Adaptive Distributed Applications on Heter ogeneous Networks

Thomas Gross'?, Peter Steenkiste! and Jaspal Subhlok?3

1School of Computer Science ?Departement Informatik 3 Department of Computer Science

Carnegie Méellon University
Pittsburgh, PA 15213

Abstract

Distributed applications execute in environments that can
include different network architectures as well as a range
of compute platforms. Furthermore, these resources are
shared by many users. Therefore these applicationsreceive
varying levels of service from the environment. Since the
availability of resources in a networked environment often
determines overall application performance, adaptivity is
necessary for efficient execution and predictable response
time. However, heterogeneous systems pose many chal-
lenges for adaptive applications. We discuss the range of
situations that can benefit from adaptivity in the context
of a set of system and environment parameters. Adaptive
applicationsrequire information about the status of the ex-
ecution environment and heterogeneous environments call
for a portable system to provide such information. We dis-
cuss Remos (Resource Monitoring System), a system that
allows applications to collect information about network
and host conditions across different network architectures.
Finally, we report our experience and performance results
froma set of adaptive versions of Airshed pollution model-
ing application executing on a networking testbed.

1 Introduction

Many distributed applicationshavecritical responsetimere-
quirements. Thetimeliness of aresponse however depends
ontheavailability of resources; network bandwidthtotrans-
fer information and processor cycles to perform computa-
tions. In heterogeneous environments, applications seldom
have exclusive access to resources. Instead, network links
and processors are shared by many applicationsand users.
The performance of afast processor or network link can
deterioratetothat of aslow onewith additional computation
load, but if the application can moveto another system, then
the user may not experience a slowdown. When running a
distributed simulation, theimpact of link congestion can be
avoided by migrating to a different part of the network. A
data warehouse may appear to stop operating when addi-

ETH Zirich
CH 8092 Ziirich

University of Houston
Houston, TX 77204

tional users start expensive queries, but if the datais repli-
cated on another server, the application may switch to this
server and thereby preserve the perception of atimely re-
sponse. Thetransfer of amovieis subject to many dropped
frames if there is network congestion. However, a smart
filter may be able to remove non-essential frames from the
movie and maintain audio and video synchronization by
reducing bandwidth requirement.

All of these examples of adaptivity have been explored
in various systems. In this paper we attempt to present a
structure to these approaches that allows usto unify the de-
velopment of interfaces between applicationsand environ-
ments. Since heterogeneous environments provide many
challenges to application developers, it is important that
the interface that provides network measurements is sim-
ple and portable. We believe that a uniform framework for
devel oping adaptive applications and resource monitoring
systemsthat work across different network architecturesare
the essentia ingredients for speeding up the devel opment
of adaptive applications.

The remainder of this paper is organized as follows.
We first describethe “space” of adaptation optionsthat are
available, using an example scientific smulation to illus-
trate the choices. We then give an overview of Remos sys-
tem for collecting and reporting network status, and present
performance results for an adaptive environmental mode -
ing application. We conclude with a discussion of related
work.

2 Adaptivity of applications

Adaptivity alows applications to run efficiently and pre-
dictably under a broader range of conditions. Support for
adaptation may also allow applications to use less expen-
sive service classes, eg. best effort instead of guaranteed
service. Some of the functionality (and complexity) asso-
ciated with adaptation can be embedded in middleware, but
we first have to understand the dimensions of adaptation
before we can develop genera purpose libraries or middlie-

ware layersto support adaptivity.

Applicationscan adapt along anumber of “dimensions’.
In this paper we focus on the choice of resources (space di-
mension), thetime of adaptation, and theinterface between
the application and the runtime system (or operating sys-
tem, i.e, the system that is responsible for management of
resources). In each case we first sketch the full spectrum
of optionsavailable to applicationsin genera, and we then
focus on the options that are of most interest to distributed
scientific simulations. We use Airshed environment mod-
eling application described in Section 4 to illustrate the
performance tradeoffs associated with adaptation.

2.1 Resource classes

Applications have access to a wide range of resources, and
they often have a choice about how many and which re-
sources they can use. An application can be adaptive with
regard to the number of processors or nodesthat it can use
or its adaptivity may be restricted to the space of the net-
work environment, i.e., the number of nodesisfixed but the
identity of the nodes is determined dynamically.

Network resources are another candidate for adaptivity.
Network bandwidth can sometimes be traded off with other
parameters such as the fidelity of the data or the quality of
the objects that are transferred. For example, by chang-
ing the size or the frame rate of a movie, an application
can increase or decrease its bandwidth demands. Alter-
nately, applications can make tradeoffs between different
types of resources, eg., compression can be used to re-
duce the bandwidth requirements, but then CPU cycles are
required to compress and decompress the data.

