Appears in:

June 21-25, 1995, Santa Marguerita di

Proceedi ngs of the 22nd International
Li gure,

Synposi um on Conput er Architecture,

Italy

Optimizing Memory System Performance for Communication in Parallel
Computers

T. Stricker! and T. Gross!2

1school of Computer Science 2Institut fuer Computer Systeme
Carnegie Méllon University ETH Zuerich
Pittsburgh, PA 15213 CH 8092 Zuerich, Switzerland

Abstract

Communicationin aparallel systemfrequently involvesmoving
data from the memory of one node to the memory of another;
thisisthe standard communication model employedin message
passing systems. Depending on the application, we observe a
variety of patterns as part of communication steps, e.g., regular
(i.e. blocks of data), strided, or irregular (indexed) memory
accesses. The effective speed of these communication stepsis
determined by the network bandwidth and the memory band-
width, and measurements on current parallel supercomputers
indicate that the performance is limited by the memory band-
width rather than the network bandwidth.

Current systems provide a wealth of options to perform
communication, and a compiler or user is faced with the diffi-
culty of finding the communication operationsthat best use the
available memory and network bandwidth. Thispaper provides
aframework to evaluate different solutions for inter-node com-
munication and presents the copy-transfer model; this model
captures the contributions of the memory system to inter-node
communication. We demonstrate the usefulness of this simple
model by applying it to two commercial parallel systems, the
Cray T3D and the Intel Paragon.

In particular we identify two methods to transfer data be-
tween nodesin thesetwo machines. In buffer-packing transfers,
acontiguous block of datais transferred across the network. If
the data are not stored contiguously, they are copied to (gath-
ering) or from (scattering) buffers in local memory before and
after thetransfer. Chained transfers perform gathering, transfer
and scattering in one step, reading the data elements with some
non-sequential pattern and immediately transferring them on to
the destination.

Our model and measurements indicate that chaining of the
gather, transfer, and scatter operations results in better perfor-
mance than buffer packing for many important access patterns.

This research was sponsored in part by the Advanced Research Projects
Agency/CSTO monitoredby SPAWAR under contract NO0O039-93-C-0152. Com-
putational resources were provided in part by the Pittsburgh Supercomputing
Center (PSC).

The views and conclusions contained in this document are those of the authors
and should not beinterpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

Most standard message passing libraries (like MPI, PVM or
NX) force the parallelizing compiler (or the programmer) to
employ the buffer-packing communication operations. How-
ever, the addition of hardware support dedicated to communi-
cation (e.g., DMAs, line-transfer units) now gives the compiler
awider range of options.

1 Introduction

Communication is akey issuefor the design of aparallel com-
puter, and the properties of the communication system have a
high impact on the class of applications that profitably run ona
parallel or distributed system.

Communication systems sometimes pay more attention to
the network (i.e., the links, busses, or switches that connect the
nodesintheparallel system) than to the suppliersand consumers
of the data. Most communication steps in parallel systemsin-
volve moving datafrom the memory of one nodeto thememory
of another node. The effective performance of the memory sys-
tem is therefore (at least) as important as the performance of
the communication system, and improving the network perfor-
mance beyond what can be supported by the memory system
does not increase overall performance.

The issue of transferring data between a node and its net-
work is more complicated than just increasing the memory
bandwidth. Although there is a clear trend towards increased
memory bandwidth both in the nodes of parallel computersand
in other systems (i.e., workstations), alarge part of this perfor-
mance improvement is due to widening the path between the
processor and the memory. This changeincreases the memory
bandwidth for contiguous (or almost contiguous) accesses, but
does not increase the “reference bandwidth” (i.e., the number
of references per instruction or cycle), nor does it improve the
latency. Both of these aspectshowever are important if the data
are accessed in some strided or irregular fashion.

The memory systems of modern parallel systemsare com-
plicated, and the performance of asegquenceof accessesdepends
on a number of factors. Also, most parallel machines provide
more than one way to implement the communication steps re-
quired by the program. Depending on the machine, there may
be a choice of portable communication libraries (e.g., PVM
or MPI), custom libraries, or low-level transfer operations like
“put” and “get”. A compiler or user is faced with a number of
options, and it is not always easy to find the most efficient one.

This paper attemptsto provide some answersto designersof
the interface between the network and the memory/processor,
aswell asto compiler writers who want to custom-tailor acom-
piler's communication operations to a specific parallel system.
We start with a brief review of communication in a parallel

systemto summarizethe kind of datatransfersthat are required
when applications are mapped onto modern parallel systems.
Then we develop the copy-transfer model of inter-node com-
munication; this model is simple enough to hide many details
of the memory and communication systems, yet it allows usto
characterize real parallel systems.

In the copy transfer model each communication step iswrit-
ten down exactly asitiscarried out by the hardware. Theformal
description isend to end and must include all copies needed to
gather and scatter the data, if buffered or non-contiguous ac-
cesses are involved. The model also captures whether a copy
transfer is donein parallel or in sequence. As an example con-
sider the transfer of a contiguous block of items that are then
stored as a sequence with a constant stride of 64 on the remote
system. If this operation (1 Tferes: starting stride 1, final stride
64) is implemented as a block transfer, followed by a copy to
unpacking at the receiver, then this operation is written as:

1Tferes = 1Networks o 1Copyg,.

Each basic transfer on the right side of our definition is asso-
ciated with a measured throughput figure for a specific parallel
system. The model contains a set of simple assumptions and
rules to derive an estimated throughput for the transfer as de-
scribed later.

After introducing acompiler view of communicationin par-
allel systems and common memory access patterns, we define
our model and show how to derive performance from measured
basic transfer rates. We validate the model for two current par-
alel systems, the Cray T3D and the Intel Paragon and use it
to evaluate two different ways to program communication op-
erations. The methods based on our model (and confirmed by
our experiments) are different from what is currently offered by
the vendor software. We quantify the significance of our find-
ing with measured performance of three common applications
kernels.

2 Communication in parallel systems

In message passing systems, either the user or the compiler
explicitly moves data from one node to another, thereby “re-
naming” the data. That is, as data are moved from one node
to another, its name (address) is changed. In contrast, shared
address space systems preserve the name of adataitem asit is
moved to another node. A data item may appear in the local
memory (cache) of a node after a transfer, but its name (ad-
dress) is still the ssame asit was beforethe transfer. Therelative
advantagesof both machines have been discussed in numerous
papers, and there exist a number of machines for either style.
This paper concerns itself solely with message passing com-
munication, because (1) any improvement to message passing
communication helps current[1, 13, 3] and future machines[7]
that provide this communication model, even if these machine
support other models as well, (2) a number of commercial sys-
tems are based on message passing (including all systemswith
a large number of nodes), and (3) the hardware/software solu-
tions offered for communication on these systems are far from
satisfactory.

Modern message passing computers provide a variety of
communication options, ranging from “get/put” or remote load
and store to a traditional message passing interface (e.g., as
encapsulatedin libraries like PVM, NX, MPI, etc.). The com-
munication styles found in these systems cover a wide range.

