
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 1

Design and Evaluation of a Distributed Scalable
Content Discovery System

Jun Gao, Student Member, IEEE and Peter Steenkiste, Senior Member, IEEE

Abstract— A Content Discovery System (CDS) allows nodes in
the system to discover contents published by some other nodes
in the system. Existing CDS systems have difficulties in achieving
both scalability and rich functionality. In this paper, we present
the design and evaluation of a distributed and scalable CDS. Our
system uses Rendezvous Points (RPs) for content registration
and query resolution, and can accommodate frequent updates
from dynamic contents. Contents stored in our system can be
searched via subset matching. We propose a novel mechanism
that uses load balancing matrices (LBMs) to dynamically balance
both registration and query load across nodes in the system
to maintain high system throughput even under skewed load.
Our system utilizes existing Distributed Hash Table (DHT)
mechanisms for CDS overlay network management and routing.
We validate our system’s scalability and load balancing properties
using extensive simulation.

Index Terms— Content Discovery System, Rendezvous Points,
Load Balancing.

I. INTRODUCTION

A Content Discovery System (CDS) is a distributed system
that enables the discovery of contents. Nodes in such a
system form an overlay network, the CDS network. A node in
the system can publish and provide contents, issue queries
looking for contents, store contents or contents’ metadata
published by other nodes, and resolve other nodes’ queries.
There exists a wide spectrum of distributed applications that
either themselves are CDS systems or use a CDS as one of
their major components. Some examples are service discovery
services, peer-to-peer object sharing systems, sensor networks
and publication-subscription (pub/sub) systems.

We illustrate the type of applications we are targeting with
the following example. Consider a nationwide highway traffic
monitoring service, where devices such as cameras and sensors
are installed along the roadside of highways or mounted
on patrol cars, to monitor traffic status, road and weather
conditions. These devices must frequently send updates to the
system to accurately reflect the current status of the highways.
In this example, “content” refers to the description of a device,
and the CDS must be able to answer a large range of user
queries, for instance, “What is the speed at Fort Pitt Tunnel?”,
“Find a camera on Mt. Washington that overlooks the city and
can accept new connections for live images”, “Identify the
highway sections to the airport that are icy (so that a driver

This research was sponsored by the Defense Advanced Research Project
Agency and monitored by AFRL/IFGA, Rome NY 13441-4505, under con-
tract F30602-99-1-0518. Additional support was provided by Intel.

Jun Gao is with the Computer Science Department, Carnegie Mellon
University.

Peter Steenkiste is with the School of Computer Science and the Depart-
ment of Electrical and Computer Engineering, Carnegie Mellon University.

can avoid them)”. This example represents a large category of
applications that pose the following challenges when designing
a CDS system:

� Contents stored in the CDS must be searchable. A node
can locate contents without having to use their canonical
names. Instead, it should be able to do so by specifying
a combination of attributes and values that describe the
contents.

� The CDS must be able to handle frequent updates of
dynamic contents. The description, or “name”, of a piece
of content may change over time. For example, when
a camera observes a different speed, it must change its
description and announce it to the CDS system.

� The CDS must scale with both the registration and query
load. By scalability we mean that as the load (e.g., the
registration and query rate) to the system increases, the
performance of the CDS, such as throughput and response
time, must not degrade significantly before the system as
a whole reaches its capacity.

The primary task of a CDS is to efficiently locate the
set of contents that matches a client’s query. Existing CDS
systems have difficulties in achieving both rich functionality
and scalability. At one end, they may be able to scale to the
Internet level but offer limited functionality, e.g., they support
exact content name lookup ([1], [2], [3], [4]) only, or the search
of strictly hierarchical content names [5], or they consider
static contents only, e.g., search engines [6]. At the other end,
they may offer powerful functionality such as the searching of
general content names, but are not scalable [7].

In this paper, we present the design, implementation and
evaluation of a distributed content discovery system that
meets the above challenges. Content names in our system
are represented by attribute-value pairs for searchability. We
achieve scalability through the use of Rendezvous Points
(RPs). The RP-based scheme avoids network-wide message
flooding at both registration and query time. We design a
novel mechanism that uses Load Balancing Matrices (LBMs)
to dynamically balance both registration and query load in the
system to improve the system’s throughput under skewed load.

The rest of the paper is organized as follows. In Section II,
we present the CDS system architecture. In Section III, we
present the basic RP-based CDS design. We present our
distributed load balancing mechanism in Section IV. Sec-
tion V describes the evaluation methodology, and we present
simulation results in Section VI. We discuss related work in
Section VII and conclude in Section VIII.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 2

II. SYSTEM ARCHITECTURE

Nodes participating in the CDS connect to each other in a
peer-to-peer fashion to form a CDS overlay network. Figure 1
shows the software architecture on a node. The CDS layer is
designed as a common communication layer on which higher
level applications, such as service discovery and file sharing,
can be built. The CDS layer is in turn built on top of a scalable
distributed hash table (DHT), such as Chord[1], CAN [2],
Pastry [3], and Tapestry [4].

Application

TCP/IP

DHT−based overlay

CDS

Fig. 1. CDS node architecture.

A. AV-pair Based Content Naming Scheme

To provide content searchability, applications built on top
of the CDS layer use a flexible attribute-value based naming
scheme, similar to what is used in [8], [9]. Contents are repre-
sented using attribute-value pairs (AV-pairs). For example, in
a service discovery system, a device may be described with
attributes such as Type, Location, and Model, etc. In
multimedia applications, such as the P2P music file sharing
system described in [10], to enable content-based search,
attributes include not only manually configured ones such as
Artist and Song Name, but also features extracted from
the audio signals, such as Tempo and Strength.

We refer to the collection of the AV-pairs as the “content
name”, or “content description”. In our terminology, “content
discovery” means the discovery of the “content name”, not the
actual content. We consider mechanisms such as contacting the
device or retrieving the actual file after the “content discovery”
step as a separate function. An AV-pair takes the form of���������	��

, or
�������	��

for short, where
�
�

is an attribute, and� �
is its value. A content name that consists of � AV-pairs is

represented as ����� �����������������	������� ������!��	!"

. Languages such

as XML may be used to describe content names. Figure 2 is
an example name for a highway monitoring camera.

Camera ID = 5562
Camera Type = Q-cam
Highway Number = I-279

Exit Number = 4
City = Pittsburgh
Speed Measured = 45MPH
Road Condition = dry
Connection availability = yes

Fig. 2. An example content name.

Content names may consist of both orthogonal attributes
and dependent attributes. Orthogonal attributes exist indepen-
dently of each other, whereas a dependent attribute relies on
the presence of some other attribute. For instance, the Exit
Number attribute is meaningful only when the name also
contains the Highway Number attribute. An attribute may
be dynamic, e.g., the Speed Measured attribute, in that it
may take on different values at different times. When the value
changes, the content name changes.

A query is also comprised of a set of AV-pairs, e.g.,# � ���$�%���	�������	�	������� �%�'&(�	&)

contains * AV-pairs. The matched

content name must simultaneously satisfy all the AV-pairs
present in the query. In our current system, we consider
equality matching only. Content names registered in the CDS
are searched via subset matching. More specifically, a content
name matches a query as long as the set of AV-pairs in the
query is a subset of the set of AV-pairs in the content name.
The AV-pairs in the query that are not in the content name are
treated as “don’t care”. The number of non-empty subsets of
a content name that consists of � AV-pairs is + !-,/.