Network resources are often not directly accessibleto an
application but their use is determined by the kind of ser-
vicethat the application requests. Recently, the networking
community has been working on devel oping integrated ser-
vices networks that can offer a range of services [4]. The
service class dimension reflects the fact that an application
can pick a service class that best matches its needs. This
decision may (should) be based on dynamic conditions.
E.g., when setting up a video conference over a network
that supports differentiated service, the user or the applica
tion would like to pick the lowest service class (best effort
service) that can provide sufficient bandwidth. A higher
service class (e.g., expedited service) will be selected only
if it can deliver the bandwidth that a lower service classis
unableto do.

Scientific simulations can potentialy use any of the
above methods. The most common form of adaptation
along the space dimension is likely to be the addition or
deletion of execution nodes, aswell asmigrationto adiffer-
ent subnet for execution. Rebalancing the load on different
nodes and links can be used as a mechanism to adjust to

the changing network status. Another option for adapting
is modifying the mapping style of the computation onto the
nodes, eg., replication of data and computation to elim-
inate communication. In some cases application compo-
nents can choose between multiple agorithms with differ-
ent computati on and communi cati on requirements, and they
can switch from one to the other when network conditions
change. Finadly, scientific simulations can aso adapt in
the service class dimension in a variety of ways, athough
relatively few networks today offer more than one service
class.

2.2 Time of adaptation

Along the time dimension, at one extreme, applications
adapt only at compiletime. E.g., theuser may hardwirethe
number of processors (nodes) into an application by spec-
ifying this number at the time the application is compiled.
However, this scenario hardly qualifies as “adaptivity”, so
we will not discussit further.

A more flexible option is that the program be compiled
for a variable number of nodes and the actual number of
nodes for execution is determined at the time the appli-
cation is executed. Adaptation isin general based on the
assumption that recent past conditions are a good predic-
tor of near-term future conditions, an assumption that often
holds. Dynamic adaptivity provides the most flexibility
but also poses the biggest challenges to the application de-
signer. The designer has two options with different bene-
fit/complexity tradeoffs. One option isto limit adaptation
toload or start-up time. Thisoptionisthe easiest one since
the applications has not set up any state yet. It has the ob-
vious drawback that if conditions change during execution,
the application will be unable to adapt to those changes.
An example is an application that has a choice about what
nodes, and thus what part of the environment, to use. A
Web browser may be ableto choose from severa replicated
servers or a proxy cache. An aternate model is to allow
the application to adapt not only at startup but aso at run-
time. Such behavior is more complex to implement since
it means that the application must be able to reconfigure
itself. This capability requires changes in the application
state and compute environment and thereforetypically does
not exist in today’s applications; it must be added to make
the application adaptive.

Runtime adaptation aong the time dimension is ad-
dressed by protocols such as TCP and has also received
themost attention from researchers studying network-aware
applications. For applications that adapt dynamicaly, we
can distinguish between applicationsthat adapt periodically
(e.g., asystem that rebalances the loaded every & units of
time) and systems that include demand- or opportunity-
driven adaptivity. A system may adapt whenever some

performance parameter drops below a threshold or may
opportunistically attempt to utilize extra resources as they
become available.

Distributed simul ations can benefit from adaptation both
at startup and at runtime. At startup, they typically have to
decide on the number of nodesto use[25] and on the setting
of some control parameters, e.g., pipeline depth [19]. At
runtime, they can periodically re-evaluate their options, and
adaptation may take the form of migration of the executing
program to adifferent part of the network or rebalancing or
remapping of the computation on the executing nodes. This
runti meadaptation adds consi derabl e complexity tothe pro-
gram devel opment and adaptation process, but is essential
to get good performance for long running applications in
dynamically changing conditions.

2.3 Information about the environment

To adapt, applications need information on the status of
the environment. Traditionally, for network resources this
task has been performed by communication protocols, such
as TCP, so it isworthwhileto look at how these protocols
collect information about network conditions. Protocols
are often classified as using implicit or explicit feedback
from the network. In protocolsbased onimplicit feedback,
the receiver monitors the incoming data stream and uses
this stream to derive information about network conditions.
TCP isagood example: dropped packets are viewed as a
sign of congestion, and the sender responds by reducing its
rate. In contrast, with explicit feedback, some entity inside
the network provides explicit information about network
conditions to senders. A good example is the ATM ABR
traffic class: senders receive periodic information about
network congestion conditions (e.g., congestion bit in rate
management cells) or even the specific maximum traffic
rate they are allowed to use (e.g., EPRCA).

Implicit feedback has the advantage that it does not re-
quire support from the network, so thisapproach to provide
feedback is always feasible. Implicit feedback also has
some disadvantages. (i) it only allows incremental adapta-
tion (i.e., when two hosts communicate, implicit informa-
tion provides updates on how the bandwidth between these
hosts evolves), and (ii) it is sometimes difficult to interpret
the“information”. (E.g., packet |ossisan indication of con-
gestion, butitisnot alwaysclear how theapplicationshould
respond: pausefor the duration of around-triptime, reduce
the congestion window, retransmit packets, etc.) Explicit
feedback isin general easier to use, but it requires network
support. Protocols today primarily rely on implicit feed-
back, and the same is true for most current network-aware
applications. The reason issimple: implicit feedback does

Limplicit feedback typically makes some assumptions about the net-
work, e.g., it considers packet 10oss to be a sign of congestion.

not require networking support, which does not exist.