The hardware of message passing computers provides a
high nominal communication bandwidth between nodes — the
T3D has a hardware peak bandwidth of 300 MB/s on the wires
between a pair of nodes, and the Paragon a peak hardware

bandwidth of about 200 MB/s. In reality, control information
(e.g., routing information, message delimiters) reducesthisfig-
ure to about 160 MB/s for both machines. But even if we use
aminimal protocol and a bare-bonesruntime system, eliminate
overhead through appropriate compiler technology, or hand-
craft the communication code, we do not observe even these
measurable bandwidths for applications.

Figure 1 depicts the measured performance for PVM and
low level libraries for the T3D and the Paragon. PVM provides
buffered message passing with general send/receive semantics,
while the lower level primitives in the vendor specific libraries
libsma.a on the Cray and libnx.a on the Paragon (SUNMOS)
allow fastest transfers with semantic restrictions, such as ex-
ecuting receives before the sends or relying on user managed
cache consistency.

Experimental studiesof actual applicationsindicate that the
effective communication throughput never reaches peak band-
width, even if applications are scaled to giant problem sizes.
After a careful examination of overheads, we find that it is
not the constant per message overhead due to the operating or
runtime system that is to blame (if this was the cause of our
problems, we would observe a steady performance increase as
we scale the size of the benchmarks sets), but rather overheads
that occur for each byte transferred.

All datatransfers start and end in memory. So the perfor-
mance of the memory systemfor communication playsacrucial
role in determining the overall performance of applicationsrun-
ning on parallel machines. We observed that there are many
applications for which the difficult, non-sequential memory ac-
cess patterns occur mostly in connection with communication.
For example, when mapping a 2D FFT (consisting of 1D FFTs
and a transpose) onto a parallel computer, the 1D FFTs can be
organized to run with locality out of caches, and the memory
accesses without locality are part of the transpose. Since the
performance of the memory system is so important for com-
munication, we now turn our attention to the generator of the
communication operations, the compiler.

2.1 Compiler view of communication

To map an application onto aparallel system, the compiler must
determine how data and computationsare to be distributed over
the nodes of the parallel system. Recently, the High Perfor-
mance Fortran (HPF) effort has resulted in a set of user direc-
tives that assist the compiler in performing its tasks[5]*. HPF
focuses on block-cyclic distribution of arrays, where the two
variants, the block and cyclic are the most common [15]. The
distributions included in standard HPF are well-suited to de-
scribe regular data layouts. However, many applications are
irregular in that the access pattern cannot be described with
a few parameters. Instead, the access pattern is contained in
another data structure, usually referred to as anindex array. A
typical exampleisAl 1: n] = B[X[1: n]] where X contains
some permutation of 1. . n (i.e., there are no duplicate entries
in X). A great deal of compiler effort is required to deal with
the complexities of such code; after all, A, B, and X might all
be distributed over multiple nodes. However, the bottom line is
that the compiler at some time hasto accessthe elements of B,
using some intermediate index array T, asdepicted in Figure 2.

From a compiler’s point of view, data are moved between
the address spaces of nodes, and these data can be contiguous
blocks, slices, intersections of slices[15], or irregular blocks of

Lour work is done in collaboration with the implementation of an HPF
compiler[€], but the details of HPF are irrelevant to this study. Our results
apply to any system that moves data from the local memory of one node to the
remote memory of another.

Cray T3D

120 B 'ibpvm (PVM 3.0)
2 o] [] libsma (shmemput)
s |
° 1
8 804
c 4
5 1
2 60
° 1
©
5 40|
@]

S]

= 207
.l | J | EN B
2kB 32kB 2kB 32kB 50kB
Contiguous Strided Indexed

Transfer type (access pattern, size)

Intel Paragon

120 — B 'ibpvm (PVM 3.0)
2 1001 [] libnx (SUNMOS)
2]

% 4
S 80
< 4
o |
o 60,
o]
s
g 407
%)]
=]
aenil 1 ﬂ m |
0; T T T T

2kB 32kB 2kB 32kB 50kB
Contiguous Strided Indexed
Transfer type (access pattern, size)

Figure 1: Measured application throughput for simple communication operations with a portable, general library (PVM) and with

vendor specific or third party libraries that offer best throughpuit.

NN
]
]
[
A

w NP o

Figure 2: Accesswith an index array.

data described by an index array. The compiler generates syn-
chronization (or control) instructions separately (e.g., before
and after a complete array redistribution) [16]. This organiza-
tion allows us to focus in this paper on speeding up the data
transfers. There are two principal approachesto organizing the
datatransfers. Either the compiler invokes communication op-
erations as provided by a conventional message passing library
(and posts all receives before starting the send operations to
streamline processing of incoming messages). Or the compiler
uses remote storesto “put” the data to their destination. It can
generate the addresses for the loads and stores on either node,
the sender node or the receiver node.

2.2 Memory reference patterns

The code generated by the compiler for each node to transfer
data attempts to take a number of factors into account: the
specific distribution, the size of the array (if known), and the
size of the parallel system (if known). From the perspective of
the memory system of a node, we can observe three different
types of memory accessin support of communication:

Contiguous The memory access to is a contiguous block of
data. Our basic unit of transfer is a 64bit word, often
a double precision floating point number. This pattern
commonly results from block distributions.

Strided The memory access consists of strided data words or
blocksof datawords(e.g., 2 wordsfor complex humbers,
6 words for 3D tensors), with a constant stride s > 2.
This pattern results, e.g., from cyclic or block-cyclic dis-
tributions.

Indexed An arbitrary sequenceof wordsis accessed. The spe-
cificarray accesspatternis determined by indicesgivenin
a separate index array. Reading the indicesis overhead;
reading the index is considered to be part of the mem-
ory accessoperation and does not count towards what we
report as the effective memory access bandwidth for an
application. Indexed patterns are common for irregular
distributions and sparse matrix representations{14].

Although strided accessesare often the consequenceof acyclic
or block-cyclic distribution, it is also possible that they result
from a blocked distribution.

2.3 Memory systems of parallel computers

For this paper we present asimplified view of the node architec-
ture that focusesattention on the basic architectural components
relevant to our parallel compilation model. We assume a basic
local memory system with a primary cache in the micropro-
cessor and a DRAM-based memory system. We also assume
that data are sent and received through a simple transfer to the
network interface (e.g. load/storeto aFIFO). For themodel itis
important to capture parallel operation of additional functional
units capable of doing memory operations such as DMA con-
trollers or fetch/deposit engines that process incoming get and
put requests without the involvement of a processor. In Section
3.5 these general conceptsare related to actual hardwarein the
Cray T3D and Intel Paragon.

3 The copy-transfermodel for communication sys-
tem performance

Even a simplified view of the memory system allows for a
rich set of choices for a compiler to organize the inter-node
communication. The objective of a compiler is to obtain high-
est possible communication performance for transfers with the
communication and memory access patterns required by paral-
lel programs. In this section we introduce a model to reason
about different sequences of operations involved in such data
transfers. This model can be used to estimate the maximal
transfer performance (throughput) aswell asto determine rules
for generating the best code by a parallel compiler.

3.1 A throughput-oriented model

Massively parallel computers typically have just one level of
cache. This organization is mandated by the pressure to keep
the cost of the nodes down. The cost of interleaved or banked
memory systems, as they are common in vector machines or
supercomputers, seemsto be too high for anode of amassively
parallel machine.