, which
means it can match + !0,1.

different queries.

B. DHT-based Overlay Substrate

The CDS system uses the DHT layer [11] for two purposes:
(1) constructing and managing the overlay network, and (2)
delivering messages within the overlay network.

In a DHT, each node is assigned a node ID as its overlay
network address, and it is responsible for a contiguous region
in an * -bit address space. The nodeID may be obtained
locally, e.g., by applying a system-wide hash function to
some local information such as the node’s IP address. Overlay
networks built using DHT are structured in that node IDs
encode overlay network topological information: The node ID
determines the set of nodes that this node will be neighboring
with, and which next hop node to use when forwarding
a message in the overlay network. DHT-based systems are
scalable by keeping both the number of routing table entries
on a node and the number of overlay hops between any two
nodes small, e.g., both are 2-354 6�78�-9�: in Chord[1], where �-9
is the number of nodes in the network.

The CDS system uses the DHT layer to forward its mes-
sages within the overlay network. Communication is based on
node IDs. When the DHT layer receives a tuple

�
nodeID,

message

from the CDS layer, it will subsequently forward
message to the node that corresponds to nodeID. The DHT
layer does not dictate how CDS chooses the nodeID for
message.

C. CDS Functionality

The API that the CDS layer provides to the application layer
must include at least the following two methods: regis-
ter(content name) and locate contents(query).
Once it receives a data item, a content name or a query,
from the application layer, the CDS must determine the set
of nodes it should send the data item to. In our architecture,
this translates to computing a set of node IDs.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 3

In choosing the set of nodes, the primary goal is to
meet the scalability and content searchability requirements.
In a centralized system, names and queries are sent to one
central location, which constitutes the system’s single point-
of-failure and bottleneck. Approaches based on flooding the
CDS network with registrations or queries are not scalable due
to the prohibitive number of duplicated registration or query
messages. In our system, we introduce an approach based on
Rendezvous Points (RPs). In this scheme, a content name is
registered only with a small set of nodes in the system, the
RPs; thus the full duplication of content names at all nodes
is avoided. Queries are directly sent to the proper RPs for
resolution, and no network-wide searching is needed. The term
“rendezvous” is used because the RPs are where queries and
the matched names meet.

III. BASIC CDS DESIGN

We now present the basic RP-based CDS design.

A. Registration with RP Set

To register a content name, the provider node must first
determine the set of nodes that should receive this name. It
does this by applying a system-wide hash function, � , to
each AV-pair in the content name. For example, given content
name ��� � � ���$�������������	������� ������!��	!"

, which has � AV-pairs,
the provider computes the following:

� 3 � � � � : � � � ��� � . � � � �
The node whose ID is either equal to or numerically closest
to � �

will become the
�
th RP node. These nodes (� of them

assuming no hash collision) form the RP set for this content
name. The complete content name is then sent to each of the �
nodes (Figure 3), which results in � replications of the name.
From an RP node’s point of view, it becomes a specialized
node for the AV-pairs that are mapped onto it, e.g., � �

contains
all the names in the system that have

��� � � �

in them. For a

dependent AV-pair, we apply the hash function to it and all
of its parent AV-pairs together. In this paper, we focus on
orthogonal AV-pairs; the same mechanisms can be directly
applied to dependent AV-pairs.

N4
N3

N1 N2

N5
N6

RP1 RP2

Q:{a1v1, a2v2}

CN2:{a1v1, a2v2, a5v5, a6v6}CN1:{a1v1, a2v2, a3v3, a4v4}

Fig. 3. Example registration and query processing with RP set.

Hashing each AV-pair individually has the following prop-
erties. First, it yields an RP set of size � for a name that has

� AV-pairs, thus requiring 2-3�� : messages per registration. In
real-world applications, � is typically a small number (e.g.,�����), and registration can be done efficiently. Second, it
guarantees system correctness, in that, any query that is a
subset of a content name, e.g., the query

� ��� �����

, which

contains only one of ��� �
’s AV-pair, can discover ��� �

by
going to node � �

. As a comparison, registering with all nodes
corresponding to all the + ! ,/.

subsets of the content name
would also ensure correctness, but requires an exponential
number of registration messages. Third, from the system’s
point of view, hashing attribute and value together to determine
the set of RP nodes rather than hashing attribute alone provides
a natural way of spreading registrations to more nodes in the
system.

An RP node stores the names it received in a local database,
and maintains them in a soft state fashion. As such, names
automatically expire after a certain time period, and must be
periodically refreshed. This provides protection against certain
types of failures. For example, when an RP node leaves or
crashes, the refresh messages will automatically restore a lost
content name at a node that is alive. Also, when a name
contains dynamic attributes, the refresh messages may register
the name at a different set of RPs when their values change.

B. Query Resolution

To resolve queries, clients must determine the set of RPs
that may contain matching content names. Since all content
names that contain the pair

��� � � �

are stored in the node� � 3 � � 3 � � � � :�: , query

# � � �$�����	�������	� ����� ������&(�	&

can be

sent to any one of the * RP nodes, � � ������� � � &
(Figure 3).

Given these * candidate RP nodes, the client may pick one
node randomly and send one query message to that node.
Once an RP node receives a query, it simply goes through
its name database, and determines the set of names that match
the query by comparing each name’s AV-pair list with that of
the query’s. No communication between nodes is needed, and
query resolution is done efficiently.

An alternative to having queries fully resolved at one RP
node is to have a client send its query to multiple nodes, each
of which resolves the query partially and returns any matches.
The client then performs a “join” operation to determine
the final set of matched names. While this approach reduces
the computation load on resolver nodes, it adds potentially
significant communication overhead due to large sets of partial
matches to the network and client. Given that exact matching
for AV-pairs is a relatively lightweight operation, it is more
efficient to do the complete matching on the selected RP node.

C. Load Balancing Property

In the basic RP-based design, AV-pairs are used as the
argument by the hash function and are mapped onto nodes.
However, the registration and query loads observed on each
node are determined by the AV-pair distributions in content
names and queries. The basic design performs well when the
distributions are even, in which case the distribution of load
in the system should be even.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 4

In real-world applications, these distributions are likely to
be skewed as some AV-pairs are common or significantly more
popular than others. For instance, it has been observed that the
popularity of keyword search strings1 in both traditional web
searches [12] and Gnutella peer-to-peer networks [13] follows
a Zipf-like distribution. This type of skewed distribution
implies that some nodes in the CDS system may be overloaded
while others are underutilized. More specifically, consider the
case where the number of names that contain

� �$���	��

, ��������� ,

follows a Zipf distribution:

�������	� � ��
��
 �
.
��� �

(1)

for
� � . � ��� ��� , where ��� is the number of different AV-pairs

in the system.

and � are two parameters, where � is close to
1. �
 is the total number of names in the system and

�
is the

rank of AV-pair
� � � � �

in terms of its frequency of occurring
in names;

�8� .
corresponds to the AV-pair that is contained

in the most number of names. As an example, suppose an
application has ��
 � . ��� names, and

 � � � � � � � .
. Half of

the
. ��� names would contain the most popular AV-pair, which

would be sent to one node. In the meantime, for nodes that
correspond to AV-pairs ranked from

. ��� to
. ��� , each would

receive fewer than 50 names. Clearly, a few nodes would be
swamped by registrations, while the majority of the nodes in
the system would be rarely used.