Explicit information can be provided to the application
in two ways. First, the network can provide feedback con-
tinuously. This approach is, e.g., employed for ABR traf-
fic: arate management cell isexchanged with the network
for every 32 data cells. Continuous feedback is most of-
ten based on network properties that subsegquently must be
interpreted in the application space; for this reason this
kind of coupling is also called indirect. An dternative is
that applicationsreceive anotification when specific events
happen, e.g, an application receives an asynchronous noti-
fication when the network bandwidth drops bel ow a certain
threshold, or when the connection switches from one type
of network to another [20]. Such notificationscan beinthe
form of callbacks, or by invoking a specific event handler.
With this style of interaction, the relationship between the
network event (e.g., drop in bandwidth) and the actions (by
the application or protocol software) is clearly established
(e.g., when registering the handler). Therefore we cal this
style event-driven or direct coupling.

Scientific simulations can obtain network status infor-
mation externally by using a tool to measure the activity
on the network or internally by measuring the progress of
work on different nodes and different parts of the network.

Simulations often use load bal ancing to improve the per-
formance by giving lesswork to the nodes that are running
dower than others. Load balancing can be implemented
fairly well by internal measurements as the rate at which
thework is progressing is agood indicator of the availabil-
ity of resources. The general adaptation model, in which
the application monitors its own performance and adapts
when it observes a degradation (e.g. dataloss), is widely
applicable. It is possible to provide support for this form
of adaptation through the use of frameworks [2] or other
adaptation models [20].

However, other formsand dimensions of adaptation can-
not be satisfied without external measurements. Selection
of nodes at the the start of execution must be made with
externa measurements, as only those data points may be
available at the time of invocation. Dynamic migration to
a new set of nodes, as well as addition of nodes during
execution, aso requires externa information, as interna
information is limited to the current executing nodes.

Finaly, it is useful to distinguish between the interface
used by the application and the functionality supported by
the network, since it is possible for a library or middle-
ware layer to trandate one interface into another. E.g., a
library could trandate continuous network feedback into
event-based application feedback. A more interesting ap-
proach includes activities by the middieware: middleware
could use a set of benchmarks to collect information on
the conditions in a network (that does not provide explicit
feedback) and present thisinformation to the applicationin

an explicit form. In this paper, we focus on the application
level interface, and we only touch briefly on thelower level
interface when we discuss implementation options.

2.4 Network-application interactions

To be ableto adapt along all three dimensions, applications
will need information on network conditions, which span
a matching space with the same dimensions. How appli-
cations collect network information determines how easily
applications can explore this space.

Implicit information is based on experience, which
severely restricts what part of the information space is ex-
plored: the application only learns about the part of the
spaceit currently operatesin. Thismeansthat it can collect
information only on the network conditionsalong the paths
itiscurrently using and ontheserviceclassitisin. Implicit
feedback provides information aong the time dimension,
but only whilethe applicationis actively using the network.
At startup or after the application has been idle for awhile,
no useful informationis available.

We argue that given the limits on what information can
be collected using implicit feedback, mechanisms must be
provided so that applications can get explicit information
on network conditions, e.g., by querying a standard inter-
face. Such an interface should allow applicationsto collect
information on network conditions in the entire network
space (space, time and service class dimensions), alowing
applications to make adaptation decisionsin space, across
service classes, and at startup.

One can argue that the restrictions on the type of in-
formation that can be collected using implicit feedback is
not fundamental. Applications can use probing to explore
the entire information space, e.g., they can periodically try
all service classes and they can measure the network per-
formance between every pair of usable hosts. While this
approach may be appropriatein some cases, it isin general
undesirable. First, developing effective network probing
routinesis difficult; it is not something that application de-
vel opers should be required to do. Second, probing can be
expensive, both in terms of elapsed timefor the application
and consumed network resources. Furthermore, excessive
probing may disturb the measurements taken by this and
other applications. In fact, large scale probing by appli-
cations would negate many of the advantages of implicit
feedback. If probing is needed, it should be performed by
a middleware layer. Then the probing code can be devel-
oped as part of the network architecture, and the collected
information can be shared by many applications.

Note that we are proposing explicit feedback as a com-
plementary mechanism to implicit feedback, and not as a
replacement. Implicit feedback has clear advantages when
used appropriately. Implicit feedback will remain useful as

an inexpensive way of getting continuous feedback, once
a particular operating point aong the space and service di-
mensions has been selected. Implicit feedback isalsolikely
to give more accurate and timely information (in anarrower
part of the operating space) than explicit feedback.

3 A basesystem: Remos

The Remos API provides a query-based interface that al-
lows clientsto obtain “best-effort” information [14] on net-
work conditions. The applications specifies the kind of
information it needs, and Remos suppliesthe best available
information. To limit the scope of the query, the application
must select network parameters and parts of a larger net-
work that are of interest. In thissection we briefly describe
the main Remos features. A more detailed description can
be found el sawhere [14].