In general the performance of cached memory systemscan-
not be specified by memory accessbandwidth and latency alone.
The memory system performance critically depends on tem-
poral locality. Traditionally the need to accurately analyze
the memory system performance for compilers lead to trace
driven investigations of the cached memory system. In sum-
mary, operand reuse and temporal locality work well to improve
the performance of computation if blocked algorithms and op-
timized kernels (like BLAS3) are used. However, we observe
that temporal locality plays only a small role in the memory
accessesfor communication. We devise a throughput oriented
model, that is easier to use for a compiler writer than mem-
ory accesstraces, and that neverthel essrefl ects the performance
experienced by applications.

The importance of throughput is not surprising given the
properties of communication related memory accesses. In data
parallel programs, parallelismis exploited by operationon large
collections, with the data distributed over a large number of
processors[2]. In practice, these collections can be quite large
and a compiler cannot assume that the local data structure on
any nodefits entirely into the local cache of anode.

The large amount of data involved in realistic applications
further implies that many elements need to be exchanged be-
tween any two processorsin a communication step. Once the
elements for aremote store are determined, and the communi-
cation is started, the transfer mainly depends on the maximal
throughput of that copy transfer as a whole rather than on the
latency and overhead for transferring a single element.

While the temporal locality does not influence the perfor-
mance of communication related memory transfers, the spatial
locality is an important factor. Some memory systems perform
contiguous accesses faster than strided accesses, and strided
accesseswith constant strides are again performed faster than
accesseswith arbitrary strides supplied from an index array.

3.2 Basic transfers

All compiler-generated communication operations can be de-
composedinto basic transfers or steps. We now introduce some
terminology to capture the key aspects of these basic steps,
which concentrate on common access patterns encountered in
parallelizing compilers. A transfer 7' moves data using asource
pattern r and a destination pattern w. The source and destina-
tion patterns capture the memory access patterns, i.e. how the
data are read and written. The read (load) and write (store)
locations are always on the same node, unless explicitly noted.
To concisely represent such astep 7', we mark the read pattern
as aleft subscript and the write pattern as a right subscript, i.e.
~1w. Typical patterns are 1 for contiguous accesses, 2,3, . . .
for strided access with constant strides of 2,3, ..., and w for
indexed accesses. We use the access pattern 0 if the source or
destination is a fixed location in memory (e.g., the head or tail
of aFIFO) .

The key transfers necessary to perform the communica-
tion operations demanded by a compiler are local, intra-node
transfers (from memory to network interface, from the network
interface to memory) and inter-node transfer (across network
links):

»Cy local memory-to-memory copy This transfer is charac-
terized by a read access pattern, =, and a write access
pattern y and includes all possible access patterns for
reads as well as for write, so z and y can assume val-
ues of 1 for contiguous, . for strided, or w for indexed
accesses. The transfer is realized by an optimized (i.e.
unrolled and optimally scheduled) load/store loop, exe-
cuted by the processor to allow general access patterns.

+50 load-send This basic transfer copies data form the mem-
ory system to a fixed communication system port. The
communication port is a constant location, e.g. a FIFO.
Since the accesses are done by the processor, = can be
any access pattern.

= Fo fetch-send Thisbasic transfer is similar to the basic load-
send operation, but thefetch-send isperformedin parallel
inthe background by additional hardware, suchasaDMA
or fetch engine. There may be restrictions on what read
accesspatterns z are allowed by animplementation, but at
least contiguous or constant strides are usually included.

oy receive-store Thisbasic transfer correspondsto the load-
store transfer. This transfer accomplishes a copy of data
from the communication system into the memory and is
performed by the processor. Therefore, y includes the
full range of possible accesspatterns.

oDy receive-deposit This basic transfer on the receiver side
corresponds to fetch-send. On some architectures, in-
coming messages can be automatically received in the
background, without involvement of the processor. Some
systems can handle any access pattern by processing
address-data pairs received from the network, while a
simple DMA engine puts a restriction on the access pat-
tern y.

These are the basic intra-node transfers. To accomplish
inter-node communication, data have to traverse the network.
We distinguish between two network transfers since various
parallel systemsdeal with these two cases differently.

Ngq data-only network The N4 transfer movesonly dataacross
the network.

Nadp address-plus-datanetwork The Naq, transfer captures
thoseinter-node transfers where aremote store addressis
sent along with the data. Depending on implementation
details, these remote store addresses can be passed along
as “address data pairs’ or compressed as addresses for
a block of data. However, al current systems (if they
support this transfer at all) choose the address-data-pair
variant.

3.3 Estimating throughput for communication op-
erations

We can now composecommunication operationsfor avariety of
access patterns by concatenating basic transfers. We establish
two concatenation rules and operators: Two transfers using the
same resources (e.g., the processor) must be concatenated in
seguenceo. Thewrite (left subscript) access pattern of the first
transfer must match the read (right subscript) accesspatterns of
the second transfer. Transfers that use disjoint communication
resources can occur in parallel ||.

The formal description of the communication operations
as basic transfers allows us to estimate the maximal transfer
throughput for several implementations of a communication
operation. We usethefollowing threerulesto derive an estimate

for the effective throughput | Z | of a communication operation
Z based on the throughput of the basic transfers involved.

|| Parallel composition If two transfers occur in paralel, the
compositethroughput isthe minimum of thetwo through-
put figures,i.e. | Z| = min(|X|,|Y]).

o Sequential composition If two transferscannot occurin par-
allel becausethey sharearesource,the composite through-
put is the reciprocal sum of the two throughput figures,
ie |Z]=1/(1/|X|+ 1/|Y)).

< Resourceconstraint In performance estimates the model
can consider additional resource constraints to limit the
total throughput of certain transfersthat can occur in par-
allel. For example, if the processor and the DMASs share
a common system bus, the total bus bandwidth cannot be
exceeded. Resourceconstraints aregiven asinequality of
bandwidth parameters. If aresource constraint cannot be
met, the throughput parameter of the participating basic
transfers must be reduced until the constraint is met.

3.4 Example: Buffer-packing transfers, PVM style

The performance critical communication operation used by the
communication code of a parallel compiler is alocal memory
to remote memory copy »@,. Depending on the distributions
of the array operands of an array assignment, different access
pattern may be encountered for load accesses (x) at the source
and store accesses(y) at the destination.

(@ captures the most common, data intensive communi-
cation operation, performed by a compiled program. One way
to implement this operation is to perform alocal “gather” copy
operation C' that reads the items to be transferred and stores
these data into a contiguous block of local memory. Then this
block of data is transferred to the network interface (i.e., a
load-send S is done), followed by a network transfer N. On
the remote node, the data are extracted from the network into
some buffer (via a receive-store transfer R or via a contiguous
deposit-store D), and a final “scatter” copy C' moves the data
to the intended location. We call this implementation of . @,
buffer-packing communication, here written as a concatenation
of basic transfers:

+Qy = 2C10 (15| NalloD1) 0 1Cy

It might appear that for contiguous transfers (1@1) the first
and the last memory copy (1C1) are unnecessary. Thisis true
in principle, but message passing libraries like PVM force the
programmer/compiler writer to copy the data elements in all
cases to comply with the standard application programming
interface. Of course, there may be different waysto implement
=@y, especially if constraints are placed onto + and y, and
we return to this topic in Section 5. But first we discuss how
to obtain the throughput figure of interest for communication
operations composed by the compiler from the basic transfers.