IV. SYSTEM WITH LOAD BALANCING

We next present a distributed load balancing solution that
allows the CDS to dynamically discover and utilize lightly
loaded nodes to share the registration and query load on
heavily loaded nodes.

A. Load Balancing Matrix (LBM)

1,1 2,1

1,2 2,2 P,2

0,0
Partitions

R
ep

lic
as

Head node

P,1

P,R1,R 2,R

Fig. 4. Load balancing matrix for ����������� .

For a popular AV-pair, the CDS system uses a set of nodes
instead of one node to share the registration and query load.
This set of nodes is organized into a logical matrix, the Load
Balancing Matrix (LBM). Figure 4 shows the layout of the
matrix for AV-pair

� ���5�	�

. Each node in the matrix has a

1Keyword-based search is a special case of AV-pair based search where
attributes are omitted.

column and row index, 3�� �! : , and node IDs are determined by
applying the hash function, � , to the AV-pair, and the column
and row indices together:

� "$#&% '�(� � � 3 � � � � � � �! : �
Each column in the matrix stores one subset, or partition,
of the content names that contain

��� � � �

. Nodes in the same

column are replicas of each other: they host the same set of
names.

The matrix dynamically expands or shrinks along its two
dimensions depending on the load it receives. It starts with
one node when the registration and query load are low; this
corresponds to the basic system. New partitions are added
to the matrix when the registration load of the pair

���$�5�	�

increases, and new replicas are added when the query load
increases. Matrices may end up in different shapes. For
example, a matrix may have only one row, when only the
registration load is high, or one column, when only the query
load is high. Each matrix uses a node, called the head node,
with ID � "*)�%)�(� � � 3 � � � � � � � � : , to store its current size and
to coordinate the expansion and shrinking of the matrix.

To expand matrices, each node in the system maintains
three thresholds: +-,/. , the maximum number of content names
a node can hold, + '�021 , the maximum rate of registration it
can sustain, and +-3 , the maximum query rate the node can
sustain. Three corresponding low thresholds are also set for
shrinking purpose. Note that a node may belong to multiple
matrices when multiple AV-pairs are mapped onto it, and the
thresholds are used to regulate the aggregated load from all
of these pairs. In the following discussions, for simplicity, we
assume all nodes are homogeneous in that they have the same
computation power and network connectivity.

B. Operations With LBM

We first describe the registration and query operations when
LBMs are present in the system.

CN:{a1v1, a2v2, a3v3}

LBM for {a1v1}

LBM for {a2v2}

LBM for {a3v3}

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

Fig. 5. Registration with load balancing matrices.

1) Registration: In the basic system, a content provider
registers its content name with each RP node that corresponds
to one of the AV-pair in the name. In contrast, with LBMs, the
provider must register its content name with one column of
nodes in each matrix that corresponds to an AV-pair (Figure 5).

The pseudo code for registration is listed in Figure 6. To
register with matrix 465�7 �

, the content provider must first
discover its size: the number of partitions, 8 , and the number

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 5

1: register(name)
�

2: foreach AVpair
� � � �

in name
�

3: � "*)�%)�(� � � 3 � � � � � � � � : ;
4: (P, R)

�
retrieve matrix size(� ") %) (� �������	�

);
5: p

�
generate random number(1, P);

6: foreach r in [1, R]
�

7: � "$#&% '	(� � � 3 ��� �	��� � �	 : ;
8: send to(� "$#&% '	(�

, name);
9:

10:

11:

Fig. 6. The algorithm for content providers to register with LBM.

of replicas,
�

. It can do so in several ways. First, it may be
able to retrieve the size from the pair’s corresponding head
node (Line 4 in Figure 6). Second, in case the head node
is down or becomes a bottleneck, the provider may find out
the matrix size by directly sending probe messages to nodes
that are potentially in the matrix. For example, to discover 8 ,
the provider may first estimate a maximum number 8) , and
probe a node in the 8) th partition, e.g., � "���� % � (�

. Node � "�����% � (�
can determine whether it belongs to 465�7 �

by checking its
database to see if it has seen

���
���	��

before. Since partitions

are indexed contiguously, the current number of partitions
can be efficiently discovered in 2-3�4�6 7 8) : steps via binary
probing between partition 1 and 8) . Third, content providers
may cache an AV-pair’s matrix size and use it without re-
discovering it. This is useful when refreshing a previously
registered name.

Once the size of the matrix is found, the content provider
selects a random partition between 1 and 8 and computes the
node IDs in the partition. It then registers with each of them.
Since the partition within the matrix is randomly selected, the
registration load within the matrix is distributed evenly.

2) Query Resolution: Similar to the basic system, clients
can issue a query to the matrix that corresponds to any AV-pair
in the query. The cost of resolving a query is determined by
the number of partitions in the selected matrix. If the query
contains only one AV-pair, it would be sent to the matrix
corresponding to that pair. When this matrix has a lot of
partitions, the client can contact a small subset of the partitions
to receive enough matches. The client may then refine its
query by adding more AV-pairs. In fact, this is the behavior of
Internet users when using a search service. A study conducted
in [12] shows that 71.5% of the searches found in one large
web cache contains more than two keywords.

In our system, when multiple AV-pairs are present, we use
a two-pass query optimization algorithm to determine which
pair a client should use for its query. First, the client probes
the sizes of all the matrices corresponding to each AV-pair in
the query using one of the mechanisms presented above, and
then selects the one with the fewest partitions. In practice,
since the matrix sizes can be cached, the cost of the probing
phase is amortized when the client issues many queries.

Once a matrix is selected, the client must send the query to
all the partitions in the matrix, if it needs to collect all possible

matches. In reality, sending to a subset of the partitions may
return the client sufficient number of results. Since nodes in
the same column are replicas of each other, the query needs
only to be sent to one node in each column, and the client
chooses a random node to ensure the query load is distributed
evenly within a matrix.

C. Matrix Management

In this section, we present the matrix expansion and shrink-
ing mechanisms. When a matrix receives high load, it must
expand itself quickly to accommodate the excessive load.
When the load decreases, the matrix should shrink itself to
reduce registration and query cost. We use a multiplicative
approach to expand the matrix by doubling the number of
partitions or replicas when the existing matrix is saturated by
registration or query load. To ensure a stable system, matrix
shrinking is done linearly, i.e., we decrease the number of
partitions or replicas by one at a time.

We describe the detailed expansion and shrinking mecha-
nisms using matrix 4�5�7 �

as an example. 4�5�7 �
corresponds

to
� �����	��

, and its head node is � "*) %) (�
. Suppose there are

currently 8 �
partitions and

� �
replicas in 465�7 �

.
1) Partition Expansion: New partitions are added to 465�7 �

when the existing partitions in the matrix receive high regis-
tration load. We define the expansion region (ER) as the set
of partitions that are last added to the matrix. The expansion
mechanism works as follows.

� When the registration load on a node in the matrix reaches
the threshold +-,/. or + '�0 1 , it will send an INC P request
to the head node, � "*)�%)�(�

.
� The head node doubles the number of partitions to +�8 �

,
upon receiving the first such request from a node in the
current ER. It ignores requests from non-ER partitions
and from other ER partitions that may arrive later.