3.1 Levd of abstraction

To accommodate the diverse application needs, the Remos
API provides two levels of abstraction: high level flow-
based queries and lower level topol ogy-based queries.

Remos supports flow-based queries. A flow is an
application-level connection between a pair of computa
tion nodes. Queries about bandwidth and latency of sets of
flows form the core of the Remos interface. Using flows
instead of physical linksprovidesahighlevel of abstraction
that makestheinterface portableand independent of system
details. Flow-based queries place the burden of trandlating
network-specific information into application-oriented in-
formation on the implementor of the API. However, flows
are an intuitive abstraction for application developers, and
they alow the development of adaptive network applice-
tions that are independent of the heterogeneity inherent in
anetwork computing environment.

Remos al so supportsqueriesabout the network topol ogy.
The reason we expose a network-level view of connectiv-
ity is that certain types of questions are more easily or
more efficiently answered based on topology information.
E.g., finding the pair of nodes with the highest bandwidth
connectivity is expensive using only flow-based queries.
The topology information provided by Remos consists of
a graph with compute nodes, network nodes, and links,
each annotated with their physical characteristics, such as
latency and available bandwidth. Topology queriesreturna
logical interconnection topology. Thismeansthat thegraph
represents the network behavior as seen by the application,
and does not necessarily reflect the physical topology. Us
ing alogical topology gives Remos the option of hiding
network features that do not affect the application. E.g.,
subnets can be replaced by (logical) links if their internal

structure does not affect applications. Topology informa-
tionisin general harder to use than flow-based information,
since the complexity of trandating network-level datainto
application-level information is mostly |eft to the user.

3.2 Dynamicresource sharing

Since networks are a shared resource, it is important to
account for the manner in which resources are shared by
multipleflows. Since multi-party applicationsuse multiple
flows, it isnot only necessary to account for sharing across
applications, but also across flows belonging to the same
application. To be ableto consider the effects of "interna"
sharing, Remos supports multi-flow queries in which the
application lists al its flows simultaneously. Applications
can generate flowswith very diverse sharing characteristics,
ranging from constrained low-bandwidth audio to bursty
high-bandwidth data flows. Remos collapses this broad
spectrum into three types of flows. Fixed flows have a spe-
cific bandwidth requirement. Variable flows have related
requirements and demand the maximum available band-
width that can be provided to al such flowsin agiven ratio.
(E.g., dl flowsin atypica dl-to-all communication oper-
ation have the same requirements.) Finally, independent
flows simply want maximum available bandwidth. These
flow types also reflect priorities when sufficient resources
arenot availableto satisfy al theflows. Fixed flowsare con-
sidered firgt, followed by variable flows, then independent
flows.

Determining how the throughput of a flow is affected
by other messages in transit is very complicated and net-
work specific. Remos approximates this complex behavior
by assuming that, all else being equal, the bottleneck link
bandwidth is shared equally by al flows (that are not bot-
tlenecked elsewhere). If other informationisavailable, Re-
mos can use different sharing policieswhen estimating flow
bandwidths. The basic sharing policy assumed by Remos
corresponds to the max-min fair share policy [11]. Ap-
plications that use topology-based queries are themselves
responsiblefor taking the effects of both internal and exter-
nal sharing into account.

3.3 Accuracy

Applications ideally want information about the level of
service they can expect to receive in the future, but most
users today must use past performance as a predictor of
the future. Different applications are also interested in
activities on different timescales. A synchronous parallel
application expectsto transfer burstsof datain short periods
of time, while a long running data intensive application
may be interested in throughput over an extended period
of time. For this reason, relevant queries in the Remos

interface accept atimeframe parameter that allows the user
to request data collected and averaged for a specific time
window.

Network information such as available bandwidth
changes continuously dueto sharing and asaresult, charac-
terizing these metrics by asinglenumber can be mid eading.
E.g., knowing that the bandwidth availability has been very
stable represents a different scenario from it being an av-
erage of rapidly changing instantaneous bandwidths. To
address these aspects, the Remos interface adds statistical
variability and estimation accuracy parameters to al dy-
namic quantitative information. Since the actual distribu-
tions for the measured quantities are generally not known,
we present thevariability of network parameters using quar-
tiles[12].

3.4 Implementation

Aninitia version of Remos API has been implemented.
It has two components, a collector and modeler, that are
responsible for network-oriented and application-oriented
functionality, respectively. The collector is responsiblefor
collecting low-level network information. Such data can
be collected in many ways, e.g., one can periodically run
benchmarks that probe the network for available bandwidth
or rely on information gathered by applications[21]. Our
current implementation uses a third method: the collector
explicitly queriesroutersusing SNM P [3] for both topology
and dynamic bandwidth information. The use of SNMP to
obtain information about the state of a network is a stan-
dard way of monitoring networks, and it should alow us
to collect detailed information in arelatively non-intrusive
way on abroad set of networks. The modeler is alibrary
that is linked with the application; it transates the infor-
mation provided by the collector into a logical topology
graph or per-flow datain response to application reguests.
The modeler-collector architecture isin part motivated by
the need to support scalability and network heterogeneity.
In large networked environments, multiple collectors may
have to be deployed, and each collector can collect infor-
meation inaway that ismost appropriatefor thenetwork itis
responsible for. Work isin progress on implementing col-
lectors that use sources of network information other than
SNMP, e.g., by active measurements.

