K� 1 1D FFT.

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

S
ec

on
ds

Nodes

(b) 512� 512 2D FFT.

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4

S
ec

on
ds

Nodes

(c) 64� 64� 64 3D FFT.

1 2 4 8 16 32
0

100

200

300

400

500

600

700
M

ill
is

ec
on

ds

Nodes

local histograms

reduction

(d) 1K� 1K image histogram.

1 2 4 8 16 32
0

10

20

30

40

50

60

S
ec

on
ds

/im
ag

e

Nodes

polar reformatter

local FFTs

permutes

(e) 512� 512 synthetic aperture radar

Figure 4: Fx/Paragon performance.

7



to the glocal address space. This loop model, called the PDO model, is described in more detail in [19].

A parallel DO loop based on the PDO model can be characterized in terms of the addresses that it
references, with Rk denoting the set of addresses read by iteration k and Wk denoting the set of addresses
written by iteration k. If each Rk is disjoint, then the loop has disjoint reads, otherwise the loop has
overlapped reads. Similarly, if each Wk is disjoint, then the loop has disjoint writes, otherwise the loop has
overlapped writes.

The most common form of loop in sensor–based computations has disjoint reads and writes. Every
application in Figures 2 and 3 has at least one loop with disjoint reads and writes, and FFT2 (Figure 2(a)),
SAR (Figure 3(d)), and MR (Figure 3(e)) consist exclusively of these kinds of loops. For example, the
FFT2 exemplar consists of HPF DO loops of the form:

!HPF$ INDEPENDENT
DO k=1,N
CALL fft(a(:,k))
ENDDO

Each invocation of the fft() subroutine performs an inplace 1D FFT on the kth column of an array,
reading and writing only elements in the kth column. Although fft() is a complicated subroutine routine
with a complex pattern of array references, and might even be an assembly language library routine, the
pattern of array references between loop iteration is extremely simple: the kth iteration references the
kth column. This dichotomy of complicated intra–iteration reference patterns and simple inter–iteration
reference patterns is a recurring theme in sensor–based computation, with important implications for HPF
implementations.

Another important form of DO loop has overlapped reads and disjoint writes. Loops of this form are
typically used to perform convolution operations such as the error computation in STEREO (Figure 3(a)).
A similar pattern occurs in relaxation algorithms from scientific computing. For example, a simple 1D
convolution is of the form:

REAL a(N),b(N),h(3)
!HPF$ INDEPENDENT
DO k=2,N-1
b(k) = a(k-1)*h(1) + a(k)*h(2) + a(k+1)*h(3)

ENDDO

Finally, loops with overlapped writes are typically used by sensor–based computations to implement reduc-
tions. We discuss this important class of loops in Section 5. The remainder of this section discusses only
loops with disjoint writes.

4.1. Implications for HPF implementations

Generating efficient code inside parallel loops is key to achieving good performance with sensor–based
HPF programs. And since parallel loops with disjoint writes are so common, occurring in every application
we have studied, generating efficient code for these loops is especially important.

8



Although loops with disjoint writes are often dismissed as “embarrassingly parallel”, it is nontrivial to
generate efficient parallel code for them. There are a number of reasons, all complicated by the fact that loop
bodies of real applications typically contain a lot of code, with complex intra–iteration reference patterns,
calls to external library routines, and even inlined assembly language inserts.

First, the compiler must somehow determine that the write sets are disjoint and that addresses that are
written by one iteration are not read by another iteration. The HPF INDEPENDENT directive is a big help
here. This informs the compiler that no address is written by one iteration of a DO loop and read or written
by another iteration. However, the loop can have either disjoint or overlapped reads. In Fx, we rely on a
new PDO keyword for this information. The HPF INDEPENDENT directive conveys the same information
and is more compatible with standard F90 compilers, so is a better approach.