� The head node then informs nodes with partition index
from 8 ��� .

to +�8 �
that they are now in the matrix and

will be responsible for
� �
���	��

. Partitions 8 �	� .
to + 8 �

become the new ER.
When a new content name that contains

���$���	��

comes up,

the registering node will discover 465�7 �
has +�8 �

partitions,
and then select one to register this name. Hence, the registra-
tion load is shared by the expanded matrix.

The head node acts upon only one request from the ER
and suppresses others to avoid unnecessary expansion. The
reason is that the head node expands the matrix only when
the following two conditions are met: (1) the load are dis-
tributed evenly among all partitions; and (2) the load on any
partition reaches threshold. In the algorithm above, we use a
request from an ER partition as the signal of when the above
conditions are satisfied, since the load observed on the non-ER
partitions do not reflect the average when the new partitions
are being added.

The multiplicative increase of 8 �
allows the number of

partitions grow quickly, and as such the system can quickly
tune itself to accommodate high load. The direct cost of
this approach is minimal, since “adding a partition” does not
actually involve any copying of data over the network.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 6

2) Partition Shrinking: A matrix decreases the number of
partitions when possible, since more partitions means more
query messages are needed for a query that is sent to this
matrix. Suppose 4�5�7 �

now has 8��� partitions, and before
the last expansion, it has 8 �

partitions. 8 �
is also equal to

the number of partitions in the ER immediately after the last
expansion.

� When any node in the last partition of the matrix observes
a low registration rate or a low number of content names,
it will issue a DEC P request to the head node.

� The head node again acts on only one such request: it
sends a SHRINK P command to all the nodes in the last
partition and asks them to transfer their names containing��� � � �

to the nodes in partition 8��� ,
8 �

. For example,
� "����� % � (�

sends its names to � "������� � � % � (�
.

� After all the transferring are confirmed successful, the
head node will inform nodes in partition 8��� that they are
removed from the matrix. Now partition 8 �� , .

becomes
the last partition, and the head node decreases the size by
1, 8��� � 8��� , .

. Correspondingly, the size of the current
ER is also reduced by 1.

When all the partitions in the current ER are removed,
and the number of partitions drop back to 8 �

, the head node
informs the partitions from

� � ��
	 through 8 �
to become the

new ER. By collapsing the matrix one partition at a time, we
try to keep the matrix load balanced, and the linear decrease
prevents the matrix from oscillating.

3) Replication Expansion: New replicas are added to the
matrix when the query load to the matrix increases, similar
to how partitions are added. The expansion region here refers
to the replicas that are last added. When a node in the ER
observes its query rate reaches + 3 , it will send an INC R
request to the head node. Upon receiving such a message,
the head node issues a DUPLICATE command to each node
in the last row of the ER, asking them to replicate themselves.

The replication is also done multiplicatively to allow the
matrix expand to a large size to accommodate query load.
A node that receives the DUPLICATE message sends a copy
of the names corresponding to

��� � � �

in its database to the

newly added nodes in its column. For example, node � " � % � � (�
will send its names to nodes � " � % � �
� � (�

through � " � % � � � (�
. The

head node doubles
� �

when all the replicas are in place, and
the nodes in row

� � � .
to row + � �

become the new ER.
4) Replication shrinking: More replicas in the matrix

means providers must register with more nodes. Thus matrices
should shrink along the R dimension when the query load
to this matrix drops. The replication shrinking mechanism
is similar to the partition shrinking mechanism, but no data
transfer is needed. When the head node receives a DEC R
request, it informs all the nodes in the last row to remove
themselves from the matrix. The head node then decreases
the number of replicas by 1.

The shrinking mechanism is important specially under
“flash-crowd” type of load: when an AV-pair becomes popular
due to for example a current event, its corresponding matrix
will replicate quickly to accommodate the sudden surge of
load. When clients lose interest in this pair, the matrix will

shrink and eventually may become just one row.
5) Head Node Mechanisms: The primary job of the head

node is to coordinate the matrix expansion and shrinking.
The expansion and shrinking requests may come to the head
node in an arbitrary order. While a matrix is in a dynamic
state, i.e., expanding or shrinking, if the corresponding head
node receives additional requests, it will buffer these requests
and process them when the current operation completes. By
serializing the operations, we ensure data consistency within
the matrix.

A head node is only responsible for its own matrix, and
different matrices will likely have different head nodes, which
are distributed across the network. Therefore head nodes will
not become the bottleneck of the system. However, when a
head node leaves or crashes, vital information about its matrix,
such as the size, will be lost. To prevent this from happening,
live nodes in the matrix send infrequent messages with their
indices 3�� �	 : to the head node. Due to the routing properties of
DHT, a new node whose ID is close to the old head node’s ID
will receive these messages and become the new head node.
It can then recover the matrix’s size based on the information
it receives. In fact, the matrix expansion or shrinking requests
will also reach the new head node, and they can be used to
recover the matrix’s dimensions as well.

D. System Properties With LBM

When LBMs are deployed in the system, both the registra-
tion and query cost are higher than in the basic system. To
register a name that has � pairs, the number of registration
messages needed is:

7 ' �
!
� ��� � � ���

where
� �

is the number of replicas in matrix 465�7 �
.
� � � .

when 465�7 �
has no extra replicas. 7 ' is determined by the

number of replicas each matrix has, and does not depend on
the number of partitions.

To resolve a query that has * pairs, when using the
query optimization mechanism, the number of query messages
needed excluding the probing messages, is

7 3 � * � � 3�8 � : �
where

� � . ��� * , and 8 �
is the number of partitions in matrix

465�7 �
. The query cost is not affected by the number of

replicas in these matrices, but depends solely on the number
of partitions.

The benefits of the query optimization algorithm are two-
fold. First, it will likely keep the number of query messages
low by avoiding matrices that have large 8 . Second, by
reducing the number of query messages, it also indirectly
reduces the number of registration messages required in the
system. By avoiding matrices that have large 8 , the query
load on these matrices is reduced; thus it naturally limits the
R-dimension expansion of these matrices. A matrix with a
smaller

�
means that names mapped onto this matrix require

fewer registration messages. Conversely, for matrices that have
small 8 , even if they have a large

�
due to many queries, from

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 7

the system’s point of view, it will not greatly affect the average
number of registration messages needed: small 8 implies only
a small number of content providers will be affected by having
to send more messages.

V. EVALUATION METHODOLOGY

We describe our simulator implementation and the evalua-
tion methodology.

A. Simulator Implementation

We developed an event-driven simulator to evaluate the
CDS system. Each node uses a first-come-first-serve queue to
process registrations and queries with exponentially distributed
service rates. A node measures the registration and query rates
it observes using a sliding window of a certain number of
recently received registrations or queries. In the simulation,
we use a window size of 20. Matrix size discovery is done by
probing head nodes.

The simulator assumes the existence of a DHT-based over-
lay mechanism for routing and forwarding and it uses a 24-bit
name space for node IDs and the hashed values of AV-pairs.
Node IDs are assigned in such a way that each node covers an
equal slot in the entire name space to ensure an even mapping
of hashed values onto nodes. In practice, this can be achieved
by using techniques such as assigning multiple “virtual” node
IDs to one node [1]. The hash function used by the CDS
system must generate values uniformly distributed in the name
space and be insensitive to the input. In our implementation,
we use the cryptographic function SHA-1 as the system-wide
hash function.

