Contemporary Mathematics
Volume 00, 0000

A Compiler for Parallel Finite Element Methods
with Domain-Decomposed Unstructured Meshes

JONATHAN RICHARD SHEWCHUK AND OMAR GHATTAS

ABSTRACT. Archimedes is an automated system for finite element methods
on unstructured meshes using distributed memory supercomputers. Its
components include a mesh generator, a mesh partitioner, and a data-
parallel compiler whose input is C augmented with machine-independent
operations for finite element computations, and whose output is parallel
code for a particular multicomputer. We describe an elegant implementa-
tion of domain decomposition and give preliminary performance results.

1. Introduction

Data-parallel languages such as High Performance Fortran make it possible to
quickly and portably program multiprocessors. However, most current compilers
are not satisfactory for programming finite element simulations, because they
cannot support complicated parallel data structures.

There are several reasons why effective parallel compilers for finite elements
are difficult to construct. If unstructured meshes are desired, the finite element
code must use indirect addressing to process elements and to form stiffness ma-
trices; but parallel indirect addressing is difficult. Communication costs will
be high unless data structures are intelligently divided among processors. Fur-
thermore, few data-parallel compilers provide explicit support for performing
operations on a processor-by-processor basis; this makes it impossible to use
domain decomposition methods to explicitly manage parallelism.

To address these problems, we are developing Archimedes, a system that gen-
erates finite element code for distributed memory supercomputers. The structure
of Archimedes is diagrammed in Fig. 1. Its components include a mesh generator,
a mesh partitioner, placement and routing heuristics, and a compiler.

The mesh generator uses an algorithm due to Ruppert [4] to create quality
two-dimensional meshes on complex straight-line domains, and can also refine
meshes based on a posteriori error estimates. An example of a mesh generated
and refined this way is illustrated in Fig. 2.

Meshes are partitioned by a geometric algorithm due to Miller, Teng, Thur-
ston, and Vavasis [3]. The partitioner serves three purposes. It divides a mesh
into subdomains, to be mapped to separate processors (Fig. 3). It generates a
nested dissection ordering on each subdomain, and thereby improves the perfor-
mance of domain decomposition methods. Finally, a lesser known fact is that one

1991 Mathematics Subject Classification. Primary 65Y05, 65M55; Secondary 68N20, 65F10.

The first author was supported in part by the Natural Sciences and Engineering Research
Council of Canada.

This paper is in final form and no version of it will be submitted for publication elsewhere.

1 ©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

2 JONATHAN RICHARD SHEWCHUK AND OMAR GHATTAS

@ —§ Mesh Generator Mesh Partitioner

Problem Domain
@ Placement and
& Routing

Partitioned Mesh

_

Finite Element Mesh

M/MUL(A, X)
SET(r=r/) Compller w
Finite Element Algorithm Multicomputer
Fi1GURE 1. Structure of Archimedes.
\%4
N

FIGURE 2. Refined mesh of an electric guitar.

can form a nested dissection ordering that improves memory cache performance
because physically adjacent nodes tend to be grouped together in memory.

The communication graph for the partition of Fig. 3 is illustrated in Fig. 4.
The nodes of this graph represent processors, and edges are drawn between any
two processors having adjacent subdomains. On most multicomputers, com-
munication is faster if adjacent subdomains are mapped to nearby processors.
Hence, we use placement heuristics to find such a mapping. Some multiprocessors
can be sped up by explicitly choosing communication routes between processors;
routing heuristics are provided for these systems. The placement and routing
heuristics are described in detail by Feldmann, Stricker, and Warfel [2].

Archimedes’ compiler takes as input C code with special machine-independent
operations for finite element computations, and outputs parallel code for a par-
ticular multicomputer. Users write parallel code without knowing the underlying
communication mechanisms of the parallel architecture. This simplifies the task
of writing parallel finite element code, or experimenting with iterative linear
solvers. The remainder of this paper describes the parallel operations provided

COMPILING UNSTRUCTURED PARALLEL DOMAIN DECOMPOSITION 3

FIGURE 3. Partitioned electric guitar mesh.

FiGUreE 4. Communication graph of partitioned mesh.

by the compiler.