Second, the HPF compiler must ensure that the read and write sets are aligned with the loop iterations
before the iterations are executed. If the read and write sets are aligned before the loop iterations execute,
then all reads and writes are to local data. Aligning the data sets before executing the loops is key to
achieving good performance because it allows the programmer to use arbitrary sequential code in the loop
body, including calls to efficient sequential math libraries written in assembly language. For example, in a
Paragon HPF implementation, the fft() routine called by the FFT2 loop might be an assembly language
routine hand–crafted for the i860 microprocessor.

Finally, the HPF compiler must compute local loop bounds and translate global array indices in the loop
body to local indices. If not handled properly, these computations can be a significant source of runtime
overhead.

4.2. Loop efficiency

There is a simple test that implementers and users alike can use to measure the overhead introduced by HPF
compilers in the loop bodies of parallel loops. Consider the following canonical parallel DO loop:

REAL a(N,N)
!HPF$ DISTRIBUTE (*,BLOCK):: a

!HPF$ INDEPENDENT
DO k=1,N
a(:,k) = k

ENDDO

This loop requires no communication at runtime, but is somewhat subtle to translate because the lhs instance
of k must be converted from a global index to a local index, but the rhs instance must remain a global index.
If we compile and run the loop on P nodes, where P divides N evenly, then the total running time is bounded
from below by the running time of the following sequential DO loop:

COMPLEX sa(N,N/P)

DO k=1,N/P
sa(:,k) = k

ENDDO

9



■ ■ ■ ■ ■

●

●

● ● ●

▲

▲

▲
▲ ▲

◆

◆

◆

◆
◆

❏
❏

❏

❏
❏

❍

❍

❍

❍

❍

64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

Lo
op

 e
ffi

ci
en

cy

Problem size (N)

■ 1 node

● 2 nodes

▲ 4 nodes

◆ 8 nodes

❏ 16 nodes

❍ 32 nodes

Figure 5: Fx/Paragon loop efficiency (N� N canonical loop).

If Lp(N;P) is the running time of the canonical parallel DO loop with N iterations and P nodes, and
Ls(N;P) the running time of the corresponding sequential DO loop with N=P iterations, then Eloop(N;P) =
Ls(N;P)=Lp(N;P) is the loop efficiency of the parallel DO loop generated by the HPF compiler. Loop
efficiency is a useful measure because it provides a way to isolate the runtime loop overheads that are
introduced by the compiler, without having to instrument the generated code. It is important to realize that
loop efficiency is not the same as the speedup over the single–node version of the parallel code. Instead,
we are comparing to the performance of the tightest sequential version of the loop.

If we record loop efficiency for different values of N and P, we get an interesting family of curves.
Figure 5 shows the results for the Fx version of the canonical loop on the Intel Paragon.

The family of curves in Figure 5 provides some intestesting insight into the quality of the parallel loops
generated by the compiler. Loop efficiency is bounded from above by the curve for 1 node and bounded
from below by the curve for 32 nodes, so in general it is only necessary to plot two curves. In Figure 5 the
loop efficiency for 1 node is almost unity. For a single node the compiler introduces almost no overhead,
which tells us that the loop is nearly as tight as the corresponding sequential loop. The curve for 32 nodes
converges to near unity, which tells us that the overheads are being amortized across loop iterations. Further,
the 32–node curve converges quite rapidly, with Eloop > 0:5 at N = 256 and Eloop > 0:8 at N = 512. Thus
the Fx compiler is introducing minimal overheads that are quickly amortized. This conclusion is confirmed
by inspecting the F77 code generated by Fx for N = 1024 and P = 8:

IF (fxcellid.LT.8) THEN
fxloopstart0 = (MAX(((fxcellid * 128) + 1),1))
fxlmidx0 = IFXLM(fxadesc,1,fxloopstart0)
DO k = fxloopstart0, MIN(((fxcellid * 128) + 128),1024), 1
DO fxindex1 = 1, 1024, 1
a(fxindex1,fxlmidx0) = (k)

ENDDO
fxlmidx0 = (fxlmidx0 + 1)
ENDDO
ENDIF

The parallel loop overhead consists of a few statements before the loop that compute the local loop bounds,
a function call that computes the initial local index value. The only overhead in the loop body of is a

10



statement that increments the local index value. A similar approach to index conversion is first described
in [3]. It is hard to imagine a tighter loop.