The simulator uses an exponential distribution with a mean
value of 50 ms [1] to model the one-way network delay
between any two nodes. In DHT systems such as Pastry [3],
by employing proximity metric into the routing rules, the
overlay delay between two nodes can be limited to within
1.4 times of the physical network delay. In our simulation,
we conservatively set the average overlay delay between two
overlay nodes to be twice of the physical network delay
between them, which results in a mean of 100 ms.

B. Experiment Setup

In the experiments we conducted, we assume that each
node has approximately ��������� ��� available link bandwidth
(DSL level) dedicated to content name registrations and
queries. Corresponding to this bandwidth, assuming a 1000-
byte registration packets size and a 250-byte query packet size,
each node sets up a threshold of + '�0 1 � ��� ��	��
 � �
� as the
maximum sustainable registration rate and +/3 � + �����
 � �
� as
the maximum sustainable query rate. +/,/. is set to be 4000.
When a node observes that one of these thresholds is reached,
it will issue a matrix expansion request to the corresponding
head node. In our experiments, + ' 0 1 is always reached before
+ , . . To enable us to study the effectiveness of the load
balancing mechanism, the maximum number of partitions and
replicas a matrix can use are configurable in the simulator.
The matrix will stop expanding along a dimension if that

dimension reaches its maximum value. In our experiments,
we focus on how the system behaves when load increases.
The load distribution does not change within each simulation
run, and the matrix shrinking mechanism is not triggered.

The processing of registrations and queries on a
node is exponentially distributed with a mean rate of. � ���
�	� 3 �
� � �� :
 � �
� , which can easily be achieved by modern
PCs on a database with a size on the order of

. ��� entries.
With these assumptions, a node’s performance is limited by
its available link bandwidth.

To register a name, registration messages are sent to the
RP nodes corresponding to the name’s AV-pairs concurrently.
Upon receiving a registration, the RP node either inserts the
name into its local database and replies the registering node
with a success, or rejects the name and replies with a failure.
A registration may fail at a node for two reasons: (1) the
registration rate this node observes,

 �!�� � 0 , exceeds the set
threshold, i.e.,

 !�� � 0�� + '�021 , or the number of names it is
hosting exceeds + ,/. ; (2) the corresponding matrix is in a
dynamic state such as expanding. For instance, a node has
sent a replica to a new node, but the success of the replication
has not been confirmed, and during this time period, any
registrations arrive at the replicating node will be rejected and
result in a failure. The registration succeeds when all the pairs
registered successfully.

Similarly, a query is sent to one RP node in each partition
of the chosen LBM concurrently. The RP node rejects the
query if the query rate this node observes, � !�� � 0 , exceeds the
set query rate threshold, i.e., � !�� � 0 � + 3 , by replying to the
query node with a failure message. Otherwise, it accepts the
query, examines its database and sends the querying node the
set of content names that match the query. Note that the set
may be empty. From the querying node’s point of view, a
query succeeds when all the corresponding RP nodes accept
the query.

We evaluate the CDS system using the following metrics:
the registration/query success rate and the registration/query
response time. The success rate is defined as the percentage
of successful registrations or queries in one simulation run.
Since the system throughput equals to the product of the
system load (registration/query rate) and the success rate, the
success rate is used as an indicator of the system’s throughput:
the throughput increases as load increases, if the success
rate remains high. For a successful registration or query, we
define the response time as the time between when the last
reply message is received and when the registration or query
messages (probe messages, when we must probe the matrix
size) are first sent.

C. Workload

In the following experiments, we consider a CDS network
that has 10,000 (� 9) nodes. There exists 50 attributes in the
system, each of which can take on 200 values; this results
in 10,000 (� �) distinct AV-pairs. On average, each node is
responsible for 1 (= � �
 � 9) AV-pair.

We generate two sets of content names for registration
and one set of queries as workload to drive the simulations.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 8

Fig. 7. AV-pair distribution in two sets of content names.

Fig. 8. AV-pair distribution in queries.

Each name dataset contains
. ��� � � ��� names and each name is

comprised of � � + � AV-pairs. The AV-pair distributions in
names are shown in Figure 7. In the uniform dataset, each AV-
pair is equally likely to appear in a name, and on average each
AV-pair occurs in about 200 names. The uniform dataset is
primarily used for comparison. In the skewed case, some AV-
pairs are assigned higher weights, and the overall distribution
of AV-pairs is Zipf-like, as it is close to a straight line in the
log-log plot(��� � � ���

). The top 5 most popular AV-pairs are
contained in about 24,000 names. The query dataset (Figure 8)
contains ���

�����
	
queries and is generated based on a Zipf

distribution with

 � � � � and � � .

in Equation 1. The
number of AV-pairs in a query ranges from 1 to 10, and on
average each query consists of 4 AV-pairs. The most popular
AV-pair occurs in about 50,000 queries. The sender of a name
or a query is selected randomly from the nodes in the system
and both the arrival times for names and queries are modeled
with a Poisson distribution.

VI. SIMULATION RESULTS

We conducted extensive simulations to evaluate the proper-
ties of the CDS system. We show the system’s performance
with regard to registration load in Sections VI-A, VI-B and
query load in Section VI-C. We analyze the load balancing
behavior in Section VI-D. Finally, we study the cost introduced
by LBMs in Section VI-E.

A. Registration Success Rate

Fig. 9. Registration success rate comparison.

We first examine how the system behaves as the registration
rate increases. For each experiment, we inject either the
skewed dataset or the uniform dataset into the system with a
certain arrival rate

��
�
 0 & . Each experiment is carried out with
a different configuration of 8 value, the maximum number of
partitions a matrix may use.

Figure 9 compares the success rate in these experiments
after all the matrices stop expanding. We observe that for a
given 8 value, when the registration rate is low, the registra-
tions succeed on the existing set of partitions, and the success
rate is 100%. As load increases, the success rate starts to
drop, because without further expanding, nodes in the matrices
become saturated and start to reject registrations. By increasing
8 , for the same registration load, the success rate is improved
significantly. As load is further increased, all curves eventually
drop.

For the uniform dataset, since AV-pairs are distributed
evenly in content names, registration load is distributed fairly
evenly among nodes in the system. Compared with the skewed
load, to maintain the same success rate, fewer partitions are
needed for the same registration load. The basic system (8 �.

) performs well until

��
�
 0 & reaches + ��� � ��	��
 � ��� , and after

that the success rate drops quickly to near 0%. The reason
is that the hash function may map multiple AV-pairs onto
the same node, and when

���
�
 0 & increases, registration rate
on such nodes will reach + ' 0 1 earlier than others, and cause
registration failures.

We study the data points corresponding to the highest
registration load, where

��
�
 0 & � . � � �� �
 � �
� . In these ex-
periments, since there are no queries, and thus no replications
in the system, each name is registered at � � + � nodes, the
average registration rate observed on a node is:

 !�� � 0 �
��
�
 0 & ���� 9
� + �
�	�
 � �
���

The success rate under this registration load is 76% for the
uniform load with 8 ��	 + , and 68% for the skewed load with
8 � + � � . What it means is that on average each node in the
system operates at 40% of its link capacity while maintaining
a fairly high success rate. These experiments show that the

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 9

system can be scaled to near its capacity even for skewed
load: the load balancing mechanism effectively spreads the
excessive load to underutilized nodes in the system.