For the results presented in this paper we used the Re-
mos interface on a dedicated | P-based testbed at Carnegie
Méllon University that isillustrated in Figure 2.

Explicit |

Implicit |

Indirect (continuous)

Queries to network
management database
Rate management cells

Countinglost packets

Event-driven (direct)

Handlersto react to
changes in the network

Reacting to lost
retransmissions

Figure1: Examplesfor two dimensions of application/network coupling.

m-1 m-4

m_2 @ @ m_5

m-3 ' m-6
m-7 m-8

Links: 100Mbps point-to-point ethernet
Endpoints: DEC Alpha Systems (manchester-* labeled m-*)

Routers: Pentium Pro PCs running NetBSD (aspen,timberline, whiteface)

Figure 2: Testbed used for Airshed experiments

4 Case study in adaptive execution:
Airshed pollution modeling

We have devel oped a suite of toolsto devel op adaptive dis-
tributed programs driven by Remos and have gained expe-
rience with programs ranging from small kernels like fast
Fourier transforms to complete applications like Airshed
pollutionmodeling and magnetic resonanceimaging[5]. In
this paper, we focus exclusively on Airshed pollution mod-
eling application and present results comparing the perfor-
mance of the basic implementation with various adaptive
Versions.

The Airshed application [15] models formation, reac-
tion, and transport of atmospheric pollutants and related
chemical species. We implemented a distributed version of
Airshed using Fx data paralelism [8]. Data paradlelismin
Fx is similar to High Performance Fortran [9], so these ob-
servations apply to other applicationsas well. An adaptive
version of Airshed was devel oped using integrated task and
dataparallelismin Fx [24]. For efficient execution, thisap-
plication involves significant communication in the form of

array redistributionssince the various chemistry and trans-
port phases access the main particle array aong different
dimensions. The details of the Airshed implementation are
described in [23].

We executed Airshed using atool that automatically se-
lects the best nodes for execution based on the network
information provided by Remos. The details of this node
selection procedure and its validation is discussed in [22].
Tablel presents the results obtained on our networking
testbed, which consists of a number of DEC Alpha work-
stations connected viathree routers. The testbed allows us
to configure the bandwidth between the routers, as well as
to apply varioustraffic patternsfor controlled experiments.
Figure 2 shows the set-up.

We observe that automatic node selection has littleim-
pact on performance in the absence of network traffic. In
the presence of a fixed traffic stream that saturates one of
the communication links, automatic node selection more
than halves the execution time. The reason is that Airshed
is a SPMD application with a significant communication
component, and saturation of a single link creates a bot-
tleneck that slows down the entire computation. However,
it is possible to select a set of nodes automatically using
Remos information such that the busy links are avoided
for program communication. The last two columnsin the
table show performance on the network with load genera-
torsthat simulate moderate utilizationof network resources.
We observe that the performance is considerably enhanced
with automatic node selection as the node selection suc-
ceeds in avoiding congested links and busy processors in
many cases. However, such enhancements are not always
possible when the network is heavily used, and hence the
performance advantage is not to the extent observed for a
single congested link.

The results highlight the importance of simple adapta-
tion in the resource space dimension at start-up time, and
demonstrate that atool set based on external measurements
can effectively drive such adaptation. Note that interna
measurements made by a program are not of any use in
deciding which nodes the application should be started on.
Themaindrawback of adaptationonly at start-up timeisthat
network conditions change over time, and hence adaptation
during execution isimportant for long running applications.

Execution Execution time with external load and traffic
Node No Fixed Dynamicaly varying | Dynamicaly varying
Selection | Network Traffic | Network Traffic Traffic Traffic and Load
Random 652 1726 1125 2121
Automatic 650 674 754 1420

Table 1. Performance results of 5-node Airshed in different network conditions. Execution times using automatic node
selection are compared with those obtai ned with random node selection. For the case of dynamically varying traffic, only 1/4
of the Airshed processing was done in oneinvocation and the results shown are scaled up for comparison

Table2 presents preliminary results from a dynamic
adaptive version of Airshed. This version queries Remos
for network status after every major simulation step, and
migrates to a new set of nodes if the current set of nodes
or links become considerably more busy than other parts of
the network. For the purpose of comparison, we created an
adaptive version that would not actually migrate (but had
adaptation support built into it) and compared it to the ac-
tual migrating adaptive application, under different network
conditions. Bothwere started on the same set of nodes, and
a fixed traffic pattern was maintained for the duration of
the experiment. The interfering and non-interfering pat-
terns are relative to the set of nodes and links on which the
application was started.