In summary, a primary goal of an HPF implementation should be to generate parallel loop bodies that
are as efficient as their sequential counterparts. In particular, implementors should focus on minimizing the
overhead parallel loops with disjoint reads and writes. The loop efficiency test provides a simple way to
characterize these overheads.

5. Reductions

In sensor–based computations, loops with overlapped writes are used primarily to implement reductions.
For example,

DO k=1,N
v = v + a(:,k)
ENDDO

A common pattern in sensor–based computations is to operate independently on the columns of an array,
and then reduce the columns into a single column by adding them together. The HIST, STEREO, ABI,
and RADAR program all perform this type of simple reduction. However there are important sensor–
based computations, from global image processing, that require a mechanism for the programmer to define
generalized reduction operations. For example, a connected components algorithm can be written as a
parallel loop over the rows of the image, where each iteration computes a segment table for its row. This is
followed by a reduction step that merges the segment tables.

5.1. Implications for HPF implementations

For most sensor–based computations theHPF SUM intrinsic is sufficient. However, HPF provides no support
for operations like connected components that require generalized reductions. Achieving good performance
in these cases will require sophisticated compiler analysis that recognizes the reductions [4]. In Fx, we
avoid this analysis by incorporating a mechanism for defining arbitrary binary associative reductions into
the parallel loop construct [19].

5.2. Reduction efficiency

A user or implementer can measure the quality of the parallel reduction loops generated by an HPF compiler
using a test similar to the loop efficiency test in Section 4.2. Consider the following loop that adds the
columns of an N � N array.

REAL a(N,N),v(N)
!HPF$ DISTRIBUTE (*,BLOCK):: a

v = 0.0
DO k=1,N

11



■ ■ ■ ■
■

●

●

●

● ●

▲
▲

▲

▲

▲

◆ ◆
◆

◆

◆

64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

R
ed

uc
tio

n 
ef

fic
ie

nc
y

Problem size (N)

■ 1 node

● 4 nodes

▲ 16 nodes

◆ 32 nodes

Figure 6: Fx/Paragon reduction efficiency (N� N! N plus-reduction).

v = v + a(:,k)
ENDDO

The performance of this loop on P nodes is bounded from below by the performance of the following
sequential HPF DO loop:

REAL sa(N,N/P),v(N)

v = 0.0
DO k=1,N/P
v = v + sa(:,k)
ENDDO

If Rp(N;P) is running time of the parallel reduction of an N� N array on P nodes and Rs(N;P) the running
time of the corresponding sequential reduction of an N�N=P array, then Ereduce(N;P) = Rs(N;P)=Rp(N;P)
is the reduction efficiency of the parallel reduction generated by the compiler.2 Reduction efficiency exposes
the runtime overheads that are incurred by performing the reduction in parallel. Unlike loop efficiency,
which is completely determined by the compiler, reduction efficiency is a function of overheads due to the
compiler, as well as overheads due to the underlying communication system.

Figure 6 shows the results for a simple plus–reduction using the Fx compiler on Paragon. As with the
loop efficiency graph, reduction efficiency is bounded from above by the curve for 1 node and from below
by the curve for 32 nodes. Surprisingly, the reduction efficiency for a single node actually decreases as the
problem size increases. This suggests a problem in the Fx implementation of the reduction. Ideally, the
efficiency on a single node should be close to unity. Another point of concern is the slow convergence of the
curves for 16 and 32 nodes. Since the local computation step of each parallel reduction grows as roughly
N2=P and the communication step grows as roughly N log N, we might expect these curves to converge faster
than they do. Yet even for a relatively large N, the reduction efficiency is below 50%. While the reduction
efficiency does not pinpoint the source of the overhead, it does point out an opportunity for improvement in
the Fx Paragon implementation.

