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Abstract. Remos provides resource information to distributed applications. Its
design goals of scalability, flexibility, and portability are achieved through an archi-
tecture that allows components to be positioned across the network, each collecting
information about its local network. To collect information from different types of
networks, Remos provides several Collectors that use different technologies, includ-
ing SNMP and benchmarking. By matching the Collector to the particular network
environment and by providing an architecture for distributing the output of these
collectors across all querying environments, Remos collects appropriately detailed
information at each site and distributes this information where needed in a scalable
manner. Remos has been implemented and tested in a variety of networks and is in
use in a number of different environments.
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1. Introduction

The Remos system was designed to provide resource information to
distributed applications. Every distributed application that wants to
explore resource availability or react to changes in them must be able
to determine the usage of network resources. Networked systems expose
applications to the realities of resource availability and to meet its
performance goals, the application must either reserve resources (if
reservations are supported), or it must adapt and optimize its per-
formance within the resource availability constraints. Our focus is on
supporting the development of adaptive applications. Remos’ ability to
support resource measurements in a variety of environments and for a
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variety of applications makes it an appropriate measurement tool for
Grid environments.

The Remos system serves as a foundation for a range of application-
specific approaches to dealing with network resources and their changes.
These approaches are beyond the scope of Remos. Instead, Remos
aims to provide resource measurements across a wide range of net-
work architectures, environments, and implementations. This explicit
information about network resources can be used by applications to
implement application-specific adaptation mechanisms. Our experience
shows that Remos is especially useful for applications that must make
explicit configuration decisions, such as selecting a server from a set of
candidates, selecting a set of compute nodes with certain connectivity
properties, or deciding between local or remote execution. For simpler
scenarios, such as two nodes exchanging data, there are often cheaper
solutions, e.g., the nodes monitor their own performance.

In order to support resource measurement in different network envi-
ronments and for diverse applications, the Remos system must address
a number of conflicting priorities to be of practical use. Before we
present the architecture and implementation of Remos, let us briefly
review our design objectives and their challenges

— Scalability: Resource monitoring in distributed systems necessarily
involves many machines, a large network infrastructure, and many
users. The monitoring system should scale well with both the size
of the infrastructure and of the user population.

— Usability: The users of the collected information are application
developers, not network managers. Our goal is to only provide
them with the information they need, without swamping them
with unnecessary details.

— Flexibility: The system should be able to support the requirements
of different users. For example, synchronous multiprocessing, real-
time video, and bulk data transfer have distinctly different band-
width, latency, and loss requirements, and require that information
across different timescales.

— Portability: Network technology continues to develop at a fast
pace. Remos must be able to allow the integration of new
networking technologies or new measurement techniques. As a
consequence, the Remos design must isolate those parts where
modifications are likely (many parts that interact with the base
networking technology) and ensure portability to the clients by a
stable API.
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— Robustness: The system must degrade gracefully under load (both
on the network and on the resource measurement system).

— Cost-effectiveness: The measurement system should not perturb
the measured system to the point that the measurements are
meaningless. The intrusiveness should be kept as low as possible.

Remos has been used on a regular basis by several groups: the
Aura Project (CMU), QuO (BBN), the HiPer-D Testbed (NSWC and
S/TDC), CACTUS (University of Arizona), Rainbow (CMU), and the
Desiderata Project (Ohio University). These projects are quite diverse,
both with respect to the networks they use and their application infor-
mation needs. Our evaluation along the “portability” and “flexibility”
dimension is in part based on interactions with these users.

This paper describes how the design of Remos addresses the above
challenges. In Section 2, we describe the general architecture of Remos.
Section 3 describes the techniques used by Remos to implement the
architecture. Section 4 describes related work and discusses Remos in
terms of the Grid Monitoring Architecture proposed by the Global
Grid Forum. Section 5 evaluates how the design and implementation
of Remos meet the original design goals. Finally, Section 6 discusses
the lessons learned in the development of Remos as well as issues that
require further work.

2. Architecture

An overview of the Remos architecture is presented in Figure 1. The
Remos architecture divides its services between Collectors, Modelers,
and Predictors. The Remos API, which is exposed to applications, is
implemented only in the Modeler. The isolation and the delegation of
tasks as well as the API allows considerable flexibility in varying the
design of the other components.