3.4.1 Throughput of buffer-packing transfers

This simple technique works because the same number of data
elementsis moved through all steps of a communication oper-
ation. As an example we estimate the throughput for conven-
tional message passing with buffer packing on the T3D for an
array transposeof ann x narray (i.e, b[i][j1=al[i]l[]]).
The first case captures the behavior of a program using the
vendor-supplied custom PVM library, the latter caseis an ex-
ample of the communication operations produced by expert
programmers or high-quality compilers. The access pattern re-
sultsin blocks of contiguousloads and strided stores, i.e. 1Q5,.

We compute the bandwidth by applying the bandwidthrules
to our formulas for contiguous transfers. For buffer-packing
message passing we obtain:

1

[1Qn| =

1 i 1 1
on T MRS VA obl T Ten]

For many patterns, e.g. next-neighbor or al-to-all per-
sonalized communication (AAPC), every node is sending and
receiving at the sametime. Therefore we must check that the
memory system store bandwidth of the parallel operation does
not exceed the total memory bandwidth (|oC’ |).

(2 [2Qyl) < loCsl

Evaluation of this formulawith the numbersfor atranspose
of a1024 x 1024 matrix onthe T3D resultsin:

1

est = 1 1

. — 25.0MB/s
% + mingmsy ey e

|1Q 1024

For comparison, measurements of the same communication
operation on a64-node T3D yield

|1Q1024| mes = 20.0MBY/s.

3.5 Architecture support for communication op-
erations

We briefly review the Paragon and the T3D. We takethe liberty
to omit the description of those parts that are irrelevant for our
study, e.g. the support for remote loads, fetch and increment,
or atomic swaps on the T3D, or that are not supported by the
current software system and are therefore not accessibleto any
application or measurementtool. We refer theinterested reader
to the reference literature about these machinesfor further tech-
nical detailg[1, 3, 12].

The compiler demands communication with transfers , @,
for all access patterns « and y, including strided and indexed.
To move datafrom onenodeto another, several parallel systems
include some form of hardware support to “drop” or “deposit”
the data into the memory of the destination node. This hard-
ware may also be usable to “pull” or “withdraw” data from
the memory of the source node, but we emphasize the deposit
aspect since we observed higher performance in practice. 2
We refer to the hardware support for receiving remote stores as
a deposit engine. The sole purpose of a deposit engine is to
take data from the network and store it to the memory system
on behalf of the communication system. It is important that
these transfers take place automatically, without further node
involvement, i.e. in the background of whatever computation
or communication takes place on the node. This requirement
to operate concurrently with send operations distinguishes de-
posit enginesfrom handlers, asfound in software solutionslike
active messages|[17]. Handlers attemptsto provide a solutionto
amore general problem; their invocation may involve a control
transfer or even crossing of protection boundaries (e.g. as part
of an RPC). In contrast, adepositengineisgeared towardsasin-
gletask, remote stores and can perform this task independently,
in parallel and efficiently at the full speed of the network.

2Briefly stated, the reason for thisis that when depositing data, addressinfor-
mation and data travel once together over the network. When withdrawing data,
the latency is higher since addressinformation hasto travel first to the node that
holds the data.

3.5.1 Cray T3D

A T3D node consists of a 64bit DEC Alpha microprocessor,
a local memory system, a memory mapped network interface
to send remote stores to the network, and a deposit engine
called the annex. The memory of a T3D nodeis a simple non-
interleaved memory system built from DRAM chips. Unlike
workstations, the node has no virtual memory.

The interface between the computation agent and the main
memory is an 8KB primary cache, which is implemented on-
chip within the Alpha microprocessor. The memory system
and its interface to processor and communication are shown in
Figure 3. External read-ahead circuitry (RDAL) can be turned
on by the programmer at load-time to improve performance of
contiguous load streams; we have measured improvements of
approx. 60%. For writes, the default configuration of the cache
iswrite-around, and support for writes consistsof the write back
queue (WBQ) provided by the microprocessor. Thedocumenta-
tion of the Cray T3D Application Programmers Course [4] spec-
ifies the local read bandwidth at 55 MB/s for non-contiguous
single word transfers, and up to 320 MB/s for contiguous read-
ing of cachelines with read-ahead. The latency of aload from
main memory is around 150ns.

The interface between the processor and communication
system on the Cray T3D consists of the annex, a memory
mapped communication port, which maps some range of free
address space to the physical memory of another node in the
system; this node is then selected as a communication partner.
The communication partner can be switched with afixed over-
head by modifying the appropriate annex entry. Once a store
operation isissued to the communication port, the communica-
tion subsystem takes over the specified address and data, and it
sends a message out to the receiver. Remote loads are handled
inasimilar way.

Every node has somefetch/deposit circuitry that handlesin-
coming remote operations (loads and stores) with their memory
accesses on behalf of the communication system. These ac-
cesses can happen without involvement of the processor at the
receiver node (i.e., there is no requirement to generate an inter-
rupt). Thiscircuitry can storeincoming datawordsdirectly into
the user space of the processing element, since both addressand
data are sent over the network. The on-chip cache of the main
processor can be invalidated line by line as datais stored into
local memory or can be invalidated entirely when the program
reaches a synchronization point.

Transfers from the processor to the communication system
can be performed at a rate of approximately 125 MB/s, and if
multiple nodes perform remote stores of contiguousblocksto a
single node, these transfers can be processed at the full network
speed (160 MB/s)[12].

3.5.2 Intel Paragon

Thenode of aParagon system contains multiple processors shar-
ing acommon memory. Our investigation is based on a system
with 2 processors/node, but systems with 3 processors/node
have been built aswell. Except for the mechanismsto support
multiple processors, the memory system of the Paragon system
is surprisingly similar to the Cray T3D. The memory system
and its interface to processor and communication are depicted
in Figure 3.

The processorsof aParagon node are two Intel i860X P pro-
cessors. Both processors have their own primary on-chip data
cacheand are connectedto the local memory system over a400
MB/s high speed bus. The data cacheis 16 KB, organized 4-
way associative, write-back or write-through. Under SUNMOS
[10] (the operating system of choice for low-latency communi-

cation) the caches are write through. The i860XP processors
contain support for higher bandwidth through pipelined loads
(using the PFQ) that bypassthe caches.

The interface between the processors and the communica-
tion system is realized by memory mapped ports, which are
mapped to the FIFOs of the network interface. A remote store
can be performed from the processor to the communication
system through the main high speed bus.

The memory system contains two DMA controllers (also
known as line transfer unit), which can serve as deposit en-
gines (with some restrictions). The two DMA controllers can
handle both in-coming and out-going transfers, but are not as
powerful or asflexible as the annex circuitry of the T3D. They
require a processor for setting up a transfer and also for han-
dling page boundariesor exceptions, which isa quite expensive
solution. Most importantly the Paragon DMASs can handle only
well aligned, contiguous block-transfers.

4 Measuring throughput figures for basic trans-
fers

Although the detailed mechanics of the architectural support
for each basic transfer are quite complex for each system, the
performance can be measured in simple experiments using fine
grain timers. These measurementsresult in athroughput figure
for every basic transfers of Section 3.2.