B. Effectiveness of Partitions

To better understand the effectiveness of adding partitions
on improving the registration success rate, we conducted
another series of experiments. We inject the skewed content
name dataset into the system with a fixed arrival rate of
��
�
 0 & � � � ��� ��	�
 � �
� . We vary the configured 8 value in
each experiment, and for each 8 we run the experiment twice:
(1) during the initial run, as names arrive, partitions are created
when needed, and (2) the same dataset is sent to the system
again in the stable state, when all the partitions have been
created, and no new partitions are added.

The number of partitions needed, 8 �
, for a pair

� �����	��

can

be analytically computed as follows:

8 � � � �����
+ ' 0 1

�
���
�
 0 & �!� �
+ ' 0 1 (2)

where
 � � � � is the arrival rate of

��� � � �

, and � �

is the pair’s
probability of occurring in names. In the skewed name dataset,
for the top 5 most popular pairs, � � � � � + � . With

��
�
 0 & �
� ��� � ��	��
 � ��� and + ' 0 1 � � � �� �
 � �
� , from Equation 2, we
know to accommodate names that contain these pairs, each of
the corresponding matrices needs at least 8 � + � partitions.

Figure 10 shows the success rate of registrations, under
different 8 value. To interpret the figure, we first classify
registration failures into four types:

1) capacity failure. Failures due to not having enough
partitions allocated to a matrix to accommodate a pair’s
registration load.

2) compulsory failure. In the simulation, it takes one RTT
to add new partitions to a matrix, and registrations
arriving during that time period are rejected.

3) conflict failure. Since multiple AV-pairs may be mapped
onto one node, a registration may fail at a node because
some other pair introduces high registration load there.

4) statistical failure. Failures due to statistical variations,
e.g., failures caused by bursty arrival of registrations of
the same pair on one node.

In Figure 10, when 8�� + � , the success rate is very low
primarily due to the large number of capacity and conflict
failures caused by the popular pairs. In particular, 8 � .
corresponds to our basic system, and the poor performance
shows that using one RP node for each AV-pair can not handle
highly skewed load.

When 8 � 	 + , the success rate is still below 50% though
seemingly there should be enough partitions. The failures
come mainly from conflicts: since we have 10,000 distinct
AV-pairs and 10,000 nodes, it is possible that two AV-pairs
are mapped onto the same node. As the system allows more
partitions to be used by a matrix, the conflict failures are
overcome and the success rate increases significantly. The
reason is that when a node observes high registration load
caused by two different pairs, it will prompt the expansion of
both of their corresponding matrices (at different times), thus

Fig. 10. Effect of number of partitions. Skewed dataset with �������	��
���
������� ������������� .

reducing the load observed by partitions within each of the
two matrices. The gap between the initial curve and the stable
curve represents the percentage of compulsory failures. When
enough partitions are allowed, the success rates in the stable
run are substantially higher than those in the initial run since
there are no compulsory failures. We observe that the success
rate stays above 95% for 8 �

. � � under this load.
In summary, by allowing the matrix to expand along the 8

dimension, the system can successfully recruit lightly loaded
nodes to share concentrated registration load, thus increasing
the system success rate.

C. Query Success Rate

In this section, we study how the system scales as query
load increases. In the following experiments, we first inject
into the system the skewed name dataset with

��
�
 0 & �
+ � ���
�	�
 � �
� , and then issue the Zipf queries with different
arrival rate �
���
�
 0 & . We run the simulation under two schemes:
(1) random, where a query is sent to a matrix that corresponds
to a random pair in the query, and (2) using query optimization.
In these experiments, a matrix may replicate as many times
as necessary.

Fig. 11. Query success rate comparison.

Figure 11 shows the query success rates. In the random
scheme, by selecting a random pair for each query, the system

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 10

tries to spread load to different matrices, and the success rate
stays above 90% for rates as high as ���������
 � �
� . However,
when �
���
�
 0 & is further increased, the success rate starts to
drop sharply. The reason is that since popular AV-pairs appear
in many queries, and each query contains only a few pairs, it
is possible that many queries select the same AV-pair and are
sent to the same matrix, which will cause compulsory failures
and the replication of these matrices.

In addition, in the workload, the pairs that are popular in
queries are also common in registrations, which means their
corresponding matrices have many partitions. The time it takes
to replicate a large matrix is high, since the new replicas can be
used only after all the partitions replicate successfully. Queries
arriving during the replication time period are likely to be
rejected, since they must be sent to the existing replicas, which
have already being saturated. This phenomenon is displayed
most clearly when the arrival rate is extremely high (�
��
�
 0 & �
� � � ��� ���
 � �
� : ; in this scenario, all the queries arrive before a
matrix can complete two rounds of replications.

On the other hand, the query optimization mechanism
successfully spreads query load to matrices with few partitions.
This is specially important for high query load, where using
the load balancing mechanism alone is not effective. Figure 11
shows that even under the highest load, �
��
�
 0 & � . � � �
 � �
� ,
with query optimization, by avoiding large matrices and thus
long replication time, the system’s query success rate remains
above 95%. Most matrices do not need to replicate at all, and
the largest matrix replicated twice (

� � �
).

D. Load Distribution

In this section, we evaluate the system’s load balancing
property by examining the name distribution and observed load
on nodes. We report results corresponding to registration load;
the results for query load are similar.

Fig. 12. Comparison of the Cumulative Distribution Function of the number
of registered names on nodes.

1) Content Name Distribution: Figure 12 shows the Cu-
mulative Distribution Function (CDF) of the final number of
names on nodes under four scenarios, corresponding to four
experiments in Figure 9. The first three curves correspond
to the experiments where the skewed dataset is used with
8 � + � � , and various registration rates. The fourth curve is

from the uniform dataset with 8 ��	 + . Since the success rates
are different in these experiments, for comparison purpose, we
normalize the number of successfully registered names in each
experiment to

. � � . Thus on average each node should receive
200 names.

In our experiments, since + ' 0 1 is always reached before
+ ,/. 3 � � ��� � : , matrix expansions are therefore caused by the
high registration rates observed on nodes, and not the high
number of names. At the end of each experiment, the average
registration rate on each node can be simply computed by
dividing the final number of names it has by the simulation
time. Thus we use the number of names to represent the
registration load on a node.

With low registration rate, the system can accommodate the
registrations successfully using a small number of partitions
for each matrix, which means many nodes in the system may
receive none or a small number of names. For example, when
��
�
 0 & � + ����� �� �
 � �
� , 21% of nodes receive no registra-
tions. In the mean time, some nodes in the system accumulate
large number of names, as exhibited by the long tail in the
distribution. Note the maximum number of names on a node
is still less than +-,/. . As registration rate increases, names
are spread to more nodes, due to the expansion of matrices.
In Figure 12, when

��
�
 0 & � . � � �� �
 � �
� , we observe that
the CDF grows very quickly and no nodes receive more than
twice of the average number of names. A distribution that is
“more vertical” represents a more load balanced system.

More quantitatively, we use the metric Coefficient of Vari-
ance (CV) [14] to evaluate the load balancing property. In our
context, ��� is defined as:

����� � ��� ��� � � ���
� � � � �

where
��� . ��� �09 , � �

is the number of names node � �
holds,

and � and
�

are the standard deviation and mean of � �
. A

smaller ��� indicates a more load balanced system. As load
increases, the load balancing mechanism successfully balances
load across all nodes across the system. The ��� decreases
from 1.242 to 0.369 as

��
�
 0 & increases from + ����� �� �
 � �
�
to

. � � ��	��
 � �
� . As a reference, when

��
�
 0 & � . � � ��	��
 � �
� ,

the ��� in the skewed load case matches the ��� 3 � � � 	
	�	 :
in the uniform load case.