2An alternative formulation of the reduction efficiency test is to use the HPF SUM intrinsic for the parallel reduction. In this
case, the sequential reduction must use the same local computational kernel as the SUM intrinsic.

12



6. Index permutations

As we saw in Section 3 the following computational pattern occurs in many sensor–based computations:
(1) operate independently along one dimension of an array, then (2) operate independently along another
dimension. The FFT2, ABI, RADAR, SAR, and MR programs all exhibit this pattern. For example, FFT2
performs a local FFT on each column of an array, then performs a local FFT on each row. In order to exploit
locality, this pattern is usually implemented with an index permutation (also referred to as a transpose or
corner turn) between steps (1) and (2):

DO k=1,N
call fft(a(:,k))
ENDDO
b = TRANSPOSE(a)
DO k=1,N
call fft(b(:,k))
ENDDO
a = TRANSPOSE(b)

Although most of the sensor–based applications that we have studied permute 2D arrays, there are important
cases where permutes of higher–dimensional matrices are necessary. In particular, 2D arrays of complex
variables are often implemented as 3D arrays of real variables, and for d > 1, a d–dimensional FFT must
permute two indices of a d–dimensional complex array between each local FFT step.

6.1. Implications for HPF implementations

Efficient index permutation is crucial to achieving good performance in sensor–based computations. In
general, an index permutation induces a complete exchange, where each node sends data to every other
node. The standard Fortran 90 TRANSPOSE intrinsic adopted by HPF provides an opportunity to optimize
this important operation, but unfortunately it is only defined for 2D arrays. So for the general case, HPF
implementations will either need to provide an index permutation extrinsic function, or be able to generate
efficient code for index permutations that are implemented with a combination of array assignments and
DO loops:

REAL a(N,N),b(N,N)
!HPF$ DISTRIBUTE (*,BLOCK):: a
!HPF$ DISTRIBUTE (BLOCK,*):: b

b = a
!HPF$ INDEPENDENT
DO k=1,N
a(:,k) = b(k,:)
ENDDO

The Fx compiler provides an index permutation intrinsic. The advantage of this approach is that an intrinsic
can leverage off of the existing code for generating array assignment statements. Writing an extrinsic with

13



■

■
■

■
■

●
●

●
●

●

▲

▲

▲

▲ ▲

◆ ◆

◆

◆
◆

64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

P
er

m
ut

at
io

n 
ef

fic
ie

nc
y

Problem size (N)

■ 1 node

● 4 nodes

▲ 16 nodes

◆ 32 nodes

Figure 7: Fx/Paragon permutation efficiency (N� N 2D transpose).

the same functionality requires duplicating the compiler’s array assignment code in the run–time library.
Furthermore, capturing the index permutation in an intrinsic allows the compiler to exploit significant
optimizations on systems with toroidal interconnects [6]. The disadvantages of our approach are that an
index permutation intrinsic is not defined in HPF, which makes it harder to port Fx codes to HPF, and the
inherent complexity of describing a complex operation like permutation through an intrinsic..

6.2. Permutation efficiency

Just as with loops and reductions, there is a simple test for measuring the efficiency of HPF index permuta-
tions. The execution time of a parallel index permutation of an N�N array (using either the TRANSPOSE
intrinsic, a permutation extrinsic, or an assignment statement and a DO loop) is bounded from below by the
time to sequentially permute an N � N=P array on a single node:

REAL sa(N/P,N),sb(N,N/P)

DO k=1,N/P
sa(k,:) = sb(:,k)
ENDDO

If Tp(N;P) is the running time of the parallel index permutation of an N � N array and Ts(N;P) is the
running time of the corresponding sequential permutation of an N � N=P array, then Epermute(N;P) =
Ts(N;P)=Tp(N;P) is the permutation efficiency of the parallel index permutation generated by the HPF
compiler.3 Permutation efficiency is a rough measure of the percentage of effective local memory bandwidth
that is realized by the parallel permutation. Like reduction efficiency, permutation efficiency is influenced
by overheads due to the compiler, as well as overheads due to the underlying communication system.