The following tables and figures give the key bandwidth
and throughput parameters for the T3D and the Paragon, mea-
sured on “live” systemsin real time. The measurements of the
effective bandwidth for the basic transfers are highly accurate
and consistently reproducible. The basic transfers are defined
in such a way that the throughput is based on the array ele-
ments transferred, and auxiliary data like headers, addresses,
and even index loads are factored into the throughput figure.
That is, these operations, although possibly consuming “raw”
bandwidth, do not contribute to the net bandwidth an appli-
cation is interested in. The model is optimistic in terms of
interleaving the instructions and accesses of all basic transfers
within a node and its memory system. It is assumed the usage
of processor and memory system is spread evenly, over the du-
ration of the whole communication operation. In practice, this
is often obtained through pipelining.

4.1 Throughput of local copies

Thethroughput for the basiclocal memory-to-memory transfers
»C)y critically dependsan the accesspattern asseenin Table 1.

[1C1] | 1Ce| | [6aC1] | [1C0] | [Cal

T3D 93 679 |[333 |385 | 329
Paragon | 67.6 | 276 | 311 | 352 | 451

Table 1: Throughput of selected local memory-to-memory
transfers (MB/s) for large blocks.

The graph in Figure 4 show the different characteristics
of the memory systems on T3D and Paragon, when strides
are involved. On the T3D strided stores are better supported
because of the write back queue. On the Paragon strided loads
can be pipelined and benefit from the pre-fetch queue.

4.2 Throughput of send/receive copies

The throughput for the network access depends partly on local
memory-to-memory transfer and partly on network limitations.
The measured figures are given in Tables 2 and 3. Since the
numbers do not vary for large strides, we assumefor simplicity
that the throughput for stride 64 appliesto any larger stride.

Network Network
NI (send) NI (receive
— DEC a —
21064,
send () deposit
annex D WBQ engine
Cache
BUS
EE — |

RDAL

Memory
(DRAM)

a)

Network Network
\ Intel /
i860
D
NI
Cache NI
BUS
[1
" Memol
ry
DMA (DRAM) DMA
—I
b)

Figure 3: Overview of the two node architectures: @) T3D and b) Paragon. NI refers to the network interface chips and FIFOs.

Cray T3D
1204 5 1Cx (contiguous
1 loads,strided stores)
100f = XC1 (strided loads,
- 1 contiguous stores)
@ 80
=]
2 60}
2]
(=)
>
£ 40}
£ ;
20
0 T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8121624324864 w
Stride (1: contiguous 2-64: strided w: indexed)
Intel Paragon
1207 5 1Cx (contiguous
] loads,strided stores)
100 .
007 xC1 (strided loads,
=] contiguous stores)
@
=
5
Qo
<
(=]
3 O
F O
o]

T T T T T T T T T T T T T T
1 2 3 45 6 7 8121624324864 w
Stride (1: contiguous 2-64: strided w: indexed)

Figure 4: Throughput for strided local memory-to-memory
transfers (MB/s).

[1So| | [1Fo] | leaSol
T3D 126 - 35 32
Paragon | 52 160 42 36

Table 2. Throughput figures for sending network transfers
(MBY/s).

4.3 Congestion and throughput of the network

Network congestionis absent from our model. This may seem
surprising at first, since none of the machines of interest to us

[ofa] | foD1] | foRea] | [oDeal | [oRu] | [oDul
T3D - 142 - 52 - 52
Paragon | 82 160 38 - 42 -

Table 3: Throughput figures for receiving network transfers
(MBY/s).

provides a fully scalable bisection bandwidth as e.g. the CM-
5[9]. Both machinesusea simple mesh topology with fast links
for their communication networks. In our experience, the raw
link speed in the network significantly exceeds the effective
throughput achievable in useful data transfers. For most appli-
cations, the machines will not be network-congestion limited
unless we move to very large machines. There are however
two quirks: On the T3D, two adjacent nodes share a single
communication port to the network. This design feature intro-
duces congestion at the accesspoint, and therefore the minimal
congestion is two unless half of the processors remain unused.
For the Paragon, the unfortunate aspect ratio of certain machine
sizes (e.g., 112x16) and the lack of torus links can cause con-
gestion for some patterns. In general, next neighbor patterns
like cyclic shifts causejust asmall congestion of oneor two, and
even dense patterns like the complete exchange or personalized
all-to-all communication can be scheduled with minimal con-
gestion on T3D tori of up to 1024 (2x8x8x8) computenodes|g].

Because of these two problems in the T3D and Paragon
networks, communication runs at a congestion of two in many
cases, and we use the measured throughput for this congestion,
when using our model to compute overall throughputs. For
completeness, Table 4 shows network performance at conges-
tion one, two, and four. Congestion two means a network link
is traversed by twice as much data as it can support at peak
speed. For athroughput oriented model it isirrelevant whether
the data are multiplexed at a per flit or a per messagelevel.

For the network throughput, it is more important whether
just the datawordsaretransferred, or if the addressesfor remote
stores are transferred along with the data words (address-data
pairs). We have therefore measured the network bandwidth for
large block transfers for both options (data only and address-
data pairs) for different fixed congestion factors. The bold data
in Table 4 indicate what we consider to be representative values
for our class of applications.

5 Optimization of communication operations

The large variety of access patterns and hardware capabilities
implies that there are different ways to implement a particular

Average congestion

data only addressdata pairs
(Nd) (Nadp)
1 21 4 1|2 4

T3D 142 169 | 35| 62 | 38 20
Paragon || 176 | 90 | 44 || 88 | 45 22

Table 4: Network bandwidth (MB/s) as a function of a fixed
overall congestion.

communication operation , @, by composingit out of different
basic transfers. Looking at the Cray T3D and the Intel Paragon,
we identify different tradeoffs in the design of the most im-
portant communication operations of a parallelizing compiler.
In both cases the copy-transfer model guides an optimization
towards maximal performance.

5.1 Buffer-packing vs. chained transfers

Section 3 presents an example of buffer packing, but with ap-
propriate hardware support, the buffer packing/unpacking copy
steps can be eliminated. That is, we can implement the com-
munication operations .}, for the T3D and the Paragon so
that they avoid packing buffer(s). Theseimplementations (and
their bandwidths) are different for the two machines, but the
overall ideais the same. Therefore, a compiler or user hastwo
options when selecting communication operations to perform a
computation step:

Buffer-packingtransfers The buffer packing message pass-
ing libraries (such as PV M) attempt to transfer contigu-
ous blocks at all costs, leaving the packing / unpack-
ing of communication buffers to the application code.
Packing and unpacking is done through a local copy in
memory before and after the transfer across the network.
This arrangement benefits from faster contiguous trans-
fers acrossthe network but suffers from the cost of addi-
tional accessesto local memory. Figure 5 illustrates the
path of datafor this style (of course, these operations are
overlapped or pipelined as stated in Section 3.4).

Chained transfers By chaining the slower non-contiguousac-
cessesto datawith thetransfer of datafrom local memory
to the network at the sender side (and vice versa for the
receiver side), we eliminate local copies at the expense
of supplying the data more slowly to the network. The
chainedtransfersrely onthedeposit engineat thereceiver
node to perform the stores. Figure 6 illustrates the flow
of datawithin anode.