We first observe that both the versions run slower than
thenon-adaptiveversionsof Airshed discussed earlier, even
inthe absence of any load or traffic. Thisobservation points
out thefixed overhead of adaptation support. Intheabsence
of interfering network traffic, the migrating version exe-
cutes dightly slower than the static version. Thisdifference
reflects two types of overheads associated with migration.
First, thereisacost associated with analyzing and deciding
the best nodes for execution. Second is the cost associated
with unnecessary migration, which can happen because of
the heuristic nature of adaptation decisions. Finaly, we ob-
serve that the adaptive version performs significantly better
inthepresenceof interfering traffic. Thegenera conclusion
is that support for adaptation entails moderate overheads,
but it can minimize the impact of external traffic on execu-
tion times.

This experiment highlights the importance of runtime
adaptation and demonstrates that an externa tool like Re-
mos is effective in driving the dynamic adaptation process.
Note that runtime migration cannot be done with internal
application measurements, since they are not available for
the nodes that the application is not currently executing on.
However, internal measurements can be used for |oad bal-
ancing, which isan example of an applicationmodifyingits
demandsin responseto changesin theresource avail ability.
It isclear that adaptation by migration exploits a degree of
freedom in the resource dimension that is not available to
load balancers.

5 Related work

An important contribution of our research is to provide a
structure to adaptivity options, especially in the context of
distributed simulations. We are not aware of any work that
specifically addresses this aspect. However, a number of
projects address measurement and management of network
resources that complement the Remos system discussed
in the paper. We also discuss some other approaches to
adaptivity reported in the literature.

5.1 Network resource management and mea-
surements

A number of resource management systems alow appli-
cations to make queries about the availahility of compu-
tation resources, some examples being Condor [13] and
LSF (Load Sharing Facility). Resource management sys-
tems for large scale internet-wide computing is an impor-
tant area of current research, and some well known efforts
are Globus [6] and Legion [7]. These systems provide
support for a wide range of functions such as resource lo-
cation and reservation, authentication, and remote process
creation mechanisms. Recent systems that focus on mea
surements of communi cation resources acrossinternet wide
networksincludeNetwork Weather Service (NWS) [26] and
topology-d [16]. NWS makes resource measurements to
predict future resource availability, while topology-d com-
putes the logical topology of a set of internet nodes. Both
these systems actively send messages to make communi-
cation measurements between pairs of computation nodes.
A number of sites are collecting Internet traffic statistics,
eg., [1]. Thisinformationis not in aform that is usable
for applications, and it is typically also at a coarser grain
than what applications are interested in using. Another
class of related research is the collection and use of ap-
plication specific performance data, e.g., a Web browser
that collects information about the response times of dif-
ferent sites [21]. Related work also addresses estimating
stochastic values [18] that represent varying quantities on
networks.

In comparing with some of these projects, the Remos
interface focuses on providing good abstractions and sup-

Execution Execution time with traffic patterns (seconds)
Node No Non-interfering | Interfering | Interfering
Set Traffic Traffic Traffic-1 Traffic-2
Fixed 862 866 1680 1826
Adaptive 941 974 1045 955

Table 2: Execution times of adaptive version of Airshed executing on afixed set of nodes and on dynamically selected nodes

port for application level access to network status informa:
tion and alows for a closer coupling of applications and
networks. Remos implementations make measurements
at network level when possible; this strategy minimizes
the measurement overhead and yields key information for
managing sharing of resources.

5.2 Other modeds and extensions

Severa approaches to provide adaptivity without changes
to the programming model have been researched in the lit-
erature. Nevertheless, it is interesting to note that these
systemsinclude componentsthat map directly into the con-
cepts discussed in this paper.

A number of groupshavel ooked at the benefitsof explicit
feedback to simplify and speed up adaptation (e.g., [10]).
However, the interfaces developed by these efforts have
been designed specifically for the scenarios being studied.

The Quality Objects QuO system[27] provides adaptiv-
ity in the context of object-oriented programming. To pro-
vide the feedback between applications and environment,
the QuO system includes system condition objectsthat drive
adaptivity either implicitly or explicitly.

An adaptive system that provides a shared-memory pro-
gramming mode! for anetwork of workstationsor PCs can
take advantage of additional nodes and a so deal with with-
drawal of anodes[17]. Here the control of adaptivity rests
with the (software) distributed shared-memory system, but
the application (or the compiler) determines the pointsin
the execution of the program where adaptivity is possible.

6 Concluding remarks

Figurel givesexamples of the4 different kindsof couplings
between applications and networks that are discussed in
this paper. Network-aware applications today focus over-
whelmingly onimplicitinteraction. We argue that this state
of affairsis due to the current (lack of) support for other
interactions models by network architectures. As network
architectures begin to provide information that is more ac-
curate, more timely, and more detailed, network-aware ap-
plicationswill be motivated to a so explore explicit interac-
tion.