Figure 7 shows the results for a 2D transpose of an N � N array using the Fx compiler on Paragon.
The graph provides a couple of interesting insights. There is substantial overhead even for the single–
node version of the parallel transpose, which achieves only 85% of the effective local memory bandwidth

3As with the reduction efficiency test, if an intrinsic or extrinsic is used for the parallel permutation, then care must be taken to
use the same local copy mechanism in the sequential version.

14



■ ■ ■ ■ ■ ■ ■● ● ●
●

●

●

●

◆

◆
◆

◆ ◆

◆

◆

1 2 4 8 16 32 60
0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

Nodes

■ 512 x 512 local FFT loop

● 512 x 512 histogram

◆ 512 x 512 transpose

Figure 8: Scalability of various Fx/Paragon functions

for large problems. The multiple–node versions of the parallel permutation converge at about 30% of
the effective local memory bandwidth. This suggests that the parallel permutation on the Paragon is
communication–bound, and that further improvements will require a new message passing library.

The performance loss is largely due to overhead from the underlying communication system and it
is tempting for us to wash our hands of responsibility for its performance. However, in our experi-
ence, significant performance benefits can be realized in compiler–generated code by tailoring the runtime
communication libraries [14, 15]. Developers need to be aware of the communication overheads for a
particular target machine, and measuring reduction and permutation efficiency is a useful way to expose the
performance impact of these overheads.

7. Scalability

Sensor–based computations are composed of collections of functions that process continuous streams of
data sets. The sizes of the data sets are determined by external factors such as the type of sensor, the number
of sensors, and the frequencies of interest. For example, the image size of the STEREO application is fixed
at 240 � 256 by the camera system and cannot be modified by the programmer, the magnetic resonance
scanner used by the MR application processes 512� 512 images (oversampled from 256� 256 input), and
the radar subsystem used by the RADAR application produces 512� 10 data sets.

The fixed size of the data sets is an important property of sensor–based computations that distinguishes
them from scientific computations. Since the data set sizes are fixed, the degree of parallel slackness
decreases as the number of nodes increases, and if a data parallel function performs a nontrivial amount of
internal communication, then the efficiency of the function will tend to decrease as the number of nodes
increases. This behavior is shown in Figure 7 for a 512� 512 local FFT loop, a 512�512 image histogram,
and a 512� 512 transpose. The local FFT function contains no communication, and thus scales perfectly
with the number of nodes. However, the histogram and transpose functions contain internal communication
and their efficiency decreases significantly as the number of nodes increases.

If efficient use of processing nodes is a goal (as it is in embedded systems where additional nodes
increase the cost, size power, and weight of the system) then we want to use a smaller number of nodes for
functions like the histogram and transpose. But if we have a large parallel system with many nodes, how
then do we effectively use the remaining nodes? One approach that has been proposed is to use a mix of
task and data parallelism [17, 1, 2, 5].

15



Task parallelism can significantly improve the performance of applications with functions that do not
scale well. For example, using a mix of task and data parallelism doubled the throughput (compared to the
most efficient data parallel code) of the 240� 256 Fx STEREO program so that it was able to run in real–
time [16]. Since HPF does not currently support task parallelism, there is the risk that HPF sensor–based
codes with smaller data sets will not run efficiently. This puts additional pressure on HPF developers to
maximize the loop, reduction, and permutation efficiencies identified earlier.

8. Relation to scientific codes

Although this paper does not specifically address scientific HPF codes, outside groups have used Fx to
implement two nontrivial physical simulations: QUAKE, a 3D earthquake ground motion simulation
(based on the method of boundary elements) and AIR, a regional air quality modeling program [9]. Both
codes are legacy F77 codes of about 10; 000 lines that were ported to the Paragon version of Fx. QUAKE is
especially interesting because it was ported in a few weeks by a seismologist from the Southern California
Earthquake Center who had never written a parallel program.