Theflexibility of chained transfers with strided and indexed
memory accesses occurs at a cost. Transfers with these pat-
terns are expected to be slower than contiguous block transfers
as our measurements indicate and our performance parameters
take into account. Thisis partly due to the work of gathering
and scattering strided data and partly dueto the loss of specific
hardware support when patterns become more complex. Re-
member that the access pattern of DMASs and other dedicated
hardware is often restricted to contiguoustransfers.

Counting the number of transfers from and to the mem-
ory system for each case, it becomes evident that the chained
communication results in less copying and therefore in alower
requirement for memory systembandwidth. However, counting
the accessesdoes not take into account the variation of memory
system bandwidth dueto different access patternsin each basic
transfer to and from memory.

5.1.1 Buffer packing transfers on the T3D

In the previous section, we presented the formula for buffer-
packing message passing. This message passing style is pro-
vided by both the Cray PVM library on a higher level and the
Cray SH.MEMPUT library (libsma.a) on alower level. While
both libraries contain primitives for direct contiguous memory
transfers, both libraries fail to provide adequate direct trans-
fers for strided and indexed transfers without local copying in
memory. Furthermore, the performance of PVM is affected by
additional copiesto temporary system buffers

The buffer packing message passing primitive (.@Q,) on
the T3D is implemented as composition of the following basic
transfer steps:

2@y = 2C10 (15| Na||loD1) 01 Cy

Using the model of Section 3, we obtain these performance
estimates:

|1Q1| = 27.9MBI/s
|64Q1| =17.1 MB/s

|1Q64| = 25.2MB/s
l.Qu| = 14.2 MB/s

The T3D offers hardware support to perform direct user-
space to user-space transfers for all communication patterns:
contiguous, strided, and indexed. This capability potentialy
eliminates the buffer packing at the sender and unpacking at the
receiver end even for the more complex access patterns, at the
cost of possibly slowing down the network transfers.

5.1.2 Chained transfers on the T3D

A chained implementation .. @, of the basicinter-node transfer
avoidsthe local copyingsteps. Onthe T3D, such animplemen-
tation must be done at the (dis-)assembler level, and although
this approach is too tedious for a programmer, it may be ap-
propriate for a compiler. Also, a better user interface to the
annex hardware could alleviate some problems. The chained
implementation . @;, exploits the flexibility of the deposit en-
gineto handleall accesspatterns, including strided and indexed
accesses. Using our basic transfer steps, we have two cases:

1Q/1/ = 150]|NalloD1
-’EQy = mSOHNadp”ODy

Using the concatenation rules of Section 3.3, our model
predicts:

|1Q1] = TOMB/s |1Q4| = 38 MB/s
|16Q6| = 38MB/s |, QL | =32 MBIs

Figure 7 shows measured throughput rates for buffer pack-
ing and chained transfers on the T3D, for different access pat-
terns. Ascan be seen, the model predictions match fairly accu-
rately the measured performance.

5.1.3 Buffer packing transfers on the Intel Paragon

On the Paragon, the realization of different implementations
=@y for buffer packing and . Q;, for chained communication
are less evident. At first sight, the Paragon, and many other
conventional message passing architectures, appear to support
only transfers of contiguous blocks over the network. So for a
read and write pattern of 1, we can use the DMA as a deposit
engine, but for other patterns, we have to fall back to buffer
packing.

1G1 = 1F0|[NalloD1
2Qy = »C10 (1F0||Nal|loD1) 01 Cy
(2x:Qy) < oCrand < 1Co

Network Network
NI (send) NI (receive
DEC a
(21064) t
send deposit
annex A engine
'l
BUS ’

Memory
(DRAM)

Network Network
\ Intel Intel /
i860 (\i860 ¢
NI Mi | i ‘ NI l

| I— L _-: | I
D;A\ . %w - T % '/DMA
T — (DRAM) LT

Figure 5: Schematic flow of data for buffer packing communication. Solid lines indicate streams of contiguous data, dashed lines

potentially strided or indexed data.

Network Network
NI (send)
DEC a
(21064) \
y - deposit
/ = engine
' : ‘
w E - ;
BUS : SN
Memory
(DRAM)

Figure 6: Schematic flow of data for chained communication.
potentially strided or indexed data.

The data are first gathered in a memory-to-memory copy,
thereafter it istransfered to the network with asend copy. Atthe
receiver node, the data are stored in a contiguous buffer before
it is scattered with a memory to memory copy. It isimportant
that the contiguous transfers to the network are performed by
DMAs and therefore they can be partially overlapped. Still, in
practice the DMA engines on the Paragon require permanent
attention of a processor; they need to be “kicked” back on if
they stall either due to crossing a memory page boundary or
due to hardware bugs in the communication interface chips.
A full overlap with buffer packing occurs when the separate
communication processor takes care of attending to the DMA
engines, asisdonein OSF/1 and mode 1 (co-processor reserved
for communication) of SUNMOS:

«Qy = »C1 0 (1F0||Na|loD1)]|2CYy
(2 Xz Qy) < oC1 and < 1Co

For these transfers, the model predicts:

1Q1] = 20.7MB/s |1Qe| = 16.1 MB/s
l16Qes| = 149 MB/s |,Q.| = 16.2 MB/s

5.1.4 Chained transfers on the Intel Paragon

An efficient implementation of the chained communication
primitive . Q;, for arbitrary patterns = and y critically de-
pends on the capabilities of the deposit engine. The current
Paragon nodes provide only an inflexible DMA engine, which
handlesonly contiguousaccesses, hastoo many alignment con-
straints, and cannot even work across DRAM page boundaries.

Network Network
Intel Intel
\ i860 i860 /
'y
Y G O
NI Mi = Mi \ NI

DMA DMA

Solid lines indicate streams of contiguous data, dashed lines

ThisDMA engine therefore does not meet the requirementsfor
strided and indexed transfers.

A closer look at the node architecture in Figure 3 points
towards a possible solution. The communication co-processor
can be used exclusively as a deposit engine during communica-
tion. With a communication processor at work, remote stores
can be implemented without disturbing other activities; any
send operation can be done by the main processor. With this
change, we obtain parallel execution of the basic transfer steps:

1Q'1/
=@y

In this case, the model estimates this performance:

150|| NalloR1
ESOHNadp”ORy

11Q}| = 52MBIs
|16Qé4| = 38MB/s

|1Q%4| = 38MB/s
l.QL| = 36MB/s

Themodel numberstell usthat if it isindeed possibleto use
the processor and co-processor simultaneously for memory ac-
cesses, the chained model could be awinner. The co-processor
easily performs the task of a deposit engine. The major caveat
comes from resource constraintsin the model. If thereis, eg.,
a heavy penalty for bus arbitration between processor or co-
processor, the second processor would be unable to help with
communication work involving memory accesses. Only with
the DMA can the data move over the network at full speed.
This is an advantage on machines with a network that cannot
share the bandwidth of a physical link among multiple virtual
channels by multiplexing.

80— Cray T3D
E = 1Qx, buffer-packing

70 1 (strided unpack stores)
—~ 60 5 xQ1, buffer-packing
§] (strided pack loads)
o 50
>3
= 40
Q.
<
230
2 :BQ'%E:E—%BE =
F 20 555055555568

OO O o o O o o O
104
0 : T T T T

T T T T T T T T T T
1 2 3 45 6 7 8121624324864 w
Stride (1: contigous 2-64: strided : indexed)

Cray T3D

80

] 5 1Q'%, chained (strided
70 remote stores)
60 = XxQ'1, chained (contiguous

remote stores)

Throughput (MB/s)
N
o
|

30 B

20]

104

o
12345 6 7 8 121624324864 w

Stride (1: contiguous 2-64: strided w: indexed)

Figure 7: Throughput for communication operation with different strided access patternsincluding contiguous, strided and indexed
for either loads or stores. The buffer-packing implementations (left) result in alower throughput than the chained implementations

(right).