2.1. THE REmos API

From most applications’ perspective, networks are diverse, complex,
shared, heterogeneous black boxes that serve to move data between two
points. The goal of Remos is to open up the black box for distributed
applications to make appropriate decisions based on the network’s ca-
pabilities and resource usage. However, there are inherent tradeoffs in
providing detailed information about a network to an application. Too
little information may not allow a complex application to accurately
predict the performance advantages or disadvantages of various options
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Figure 1. Overview of the components in the Remos architecture.

for data placement, communication patterns or algorithms. On the
other hand, too much information can make simple questions, such as
locating and estimating the bottleneck bandwidth between two hosts,
difficult or impossible for an application programmer to answer without
learning many complex details of network behavior. The question for
the Remos API, then, is determining the proper level of abstraction for
representing network information to the application.

Because we neither wished to sacrifice information detail or the ease
of developing applications, we developed two fundamentally different
ways for applications to access the data available through Remos
shown in Figure 2. First, flow-based queries are used when the ap-
plication itself is fairly simple, or wants to evaluate the performance a
particular communication pattern will receive from the network. Flow-
based queries require a standardized description of a communication
pattern to be used by the application. This standardization intro-
duces information loss, but if the application’s communication needs
are simple, that loss should be minimal. The standard description
is then passed to the network layer, which is free to use whatever
network-specific knowledge it has to respond to the query.

The Remos flow query has the form:

public void getFlowInfo(SetOfFlows fixed_flows,
Set0fFlows variable_flows,
Set0fFlows flow_queries,
int flags, double age);
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Figure 2. The two query abstractions supported by the Remos API are illustrated
here. As each query passes through the abstraction layer between the application
and network levels, information is lost. A user should select the best query for an
application by evaluating the complexities of the application’s adaptation options
and whether any unusual network support might be available that is not reflected
in the standardized topology description.

where fixed flows is a set of flows (end-to-end bandwidth) that must
be met. If one cannot be met, an exception is thrown. variable flows
is a set of flows whose rate can be adjusted. If some or all requested
flow rates cannot be achieved, the rates of the affected flows will be
reduced proportionally and the information in each Flow structure is
updated accordingly. flow_queries is a set of flows that are updated
with the remaining bandwidth available on each path after the previous
two classes have been met. Each Flow in flow_queries is considered
independently. The combination of the three flow classes gives users a
powerful interface for expressing the behavior of a variety of application
types and to use the same interface for a wide range of queries.

The second type of query is the topology query. The topology query is
useful for the opposite problem, when an application is rather complex,
and its options for network utilization are too complex or would take
too many separate flow-queries to evaluate. In the topology query, the
network’s representation, including topology, link capacity, and utiliza-
tion, is passed to the application in a standardized format. Again, this
process introduces information loss, but it enables applications to make
decisions such as task placement without incurring exponential costs.

The topology interface is much simpler than the interface for flow
queries:
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public Graph getGraph(SetOfNodes nodes, double age);

where nodes is the set of Nodes for the endpoints that must be included
in the graph. The returned Graph structure provides a set of nodes
(internal and endpoint) and links which connect them. Each node and
link is annotated with capacity and utilization information.

Both queries include an age parameter, which allows the application
to specify the maximum age of any cached information used to answer
the query. The application can decide on the tradeoffs between a large
age value, which lowers overhead and intrusion, and a small age value,
which increases the accuracy as well as the response time.

More information about the APl interface can be found in the Remos
TR (DeWitt et al., 1997). Documentation of the current interface can
always be found by downloading the current release.

2.2. COLLECTORS

The Collectors are responsible for acquiring and consolidating the in-
formation needed by the application. Collectors can use a variety of
methods of collecting information, e.g., they may incorporate or control
sensors that perform the actual measurements, but from an architec-
tural view they have a single function: collect information and forward
it on to the Modeler. New sensors can therefore be added by having
them conform to the protocol that is used for Collector-Collector and
Collector-Modeler communication.

For scalability reasons, Collectors can be organized in a hierarchical
fashion (Figure 1). At the lowest level, a Collector is responsible for
collecting information about a specific network. For example, a local
Collector is responsible for obtaining performance information about
its LAN. Global Collectors are responsible for obtaining performance
information about the networks connecting LANs. Local or global Col-
lectors at remote sites can be contacted to obtain information about
those remote sites.