2. Parallel operations for domain decomposition

2.1. Data distribution and communicating operations. The data dis-
tribution of the stiffness matrix K is the key to our implementation. Let P be
the number of processors. Each processor p holds a processor stiffness matriz
KP? which is a portion of the global stiffness matrix. Effectively, K? contains
zero rows and columns for each node not mapped to processor p; of course, these
zeroes are not actually stored in memory. The value of the global stiffness matrix
is K=" K.

Archimedes’ partitioner maps each mesh element to only one processor, and
K? is defined by the set of elements mapped to processor p. Element stiffness
matrices are assembled into processor stiffness matrices in parallel without com-
munication, but the global stiffness matrix K is never actually formed. We
say that K is partially assembled, because it is not assembled across processor

4 JONATHAN RICHARD SHEWCHUK AND OMAR GHATTAS

boundaries.

Here, our methodology is at variance with traditional data-parallel compilers.
Nodes and edges on subdomain boundaries are shared by multiple processors.
Accordingly, a distributed stiffness matrix may have storage allocated for an
edge on several processors. (“Edge” here should be read to include self-edges,
i.e., diagonal entries of the stiffness matrix.) Each processor stores the nonzero
portion of its processor stiffness matrix in Compressed Sparse Row format.

Distributed vectors may have storage for a node allocated on several proces-
sors. Ordinarily, they are stored so that the duplicated nodes have duplicated
values. In other words, a vector x is distributed so that each processor knows the
elements of z corresponding to the nodes mapped to that processor. For reasons
that will become clear in the next paragraph, we say that z is fully assembled.

Performing a distributed matrix-vector product of the form y = Kz is a two-
step process. In the first step, each processor p takes the product y? = KPzx.
This step uses a standard sequential sparse matrix-vector product, and requires
no communication. At this point, we say that y, like K, is partially assembled,
because the true value of y is y = Zle y*. The second step is to fully assemble y.
To accomplish this, each processor communicates with its neighbors (along the
routes of the communication graph in Fig. 4) and sums each processor’s value
for each shared node. For example, if processors p and ¢ share node j, then
both processors will take the sum yjp + y]g as the value of y;. We call this step a
communicating sum.

Many iterative methods for solving Kz = y can be implemented with only
two communication operations: communicating sums, and parallel reductions
(such as dot product). Several local operations are also required, such as sparse
matrix-vector multiply and elementwise vector operations. If the stiffness matrix
is unsymmetric, our data distribution makes it trivial to obtain the transpose
of the global stiffness matrix without communicating; hence, iterative methods
such as biconjugate gradients (which requires the product KZz) are easy to
implement.

We can also use the communicating sum to form a diagonal preconditioner.
Each processor extracts the diagonal of its processor stiffness matrix, and a
communicating sum is used to find the diagonal of the global stiffness matrix.
Thereafter, the diagonal can be used as a preconditioner without further com-
munication.

2.2. Domain decomposition. We present a domain decomposition method
appropriate for a sequence of linear problems having the same global stiffness
matrix, as arise in time-dependent problems.

Order the variables so that those interior to subdomain 1 come first, followed
by subdomain 2, etc. Last comes the set I of variables corresponding to interface
nodes (each shared by two or more subdomains). The system Kz = y has the
form

COMPILING UNSTRUCTURED PARALLEL DOMAIN DECOMPOSITION 5

[{11 0 [0 1(1]1 T Y1
0 Ko 0 Ko |22 Yo
0 0 I(pp I(p]l T p rp

I(ﬂl [(HQ . I(JIP I(H]I T yn

A standard nonoverlapping domain decomposition technique is to use block
elimination of &1, zs,...,zp to yield the Schur complement system K’Hm = I,
where]~(H = Kyp— Ele KHZ'KZ»;lKZ-H and y1 = yr — Ele K]IZ'KZ»;lyi. This system
is then solved by an iterative Krylov subspace method. Contrary to standard
practice, we explicitly form the Schur complement matrix I}H.

If we ignore zero rows and columns, each processor stiffness matrix is of the
form KP = [II?H': II((E]’ where Kyj= Ele K} By factoring K,, (using a nested
dissection ordering), each processor p forms (without communicating) a processor
Schur complement f(ﬁ = Kﬁ—Kﬂpr_pl Kpr. Afterward, the Schur complement is
a partially assembled matrix, just like the stiffness matrix K — in other words,
it has the property that K’H = 211'3:1 Kﬁ Hence, we can use fx”m in Krylov
methods, with the same data distribution and communicating sum used for K.