We show how the adaptivity optionsfor distributed sim-
ulationsfit in the general framework of adaptive execution.

The results demonstrate that portabl e external mechanisms
for network measurements are necessary to support effec-
tive adaptive execution of large distributed scientific appli-
cations.

Acknowledgments

We appreciate contributionsand comments by D. Bakken, J.
Bolliger, P. Dinda, B. Lowekamp, D. O'Hallaron, N. Miller,
D. Sutherland, and J. Zinky.

Effort sponsored by the Advanced Research Projects
Agency and Rome Laboratory, Air Force Materiel Com-
mand, USAF, under agreement number F30602-96-1-0287.
The U.S. Government is authorized to reproduce and dis-
tributereprintsfor Governmental purposes notwithstanding
any copyright annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Advanced Research Projects
Agency, Rome Laboratory, or the U.S. Government.

References

[1] http://www.nlanr.net.

[2] J.Bolligerand T. Gross. A framework-based approach
to the development of network-aware applications.
|EEE Trans. Softw. Eng., 24(5):376 — 390, May 1998.

[3] J Case, K. McCloghrie, M. Rose, and S. Wald-
busser. Protocol Operationsfor Version 2 of the Sim-
ple Network Management Protocol (SNMPv2), Jan-
uary 1999. RFC 1905.

[4] Dave Clark, S. Shenker, and L. Zhang. Supporting
real-time applicationsin an integrated services packet
network: Architecture and mechanisms. In Proceed-
ings of the SGCOMM '92 Symposium on Commu-
nications Architectures and Protocols, pages 1426,
Baltimore, August 1992. ACM.

[5] W. Eddy, M. Fitzgerald, C. Genovese, A. Mockus,
and D. Noll. Functional image anaysis software -
computational olio. In A. Prat, editor, Proceedingsin
Computational Satistics, pages 39-49, Heidelberg,
1996.

6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

|. Foster and K. Kesselman. Globus: A metacomput-
ing infrastructure toolkit. Journal of Supercomputer
Applications, 11(2):115-128, 1997.

A. Grimshaw, W. Wulf, and Legion Team. TheLegion
vision of aworldwidevirtual computer. Communica-
tions of the ACM, 40(1), January 1997.

T. Gross, D. O'Hallaron, and J. Subhlok. Task par-
alelism in a High Performance Fortran framework.
|EEE Parallel & Distributed Technol ogy, 2(3):16-26,
Fall 1994.

High Performance Fortran Forum. High Performance
Fortran Language Specification, \ersion 2.0, Decem-
ber 1996.

J. Inouye, S. Cen, C. Pu, and J. Walpole. System sup-
port for mobile multimedia applications. In Proceed-
ings of the 7th International Workshop on Network
and Operating System Support for Digital Audio and
Video, pages 143-154, St. Louis, May 1997.

J. M. Jaffe. Bottleneck flow control. |EEE Transac-
tions on Communications, 29(7):954-962, July 1981.

Ra Jain. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc., 1991.

M. Litzkow, M. Livny, and M. Mutka. Condor —
A hunter of idle workstations. In Proceedings of
the Eighth Conference on Distributed Computing Sys-
tems, San Jose, California, June 1988.

Bruce Lowekamp, Nancy Miller, Dean Sutherland,
Thomas Gross, Peter Steenkiste, and Jaspal Subhlok.
A Resource Query Interface for Network-Aware
Applications. In 7th IEEE Symposium on High-
Performance Distributed Computing, pages 189196,
Chicago, July 1998.

G. McRag, A. Russl, and R. Harley. CIT Photo-
chemical Airshed Model - Systems Manual. Carnegie
Méllon University, Pittsburgh, PA, and Caifornialn-
gtitute of Technology, Pasadena, CA, February 1992.

K. Obraczka and G. Gheorghiu. The performance of
a service for network-aware applications. Technical
Report TR 97-660, Computer Science Department,
University of Southern California, Oct 1997.

A. Scherer, H. Lu, T. Gross, and W. Zwaenepod!.
Transparent adaptive parallelism on nows using
openmp. In Proc. 7thACM Symp. on Principles and
Practice of Parallel Prog. (PPoPP’99), page (to ap-
pear), Atlanta, GA, May 1999. ACM.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Schopf and F. Berman. Performance predictionin
production environments. |n 12th International Paral -
lel Processing Symposium, pages 647-653, Orlando,
FL, April 1998.

Bruce Siegell and Peter Steenkiste. Automatic selec-
tion of load balancing parameters using compile-time
and run-timeinformation. Concurrency - Practiceand
Experience, 9(3):275-317, 1996.

Peter Steenkiste. Adaptation models for network-
aware distributed computations. In 3rd Workshop on
Communication, Architecture, and Applications for
Network-based Parallel Computing (CANPC’ 99), Or-
lando, January 1999. |EEE. Springer-Verlag.

M. Stemm, S. Seshan, and R. Katz. Spand: Shared
passive network performance discovery. In USENIX
Symposium on Internet Technologies and Systems,
Monterey, CA, June 1997.