Figure 8 shows measured throughput rates for buffer pack-
ing and chained transfers on the Paragon. However, due to
difficulties with our buggy A-step network interface parts, the
measurements deviate significantly from our conceptual model
since we were (1) unable to use the pipelined loads (a 30-40%
performanceloss) and (2) we did not run sending and receiving
simultaneously at each node. Experiments with simultaneous,
interleaved memory accessesof processor and co-processor in-
dicatethat the businthe current Paragon systemsis not equipped
for fine grain interleaving of single word loads and stores, and
that a performance penalty of up to 50% must be expected.

5.2 Strided loads vs. strided stores

When implementing the communication primitive for a two
dimensional array transpose, the compiler can choose between
an accesspattern of 1Q,, or , @1 in theremote memory transfer,
asseenin Figure 9.

512x512 complex 2D FFT

PEO

PE1 a)

PE2

PE3

Figure 9: Execution of a 2D FFT includes an array transpose
to change the distribution from row-major into column-major.
Square patches must be moved between the processors. The
patches of data can be moved in two ways, @) or b).

This choice corresponds to the (arbitrary) choice of i or
j asan outer looping variable in a transpose loop with body
b[i][j]l=a[j][i]. Bothimplementation of this transfer
are possible.

Using the bandwidth parameter rules of our copy-transfer
model, the effective bandwidth of the communication opera-
tionsis predicted as seen in the Table 5.

10

This optimization of choosing strided storesonthe T3D and
strided loads on the Paragon is not surprising, given the better
performance of strided stores for memory-to-memory copiesin
one architecture and strided loadsin the other architecture. We
found that both the write back queue of the T3D and the pre-
fetch queue on the DEC Alpha as well as the pipelined loads
of the Intel i860 improve communication performance, espe-
cially for complex indexed pattern. Unfortunately, the standard
single-node compilers do not generate code for these instruc-
tions.

6 Measured performance in application kernels

To evaluate the appropriateness of the copy-transfer model for
applications (and not just basic communication operations as
discussed in Section 5), we choose the communication kernels
of three important applications. Two of these applications are
compiled by a compiler for our dialect of HPF and one by an
application-specificcompiler. They arerun onthe T3D (sinceit
is easier for usto explore architectural aspects on this machine
than on the Paragon). The three applications were chosen to
observe representative communication patterns.

6.1 Application kernels

The three kernels we used for our evaluation are: an array
transpose, as it occurs in 2D FFT, the communication of a
solver step in afinite element method (FEM) program and the
communication occuring in asuccessiveover-relaxation (SOR)
solver.

6.1.1 Transpose in 2D FFT

Transposes are important to many application. Our example is
taken from an n x n 2D FFT application kernel. We choose
a 1024 x 1024 complex 2D FFT because we observed this
problem size to be common for applications on this class of
machines. The transposes are necessary to provide locality for
the column FFTs after the row FFTs are completed. We en-
countered atranspose of similar size asthe performancecritical
communication step of agrand challengeapplicationin air-shed
modeling [11]. This code redistributes a3500 x (35 x 5) array

Intel Paragon

1Qx, buffer-packing (strided
unpack stores)

~ [o]
o o
P

[o2]
o
P

xQ1, buffer-packing (strided
pack loads)

bt

w
o
|

Thoughput (MB/sec)

N
o
|

=
o
Ll

o

T T T T T T T T T T T T T T
1 2 3 45 6 7 8 121624324864 W
Stride (1: contigous 2-64: strided : indexed)

Intel Paragon

80
7 = 1Q'%, chained (strided

70 1 remote stores)

60 XQ'1, chained (contiguous
g] 5 remote stores)
=°%]
%404 5 88888888a40
3 30 B = s o B
= 1
= 1

20 O

10

o

T T T T T T T T T T T T T T
1 2 3 45 6 7 8 121624324864 W
Stride (1: contiguous 2-64: strided w: indexed)

Figure 8: Throughput for communication operation with different strided access patternsincluding contiguous, strided and indexed
for either loads or stores. The buffer-packing implementations (left) result in alower throughput than the chained implementations

(right).
T3D model Paragon model T3D measured Paragon measured
MB/s || Buffer | Chained || Buffer | Chained || Buffer | Chained || Buffer | Chained
packing packing packing packing
1016 || 25.4 38.0 18.3 32 20.8 31.3 20.7 29.7
16Q1 || 18.4 38.0 20.7 42 14.3 274 24.2 39.2

Table 5: Estimated and measured performance for strided loads vs. strided stores.

between one phase that performs numerical chemistry calcu-
lations and another phase that calculates transport phenomena,
and this redistribution isimplemented as a generic transpose.

6.1.2 lterative solver on partitioned Finite Element

graph

The FEM application kernel is derived from a sparse system
solver based on a partitioned finite element graph, representing
a3 dimensional model of an alluvial valley surrounded by hard
rock. Thisgraphisused by our colleaguesto study earthquakes
[14]. Since the structure is an irregular well partitioned grid,
only afraction of the local data elementsis exchanged between
nodes, and the communication involves indexed accesseswith
arbitrary strides.

6.1.3 Successive over-relaxation solver

Not all applications require the transfer of strided or indexed
data. SOR methods distribute data as contiguous blocks. A
common techniqueis to replicate and overlap a region between
neighbor processors to allow the computation to span across
node boundaries. After every computation (relaxation) step,
the overlap region is exchanged, using a shift communication
step. In this case, we deal with matrix of size 256 x 256.

6.2 Measurements

For each application kernel we determine the throughput of the
communication step for both buffer-packing communication
and chained communication. Table 6 shows the throughput
estimate of our model as well as the actual measurement on a
64-node partition of a T3D.

To put the numbersin Table 6 into perspective: thesefigures
are very good numbers for these applications on the T3D. Us-

11

Buffer-packing Chained
measured | model | measured | model
Transpose 20.0 25.2 295 38.0
FEM 12.2 14.2 20.2 320
SOR 26.2 279 68.1 70.2

Table 6: Measured data transfer rates of our application on a
64-node partition of a512-node T3D, (MB/s per node).

ing the standard vendor supplied message passing system, the
performanceis significantly less. Due to the constant overhead
for sending a message in standard message passing libraries
like PVM, the buffer packing numbers decrease drastically if
we use Cray PVM3 . The PVMS3 application performance is
approximately 2 MB/sfor FEM, 6 MB/sfor FFT, and 25 MB/s
for SOR.

7 Conclusions

Parallel supercomputers provide a high raw communication
bandwidth, but applications realize only afraction of the stated
peak bandwidths. Since the data to be transferred from one
node to another are moved from the memory of one nodeto the
memory of another node, we follow the path of data through
the system and discover that the memory system performanceis
actually the limiting factor for many applications. Particularly
applications that move strided blocks, or use an index array to
look up the elementsto betransferred are susceptibleto memory
system performance.