Figure 9 shows the computational structure of the QUAKE and AIR programs. QUAKE is a single
perfectly parallel DO loop. AIR is a sequence of DO loops that operate on different dimensions of an array,
with 3D transposes interspersed between the loops. The interesting thing is that at a high level, the structure
of these two moderately large scientific codes is almost identical to the FFT! So again, we see that parallel
loops and index permutations are important operations for HPF developers to optimize.

(a)
Q

U
A

K
E

–
B

oundary
elem

entearthquake
ground

m
otion

m
odeling.

hourhour transport transport 1 transport 2vertical
transport

(b)
A

IR
–

Finite
elem

entair
quality

m
odeling.

Figure
9:

C
om

plex
scientific

codes
w

ith
sim

ple
data

parallelstructure

T
he

Q
U

A
K

E
and

A
IR

program
s

reinforce
an

im
portantpointthatw

e
touched

on
in

Section
4:

com
pli-

cated
program

s
w

ith
com

plicated
inner

loops
can

nonetheless
have

a
sim

ple
data

parallel
structure

that
is

straightforw
ard

to
parallelize.

T
he

A
IR

program
takes

this
to

extrem
es:

each
iteration

of
the

parallel
D

O
loop

in
each

of
the

qhorizontal
transport

steps
solves

an
independent

sparse
and

irregular
finite

elem
ent

problem
.

W
e

norm
ally

assum
e

thatH
PF

is
nota

good
targetfor

sparse
codes,butA

IR
is

an
exam

ple
of

a
sparse

code
thatis

quite
w

ellsuited
for

H
PF.

16



9. Summary and conclusions

We identified sensor–based computations as an important application domain that is generally well suited
for HPF. The performance of these codes is generally determined by the efficiency of three key operations:
parallel DO loops, reductions, and index permutations, and these operations can also be important for
scientific codes. HPF developers who focus on these three operations will reap large rewards.

We also pointed out that scalability can be an issue in sensor–based computations because of the fixed
sizes of the data sets. Using a mix of task and data parallelism can help, but HPF does not yet address this.

Acknowledgements

Keith Bromley at the Naval Oceans Systems Center encouraged us to search for similarities in signal and
image processing applications. Dennis Ghiglia at Sandia Labs generously provided us with F77 SAR code,
which Peter Lieu ported to Fx. Jim Wheeler at GE taught us about underwater sonar applications. Doug
Noll at Pitt Medical Center developed the MR algorithm, and Claudson Bornstein, Bwolen Yang, and Peter
Lieu implemented it in Fx. Yoshi Hisada from the USC Southern California Earthquake Center took a
chance and implemented his 3D boundary element ground motion algorithm in Fx. Ed Segall, Chang-Hsin
Chang, and Peter Lieu ported the air quality modeling application to Fx. Thomas Gross, Jim Stichnoth,
Bwolen Yang, and Peter Dinda made major contributions to the Fx compiler.

References

[1] CHANDY, M., FOSTER, I., KENNEDY, K., KOELBEL, C., AND TSENG, C. Integrated support for task and
data parallelism. International Journal of Supercomputer Applications 8, 2 (1994), 80–98.

[2] CHAPMAN, B., MEHROTRA, P., VAN ROSENDALE, J., AND ZIMA, H. A software architecture for
multidisciplinary applications: Integrating task and data parallelism. Tech. Rep. 94-18, ICASE,
NASA Langley Research Center, Hampton, VA, Mar. 1994.

[3] CHATTERJEE, S., GILBERT, J., LONG, F., SCHREIBER, R., AND TENG, S. Generating local addresses and
communication sets for data-parallel programs. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Diego, CA, May 1993), pp. 149–158.