J. Subhlok, P. Lieu, and B. Lowekamp. Automatic
node selection for high performance applications on
networks. In Proceedings of the Seventh ACM SIG-
PLAN Symposium on Principles and Practice of Par-
alle Programming, Atlanta, GA, May 1999.

J. Subhlok, P Steenkiste, J. Stichnoth, and P. Lieu.
Airshed pollution modeling: A case study in appli-
cation development in an HPF environment. In 12th
International Parallel Processing Symposium, pages
701-710, Orlando, FL, April 1998.

J. Subhlok and B. Yang. A new modd for inte-
grated nested task and data parallel programming. In
Proceedings of the Sxth ACM S GPLAN Symposium
on Principles and Practice of Parallel Programming.
ACM, June 1997.

Hongsuda Tangmunarunkit and Peter Steenkiste.
Network-aware distributed computing: A case study.
In Second Workshop on Runtime Systems for Parallel
Programming (RTSPP), page Proceedings to be pub-
lished by Springer, Orlando, March 1998. |EEE. Held
in conjunction with |PPS’98.

R. Wolski, N. Spring, and C. Peterson. Implementing
aperformanceforecasting system for metacomputing:
The network weather service. Technical Report TR-
CS97-540, University of Caifornia, San Diego, May
1997.

J. Zinky, D. Bakken, and R. Schantz. Architectural
support for quality of servicefor corbaobjects. Theory
and Practice of Object Systems, 3(1):55-73, 1997.

7 Biographies

Thomas R. Gross is a faculty member in the School of
Computer Science at Carnegie Mélon University, 5000
Forbes Ave, Pittsburgh, PA. (thomas.gross@cs.cmu.edu).
He joined CMU in 1984 after receiving a Ph.D. in Elec-
trical Engineering from Stanford University. He also has
an appointment at ETH Zurich. He is interested in tools,
techniques, and abstractions for software construction and
has worked on many aspects of the design and implemen-
tation of programs. To add some realism to his research,
he has focussed on compilers for uni-processors and paral-
lel systems. He has worked on many areas of compilation
(code generation, optimization, debugging, partitioning of
computations, data parallelism and task paralelism) and
software construction (frameworks, patterns, components).
In his current research, Thomas Gross and his colleagues
investigate network- and system-aware programs—i.e. pro-
gramsthat can adjust their resource demandsin responseto
resource availability.

Further information (including additional references and
downloadable versions of many papers) can be found at
www.cs.cmu.edu/ cmcl

Peter Steenkiste received the degree of Electrical Engi-
neer from the University of Gent in Belgium in 1982, and
the MS and PhD degrees in Electrica Engineering from
Stanford University in 1983 and 1987, respectively. He
then joined the School of Computer Science at Carnegie
Méllon University, where he is current a Senior Research
Scientist.

Peter Steenkiste's research interests are in the areas of
networking and distributed computing. While a8 CMU,
Peter Steenkiste worked on a number of projects in the
high-performance networking and distributed computing
area. Earlier projects include Nectar, the first work-
station clusters built around a high-performance, switch-
based loca area network, Gigabit Nectar, a heterogeneous
multi-computer, and Credit Net, a high-speed ATM net-
work. Peter Steenkisteis currently exploring the notion of
"application-aware networks', i.e. networksthat can deliv-
ery high quality, customized services to applications, inthe
context of the Darwin project.

He is also involved in the Remulac project, which is
devel oping middleware in support of network-aware appli-
cations. More information can be found on his web page
http://www.cs.cmu.edu/ prs

Peter Steenkisteis amember of the |IEEE Computer So-
ciety and the ACM. He has been on a number of program
committees and is an associated editor for |EEE Transac-
tionson Paralld and Distributed Systems.

Jaspal Subhlok received the B.Tech. degree in com-
puter science and engineering from the Indian Ingtitute
of Technology, Kharagpur, Indiain 1984, and Ph.D. de-

greein computer science from Rice University, Houston in
1990. Between 1990 and 1998 he served as a member of
the research faculty in the School of Computer Science at
Carnegie Mellon University, Pittsburgh. He is currently an
Associate Professor of Computer Science a the University
of Houston.

Dr Subhlok’s technical areas of interest are compilers,
tools and runtime systems, particularly in the context of
paralel and distributed computing. His research involves
design of algorithmsand systemsto solveavariety of prob-
lems in programming and runtime support for parallel and
networked systems. The focus of his current research ison
"network aware" distributed computing, that spans the de-
velopment of toolsand frameworks to support applications
that can dynamically adapt to changing system resources.
Hisearlier projectsincluded development and standardiza
tion of integrated task and data parallelism in the context
of High Performance Fortran, algorithms and toolsfor au-
tomatic mapping of mixed task and data parallel programs,
and validation of job scheduling strategies with actua su-
percomputer workloads.

Further information is
http://www.cs.uh.edu/ jaspal .

available from