Modern parallel systems are complex and therefore pose a
challenge to any compiler writer who wants to keep down the
overhead cost of communication. To assist compiler writers,
we developed the copy-transfer model to allow tradeoffs be-
tween different implementation strategies for communication

operations. This model is driven by throughput figures for the
three different memory accesspatterns generated by compilers,
aswell as by afew key performance parameters of the commu-
nication network. We applied the model to two current parallel
systems, the Intel Paragon and the Cray T3D to analyze both
basic communication operations aswell as the kernels of some
key applications. Although simple, themodel ishighly accurate
in the cases that we have evaluated so far.

Improving the performance of the memory system at each
processing node is not feasible on installed machines, and de-
sign changes may or may not be economical for a massively
parallel system. We therefore focus our conclusion on software
options for optimizing the memory performance of communi-
cation operations.

Depending on the details of the memory system and the
addressing pattern of the application, it may be more advan-
tageous to transfer the data directly from their home location,
without first compacting them into a contiguousblock of mem-
ory. We call this “chained” communication and relate it to
“buffer-packing” communication, as it is done by many con-
ventional message passing system. The insight that “chained”
communication can perform better wasfirst demonstrated by the
our simple model and then verified in practice for two modern
parallel systems, the Cray T3D and the Intel Paragon. For three
relevant application kernels, these tests confirm that “chained”
communication results in 40-60% higher performance for ac-
cess pattern other than contiguous accesseson the Cray T3D.

“Chained” communication relies on the design of the de-
posit engine (e.g., block transfer engines, line transfer units, or
DMASs) to handle receiving the data in the background. Ad-
ditional hardware support is only useful to the extent that it
supports the demands of a parallelizing compiler. That is, such
enginesmust takeinto account that not all transfers are contigu-
ous blocks of compact data. Furthermore, engines that have a
large unit of transfer (say more than 4 operands, or even pages)
may not deliver the expected performance in application, be-
cause the transfer will be limited by memory access necessary
to prepare the communication operation.

Thecrucial role of memory system performanceisnot novel
to the supercomputing world. As has been observed in studies
of vector-supercomputers, it is often the memory system that
makes or breaks an application. The same holds true for par-
alel systems. The parallelism exploited in applications is ho
panacea and cannot cover up inadequate memory system per-
formance. To the contrary, as the interconnect bandwidths and
latencies of parallel computers improve, the demands on the
memory system are going to increase. We observed the utility
of write back buffers and pipelined loads, contributing to better
memory performance. It isimportant that the designers of such
systems pay attention to the memory system demands of par-
alelizing compilersif they want to build a hospitable platform
for applications.

References

[1] D. Adams. Cray T3D System Architecture Overview. Technical
report, Cray Research Inc., September 1993. Revision 1.C.

[2] G. Blelloch and J. Sipelstein. Collection-Oriented Languages.

Proc. |IEEE, 79(4):504-523, Apr 1991.

Intel Corp. Paragon X/PSProduct Overview. Intel Corp., March
1991.

Cray Research Inc. CRAY T3D Applications Programming
Course, Nov 1993. TR-T3DAPPL.

High Performance Fortran Forum. High Performance Fortran
language specification version 1.0 draft, January 1993.

(3l
(4
(5]

12

[6] T. Gross, D. O'Halaron, and J. Subhlok. Task Parallelism in
a High Performance Fortran Framework. |EEE Parallel and
Distributed Technology, 2(3):16-26, Fall 1994.

K. Hayashi, T. Doi, T. Horie, Y. Koyanagi, O. Shiraki, N. Ima-
mura, T. Shimizu, H. Ishihata, and T. Shindo. Ap1000+: Archi-
tectural Support of a put/get Interface for Parallelizing Compil-
ers. In Proc. of ASPLOS 1V, pages 196-207. ACM, Oct 1994.

S. Hinrichs, C. Kosak, D. O'Hallaron, T. Stricker, and R. Take.
An Architecturefor Optimal All-to-All Personalized Communi-
cation. In ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 310-319, Cape May, New Jersey, June 1994. A
revised version is available as Tech. Report CMU-CS-94-140.

C. Leiserson, A. Abuhamdeh, D. Douglas, C. Feynman, M. Gan-
mukhi, J. Hill, D. Hillis, B. Kuszmaul, M. St.Pierre, D. Wells,
M. Wong, S. Yang, and R. Zak. The Network Architecture of
the Connection Machine CM-5. In Symposiumon Parallel Al-
gorithms and Architectures, pages 272-285, San Diego, June
1992. ACM.

A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat.
SUNMOS for the Intel Paragon: A Brief User's Guide. In Pro-
ceedingsof the Intel Supercomputer Users' Group. 1994 Annual
North America Users Conference., pages 245-251, June 1994.
ftp.cs.sandia.gov /pub/sunmos/papers/published/| SUG94-1.ps.

G. McRae, W. Goodin, and J. Seinfeld. Development of a
Second-Generation M athematical M odel for Urban Air Pollution
- Model Formulation. Atmospheric Environment, 16(4):679—
696, 1982.

R. Numrich, P. Springer, and J. Peterson. M easurement of Com-
munication Rates on the Cray T3D Interprocessor Network. In
Proc. HPCN Europe’ 94, \bl. |1, pages 150-157, Munich, April
1994. Springer Verlag. Lecture Notesin Computer Science, Vol.
797.

W. Oed. TheCray Research Massively Parallel Processor System
Cray T3D, 1993. Available from viaftp from cray.com.

E. J. Schwabe, G. E. Blelloch, A. Feldmann, O. Ghattas, J. R.
Gilbert, G. L. Miller, D. R. O’'Hallaron, J. R. Shewchuk, and
S. Teng. A Separator-Based Framework for Automated Parti-
tioning and Mapping of Parallel Algorithmsfor Numerical Solu-
tion of PDEs. In Proceedingsof the 1992 DAGSPC Symposium,
pages 48-62, June 1992. Revised version accepted for Comm.
ACM.

J. Stichnoth, D. O'Hallaron, and T. Gross. Generating Com-
munication for Array Statements: Design, Implementation, and
Evaluation. Journal of Parallel and Distributed Computing,
21(1):150-159, 1994.

T. Stricker, J. Stichnoth, D. O'Hallaron, S. Hinrichs, and
T. Gross. The Performance Impact of Fast Synchronizationin
Parallel Computers To appear in Proceedings of International
Conference of Supercomputing, Barcelona, Spain, July 1995.

T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Ac-
tive Messages: aMechanismfor Integrated Communication and
Computation. In Proc. 19th Intl. Conf. on Computer Architec-
ture, pages 256266, May 1992.

(7

(8

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Acknowledgements

We appreciate discussions with J. Brandenburg of Intel and S. Wheat
of Sandia. J. Kyle and B. Numrich of Cray Research, G. Blelloch,
G. Gibson, and S. Hinrichs of Carnegie Mellon provided comments
on earlier drafts of the paper. S. Hinrichs, M. Hemy, and P. Dinda
of Carnegie Mellon helped us understand the Paragon and contributed
measurements of Paragon performance. D. O'Hallaron and the rest
of the Quake Project consulted on the application codes. The staff of
the Pittsburgh Supercomputing Center dealed graciously with our many
requests.