[4] GHULOUM, A., AND FISHER, A. Flattening and parallelizing irregular, recurrent loop nnsts. In Proc. of
the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)
(Santa Barbara, CA, July 1995).

[5] GROSS, T., O’HALLARON, D., AND SUBHLOK, J. Task parallelism in a High Performance Fortran
framework. IEEE Parallel & Distributed Technology 2, 3 (1994), 16–26.

[6] HINRICHS, S., KOSAK, C., O’HALLARON, D., STRICKER, T., AND TAKE, R. An architecture for
optimal all-to-all personalized communication. In Proc. SPAA ’94 (Cape May, NJ, June 1994), ACM,
pp. 310–319.

[7] HIRANANDANI, S., KENNEDY, K., AND TSENG, C. W. Compiling Fortran D for MIMD distributed-
memory machines. CACM 35, 8 (Aug 1992), 66–80.

17



[8] KANG, S., WEBB, J., ZITNICK, C., AND KANADE, T. A multibaseline stereo system with active
illumination and real–time image acquisition. In Proceedings of the International Conference on
Computer Vision (Cambridge, MA, 1995).

[9] KUMAR, N., RUSSEL, A., SEGALL, E., AND STEENKISTE, P. Parallel and distributed application of an
urban regional multiscale model. submitted for publication, 1995.

[10] NOLL, D., PAULY, J., MEYER, C., NISHIMURA, D., AND MACOVSKI, A. Deblurring for non 2d-fourier
transform magnetic resonance imaging. Magnetic Resonance in Medicine 25 (1992), 319–333.

[11] PLIMPTON, S., MASTIN, G., AND GHIGLIA, D. Synthetic aperture radar image processing on paral-
lel supercomputers. In Proceedings of Supercomputing ’91 (Albuquerque, NM, November 1991),
pp. 446–452.

[12] SHAW, G., GABEL, R., MARTINEZ, D., ROCCO, A., POHLIG, S., GERBER, A., NOONAN, J., AND TEIT-
ELBAUM, K. Multiprocessors for radar signal processing. Tech. Rep. 961, MIT Lincoln Laboratory,
Nov. 1992.

[13] STICHNOTH, J. Efficient compilation of array statements for private memory multicomputers. Tech.
Rep. CMU-CS-93-109, School of Computer Science, Carnegie Mellon University, Feb. 1993.

[14] STICHNOTH, J., O’HALLARON, D., AND GROSS, T. Generating communication for array statements:
Design, implementation, and evaluation. Journal of Parallel and Distributed Computing 21, 1 (Apr.
1994), 150–159.

[15] STRICKER, T., STICHNOTH, J., O’HALLARON, D., HINRICHS, S., AND GROSS, T. Decoupling synchro-
nization and data transfer in message passing systems of parallel computers. In Proc. Intl. Conf. on
Supercomputing (Barcelona, July 1995), ACM, p. accepted.

[16] SUBHLOK, J., O’HALLARON, D., GROSS, T., DINDA, P., AND WEBB, J. Communication and memory
requirements as the basis for mapping task and data parallel programs. In Proc. Supercomputing ’94
(Washington, DC, Nov. 1994), pp. 330–339.

[17] SUBHLOK, J., STICHNOTH, J., O’HALLARON, D., AND GROSS, T. Exploiting task and data parallelism on
a multicomputer. In Proc. of the ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP) (San Diego, CA, May 1993), pp. 13–22.

[18] WEBB, J. Latency and bandwidth consideration in parallel robotics image processing. In Supercom-
puting ’93 (Nov. 1993), pp. 230–239.

[19] YANG, B., WEBB, J., STICHNOTH, J., O’HALLARON, D., AND GROSS, T. Do&Merge: Integrating
parallel loops and reductions. In Proc. Sixth Workshop on Languages and Compilers for Parallel
Computing (Portland, OR, Aug. 1993), vol. 768 of Lecture Notes in Computer Science, Springer
Verlag, pp. 169–183.

18