2) Observed Load on RP Nodes: We now take a closer
look at the load distribution within different partitions of a
matrix. Figure 13 shows the observed registration rate as
time progresses at three different partitions of a matrix that
corresponds to one of the most popular AV-pairs. In this
experiment, the skewed name set with

���
�
 0 & � + � ���
�	�
 � �
�
is used. Initially there is only one partition in the system,
and it receives the entire registration load corresponding to
this pair. The maximum observed registration rate approaches� ��� ��	��
 � ��� . As partitions are added to the matrix to share the
registration load, the rate observed by the first partition begins
to drop quickly, as shown in the figure. The 16th and 32nd
partitions are introduced around time 2000 ms and 3700 ms
respectively. Once all the partitions are in place, as expected,
the load on each partition stays under the set threshold of
+ '�021 � ��� ��	��
 � ��� . In fact, since the load is shared by 32

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 11

partitions, each node observes about
. � �� �
 � �
� .

Fig. 13. Load within a matrix. Skewed dataset with ����������
	�

������� ��� � ��� � � .

E. Registration and Query Cost

In this section, we evaluate the system from content
providers and query issuers’ point of view: we examine the
response times, and the number of messages needed for
registrations and queries.

In this set of experiments, registrations and queries arrive si-
multaneously with the arrival rates of

��
�
 0 & � . ��� � ��	��
 � ���
and �
��
�
 0 & � ����� ���
 � �
� . The workload consists of about
17,000 skewed names and 83,000 Zipf queries. Instead of
devoting its full bandwidth to serve either registrations or
queries, each node allocates 50% of the bandwidth to queries
and 50% to registrations. Correspondingly, the thresholds are
set as follows: + '�0 1 � + �
�	�
 � �
� and +-3 � . � ���
 � �
� . We
again run the simulation under two schemes: random and with
query optimization.

Fig. 14. Matrix size distribution. All the axes are in logarithmic scale.

1) Matrix Size Distribution: As discussed in Section IV-
D, the sizes of the load balancing matrices affect the cost of
registrations and queries. After each simulation run, we tally
the sizes of all the matrices. Figure 14 is a 3-D presentation
of the distribution. Each bar corresponds to the number of

matrices that have that particular size 3�8 � � : . Since there
are 10,000 distinct AV-pairs in the system, there are 10,000
LBMs in total. All the results fall on the vertical planes that
correspond to powers of two, because the dimensions are
increased multiplicatively and there is no matrix shrinking in
the experiments.

In the random scheme, 89.2% of the matrices have 1 parti-
tion and 1 replica, 3�8 � . � � � . : . As we discussed earlier,
matrices that have large P may still get many queries, which
means they must replicate themselves frequently. Figure 14
confirms our analysis in that some matrices with large 8 , e.g.,
8 � 	 + , also have a large

�
. The largest matrix has a size of3�8 ��	 + � � � 	 + : .

In contrast, with query optimization, more matrices (94.3%)
have the minimal size, 3�8 � . � � � . : . In all the matrices,
the maximum number of replicas a matrix has is 4. It is
worth noting that the matrix that has 4 replicas also has 32
partitions. The explanation is that the AV-pair corresponding to
this matrix is also popular in queries. In particular, it appears
frequently by itself in queries, which makes query optimization
not applicable and replication necessary.

Fig. 15. CDF of registration and query messages.

2) Registration Cost: Figure 15 shows the CDFs of the
number of registration and query messages under the two
schemes.

With query optimization, 77% of the content names need to
register with only 20 nodes because the corresponding matri-
ces have only 1 replica. The maximum number of registration
messages is 23, and the average is 20.3, i.e., a less than 1
message increase over the minimal registration requirement
of the system. However, in the random case, 93% of the
registrations need more than 20 messages, which means they
involve at least one matrix that has multiple replicas, The
average number of registration messages goes up to 32.3, and
the maximum is 88.

The two curves on the right side in Figure 16 compare the
registration response time of the two schemes. Sending more
registration messages in the random scheme results in a longer
response time: the average is 901 ms, whereas the average is
859 ms in the optimization scheme.

Note that the average response time is greater than two RTTs
(400 ms), which is how long it would take to register one AV-

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 12

Fig. 16. CDF of registration and query response time.

pair (matrix size probing and the actual registration). The main
reason is that the response time is computed only when all the
20 AV-pairs’ registrations are confirmed. More formally, this
is equivalent to sampling an exponential distribution 20 times
and take the maximum value instead of the average value.

3) Query Cost: From query issuers’ point of view, using
query optimization, the average number of query messages
(excluding the probing messages) is 2.7. This means on aver-
age a query is sent to matrices that have less than 3 partitions.
In particular, from Figure 15, we observe that 82% of the
queries are sent to matrices that have 1 partition, and only
3.7% of queries use the maximum number (32) of partitions.
In comparison, in the random scheme, the average number of
query messages is 13.8, only 36% of the queries are sent to
matrices that have 1 partition, and 36.8% of queries are sent
to matrices that have 32 partitions.

The cost of query optimization is the larger number of prob-
ing messages: instead of probing one matrix to get the size,
the querying node has to probe all the matrices corresponding
to the pairs in the query. This results in a slightly longer
average response time for the query optimization scheme (597
ms vs. 594 ms). The two curves on the left in Figure 16
compare the CDF of the response times with and without query
optimization. The CDF of the optimization scheme initially
lies on the right side of the random scheme, but it has a steeper
slope owing to a more uniform distribution. In practice, a query
initiator can cache the size of different matrices to reduce the
number of probing messages for its future queries.

In summary, by using query optimization, while the system
is accommodating high skewed load, both registration and
query costs are kept near the minimum cost as defined by
the basic RP-based system with no partitions and replications.

VII. RELATED WORK

There exist many systems that can be considered as CDS
systems, ranging from web search engines and directory
services to peer-to-peer file sharing systems. We classify these
systems based on how the content resolvers are organized and
compare them with our system. Centralized systems, such as
Napster[15] and Google[6], use a set of central servers to index
contents and resolve queries. These servers may become the

bottleneck as load increases, and form the single point-of-
failure of the system, thus making it vulnerable to censors
and attacks such as Denial-of-Service. Our CDS is distributed
and uses a more robust overlay resolver network.

Content resolvers may be organized hierarchically into a
tree structure, e.g., in DNS [5] and SDS [16]. In general, these
systems are designed for hierarchical content names, such as
domain names and directories [17]. To prevent overloading
resolvers high in the tree, DNS relies on caching to scale to
the Internet level and SDS uses bloom filter to reduce load
propagated up the tree. In contrast, our system is designed
to handle more general content names that do not necessarily
have a hierarchical nature.

Systems based on an unstructured general resolver network
such as INS [8], Siena [9], Gnutella[7], and Freenet [18]
require flooding the network at either content registration time
or query resolution time. Hence these systems do not scale
with the number of content names and queries. More recent
systems such as KaZaA [19] scale better by leveraging a two-
tier infrastructure and relying on “supernodes” to suppress the
flooding. In our system, we eliminate network-wide flooding
at both registration and query time by establishing Rendezvous
Points.