Each processor Schur complement is a dense matrix coupling the boundary
nodal unknowns of that processor’s subdomain. This density is advantageous,
because most modern microprocessors perform dense matrix-vector multiplica-
tion at two to ten times the speed of sparse matrix-vector multiplication, and
because we can easily apply a Neumann-Neumann preconditioner, as described
by Bourgat et al. [1]. By applying a communicating sum to R’ﬁ, each proces-
sor forms a fully assembled processor preconditioner M. M} is the submatrix
of Ky that represents only the boundary of subdomain p. Although IZ’]fH may
be singular, M} generally is not, and each processor can easily factor or invert
M, (which is dense). Our inverse preconditioner (which approximates f(ﬁl) is
M-t = Zle(Mﬁ)_l. (For simplicity, we are abusing notation: each inverse is
taken by ignoring zero rows and columns, which represent nodes not in the subdo-
main; but the summation takes these zero rows and columns into account. To be
pedantically correct, the above sum should read Ef;l(Ri)T (REMi(ROYTY LR,

—1 is a partially assem-

where RP is a global-to-processor restriction matrix.) M
bled matrix, and may be manipulated in the same fashion as K and Kn (although
the inverted matrices that compose M =1 need not be explicitly formed).
Below, we give our domain decomposition algorithm and the performance
observed solving a heat conduction problem on a 64-processor iWarp. We use
the mesh of Fig. 2, which has 8837 unknowns and employs quadratic triangular
elements. For domain decomposition, an additional overhead of 0.6810 seconds
is required to form the Schur complement matrix; this is quickly amortized if

multiple right-hand sides must be solved.

JONATHAN RICHARD SHEWCHUK AND OMAR GHATTAS

(i) Each processor assembles its processor stiffness matrix K?.
(ii) Each processor forms its (dense) processor Schur complement fx”ﬁ.
(iii) With a communicating sum, each processor forms its (dense) processor
preconditioner M}, which is then factored or inverted.
(iv) For each time step (or right-hand side):

(a) Each processor assembles, element-by-element, its partially as-
sembled force vector y?.

(b) From y* and the factors of K?, each processor forms its partially
assembled reduced force vector gf'. A communicating sum is used
to fully assemble the reduced force vector .

(¢) The Schur complement system Knzp = yr 1s solved iteratively.
The values on the interface nodes (xy) are thus found.

(d) Using triangular backsubstitution with the factors of K?, each
processor finds from zy the values on its interior nodes (z,).

Iterative Solution Time (after K¥, Kf, M, and y? are formed)
Method Iterations | Seconds
Conjugate Gradients 111 0.5104
+ Diagonal Preconditioner 91 0.4508
Domain Decomposition + CG (steps b-d) 42 1 0.1981
+ Diagonal Preconditioner 36 0.1841
+ Processor Preconditioner 12 0.1667

We recommend this approach because of its simplicity. By writing a communi-

cating sum and parallel dot product, and using standard sparse matrix libraries,

one can quickly implement an efficient domain decomposition solver.

REFERENCES

. J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu, Variational formulation and
algorithm for trace operator in domain decomposition calculations, Second Int. Conf. Do-
main Decomposition Methods (T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds.),
STAM, 1989.

. A. Feldmann, T.M. Stricker, and T.E. Warfel, Supporting sets of arbitrary connections on
1Warp through communication contert switches, Proc. 5th Annual ACM Symp. Parallel
Algorithms and Architectures, 1993, pp. 203-212.

. G.L. Miller, S.-H. Teng, W. Thurston, and S.A. Vavasis, Automatic mesh partitioning,
Graph Theory and Sparse Matrix Computation (A. George, J.R. Gilbert, and J.W.H. Liu,
eds.), Springer-Verlag, 1993.

. J.M. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,
To appear in J. Algorithms, 1994.

ScHooL OF COMPUTER SCIENCE, CARNEGIE MELLON UNIVERSITY, 5000 FORBES AVENUE,

PI1TTSBURGH, PENNSYLVANIA 15213-3891

E-mail address: jrs@cs.cmu.edu

DEPARTMENT OF CIVIL ENGINEERING, CARNEGIE MELLON UNIVERSITY, 5000 FORBES Av-

ENUE, PITTSBURGH, PENNSYLVANIA 15213-3891

E-mail address: oghattas@cs.cmu.edu