A hash-based peer-to-peer system such as Chord [1],
CAN [2], Pastry [3], and Tapestry [4], uses a scalable protocol
to form a self-organizing structured overlay network. While
not directly supporting general content searchability, these
systems provide an efficient solution to content name lookup
by binding a complete content name, such as a file name, to
a specific node in the system using a hash function. These
systems relate to our work in two ways. First, the DHT
abstraction [11] in these mechanisms provides the CDS system
a scalable and robust substrate for building the CDS overlay
network and for routing CDS messages. Second, our CDS
system extends the basic lookup functionality and supports
content searchability by using AV-pairs.

Several projects built systems on top of DHT to support
searchability. In [12], the focus is on efficient keyword-based
searching. Unlike our system, a query is sent to each node that
is responsible for one of the keywords in the query, and par-
tially matched results are first collected over the network and
then “join” operations are performed to get the final matches.
Techniques such as bloom filters and caching are used to
reduce the network bandwidth consumption. We avoid the
transmission of potentially large number of partially matched
results by storing complete content names (all keywords of
a document in [12]’s context) on RP nodes to allow full
resolution locally.

Twine [20] is a resource discovery system built on top
of Chord. Resource descriptions are separated into “strands”
and then mapped onto nodes in the resolver overlay network,
similar to our basic system. A resolver that corresponds to a
random strand in the query is used to resolve the query. Twine
simply rejects registrations that correspond to a popular strand
once a threshold on the corresponding node is crossed. In our
system, we show query optimization is important to this type
of system’s performance and we use load balancing matrices
to deal with skewed load distribution.

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. XX, NOVEMBER 2003 13

Load balancing using partitions and replicas can trace its
roots to early work in parallel databases, e.g., Gamma [21].
DDS [22] explores these ideas further in the domain of
designing backend for Internet services in a server cluster
setting. Upon receiving a request, the front end server selects a
replica within a partition to best serve the request. Our system
works in a peer-to-peer setting, and the selection of which
node serves a request (query or registration) is done by the
end points locally.

In the context of Content Distribution Networks (CDN),
[23] proposes schemes where a request redirector can select a
server replica from a dynamic list of servers to serve a URL
request. The selection is based on the load of the servers, and
the redirector may decide to grow the list of servers if the
number of requests increases. This scheme is similar to one
dimension of our load balancing mechanism, the replication
expansion. However, in our system, the expansion is done
in a distributed fashion by using high local query load to
indicate the need of expansion, and no centralized entity like
the redirector is needed. In addition, we also consider load
balancing for registration.

VIII. CONCLUSIONS

In this paper, we presented a distributed and scalable
approach to the content discovery problem. The RP-based
content registration and discovery mechanism allows the CDS
system to scale with the number of content names and queries
by avoiding network-wide flooding. AV-pair based content
representation coupled with subset matching allows flexible
searches. Load balancing matrices are deployed to improve the
system’s throughput by eliminating hot-spots. Our approach is
distributed in that nodes in the system can make load balancing
decisions based on their local load information. The even
distribution of registration and query load in LBMs is achieved
via hashing and requires no centralized control. Our extensive
simulation results validated the system’s scalability and load
balancing properties. In particular, our system scales to near
its operational capacity under extremely skewed load. Finally,
the extra cost introduced to registrations and queries by load
balancing remains low when the query optimization algorithm
is applied.

ACKNOWLEDGMENT

The authors would like to thank Umair Shah, Christos
Faloutsos, Shuheng Zhou and Leejay Wu for their valuable
comments.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-To-Peer Lookup Service for Internet Appli-
cations,” in Proceedings of SIGCOMM 2001, San Diego, CA, August
2001, pp. 149–160.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” in Proceedings of SIGCOMM
2001, San Diego, CA, August 2001, pp. 161–172.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-Peer Systems,” in Pro-
ceedings of Middleware 2001, Heidelberg, Germany, November 2001.

[4] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing,” U.
C. Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.

[5] P. Mockapetris, “Domain Names - Concepts and Facilities,” November
1987, IETF, RFC 1034.

[6] Google Inc., http://www.google.com/.
[7] Gnutella, http://gnutella.wego.com/.
[8] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The

Design and Implementation of an Intentional Naming System,” in
Proceedings of SOSP 1999, Kiawah Island, SC, December 1999.

[9] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and Evaluation of a
Wide-Area Event Notification Service,” ACM Transactions on Computer
Systems, vol. 19, no. 3, pp. 332–383, August 2001.

[10] J. Gao, G. Tzanetakis, and P. Steenkiste, “Content-Based Retrieval of
Music in Scalable Peer-to-Peer Networks,” in Proceedings of ICME
2003, Baltimore, MD, July 2003.

[11] Project IRIS, http://iris.lcs.mit.edu.
[12] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”

in Proceedings of Middleware 2003, Rio de Janeiro, Brazil, June 2003.
[13] K. Sripanidkulchai, “The Popularity of Gnutella

Queries and Its Implications on Scalability,”
http://www.cs.cmu.edu/ � kunwadee/research/p2p/gnutella.html.

[14] D. Thaler and C. V. Ravishankar, “Using Name-Based Mappings to
Increase Hit Rates,” IEEE/ACM Transactions on Networking, vol. 6,
no. 1, pp. 1–14, 1998.

[15] Napster, http://www.napster.com/.
[16] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H.

Katz, “An Architecture for a Secure Service Discovery Service,” in
Proceedings of Mobicom 99, Seattle, WA, August 1999.

[17] M. Wahl, T. Howes, and S. Kille, “Lightweight Directory Access
Protocol (v3),” December 1997, IETF, RFC 2251.

[18] Freenet, http://freenet.sourceforge.net/.
[19] Kazza, http://www.kazaa.com/.
[20] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A Scal-

able Peer-to-Peer Architecture for Intentional Resource Discovery,” in
Proceedings of Pervasive 2002, Zurich, Switzerland, August 2002.

[21] D. Dewitt and et al, “The Gamma Database Machine Project,” IEEE
Transactions on Knowledge and Data Engineering, vol. 2, no. 1, March
1990.

[22] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler, “Scalable, Dis-
tributed Data Structures for Internet Service Construction,” in Proceed-
ings of OSDI 2000.

[23] L. Wang, V. Pai, and L. Peterson, “The Effectiveness of Request
Redirection on CDN Robustness,” in Proceedings of OSDI 2002, Boston,
MA, Dec. 2002.

Jun Gao is currently a Ph.D. student in the Com-
puter Science Department at Carnegie Mellon
University. He received double B.S. degrees in
engineering physics and computer science from
Tsinghua University, Beijing, China, an M.S.
degree in nuclear engineering from the University
of Virginia, and an M.S. degree in computer
science from Carnegie Mellon University, in 1995,
1997 and 1999, respectively. His research interests
lie in the areas of computer networking and
distributed systems. More information can be

found at http://www.cs.cmu.edu/ � jungao.

Peter Steenkiste is a professor in the School
of Computer Science and the Department of
Electrical and Computer Engineering at Carnegie
Mellon University. He received a B.S. degree
in electrical engineering from the University of
Ghent, Belgium, in 1982, and M.S. and Ph.D.
degrees in electrical engineering from Stanford
University in 1983 and 1986. His research in-
terests are in the areas of networking and dis-
tributed systems. More information can be found
at http://www.cs.cmu.edu/ � prs.