The Master Collector is responsible for gathering information from
different Collectors and coalescing it into a response to a Modeler’s
query. The Master Collector maintains a database of the locations of
other Collectors and the portion of the network for which they are re-
sponsible. When a request comes from a Modeler, the Master Collector
queries only the appropriate Collectors and replies without revealing
that the response was obtained from multiple Collectors. Using this
technique, it is possible to build several layers of Collectors. For exam-
ple, the remote Collector in Figure 1 might be another Master Collector
that in turn contacts a variety of local Collectors when queried about
its network.
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One important advantage of this architecture is that it blurs the
line between inter- and intra-site measurements. Because the Collectors
assume responsibility for contacting remote sites and for aggregating
all available information into a single response, neither the Modeler nor
the application must determine whether the query concerns nodes at a
single site or at remote sites, or consider the most appropriate measure-
ment technique. If the WAN link is the only bottleneck along the path
of the query, then the appropriate measurement will automatically be
returned.

2.3. MODELER

The Modeler sits between the application and the Collectors. It imple-
ments the API and is responsible for modeling the Collector-gathered
information about the network into the information abstractions re-
quired by the application. Its first task is to communicate with the
Collector to send requests and receive information about the network.
Its second task is the conversion of the raw network information into
abstractions with which the application can work.

From an architectural view, the Modeler functionality and the
abstractions it defines are related to the application, whereas the Col-
lectors work with network-related abstractions. A Collector discovers
network nodes and links, which are formed into a network topology
graph by the Modeler. Similarly, a Collector measures the resources
of individual nodes and links inside a network; the Modeler uses these
resource measurements to convert the information into forms that are
easier to use for applications, such as calculating the available resources
per flow or identifying the bottleneck along a path.

An application communicates with exactly one Modeler, which runs
on the same node as the application. In contrast, the Modeler may
gather information from Collectors which are scattered across the net-
work. This division of labor allows Remos to reduce the overhead
imposed on the application by performing most of its work on sep-
arate nodes. It also eliminates the need to store application state in
Collectors, allowing each Collector to deal with queries in a stateless
fashion, while the Modeler retains the ability to customize its responses,
query intervals, and predictions based on the application’s state.

2.4. PREDICTORS

Predictors are responsible for turning a measurement history into a
prediction of future behavior. The predictors used with Remos are part
of the RPS Toolkit developed by Dinda (Dinda and O’Hallaron, 1999).
Although the API supports requests for predictions of network
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behavior, in practice we only implemented the predictors for
host-load. Because we are focusing on network monitoring in
this paper, we will not discuss the predictors further here.
Readers interested in the host load prediction are referred to
Dinda (Dinda and O’Hallaron, 2000). The effectiveness and qual-
ity of bandwidth predictions based on SNMP and benchmark
measurements are discussed elsewhere (Lowekamp et al., 1999b,
Miller and Steenkiste, 2000, Wolski, 1998).

3. Implementation in Remos

The implementation of Remos is diagrammed in Figure 3. This figure
illustrates how the various Collectors used by Remos interact when
used in a Grid-like environment. As described in the previous section,
the complexities of the system are hidden from the user by partitioning
Remos into application-side (Modeler and predictors) and network-side
(Collectors) components. To cover the wide variety of networks and
administrative domains in which Remos must run, we developed the
following Collector implementations:

SNMP Collector Collects topology and bandwidth information us-
ing passive queries to SNMP-enabled IP routers.

Bridge Collector Determines the topology of bridged Ethernet LANs
and forwards the topology information to the SNMP Collector to
augment its bandwidth monitoring capabilities to include SNMP-
enabled Ethernet switches.

Benchmark Collector Performs active monitoring using TCP
probes that transfer data between two machines and record the
bandwidth obtained during the transfer. Used in networks where
SNMP is not accessible.

Master Collector Merges data from the other Collectors into one
coherent picture and serves as a single point of contact for
applications.

The combination of these Collectors provides support for the vast
majority of networking situations. The majority of current LANs are
built using bridged Ethernet. The combination of the Bridge Collector
and SNMP Collector provides topology and bandwidth information in
these networks. Most campus networks are built with routers connect-
ing various Ethernet subnets, which are supported by the SNMP and
Bridge Collectors. When two sites are connected across the Internet, it
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Figure 3. A detailed illustration of how the components of the Remos architecture
are connected. Shown here are applications running at CMU and ETH making use
of resources at CMU, ETH, and BBN. Each application is using prediction services
to provide information about the future network availability. The applications at
CMU are using machines at CMU and BBN, and the application at E'TH is using
machines at ETH and BBN. The benchmark measurements sent across the Internet
are shown, but, for clarity, the connections between the SNMP and Bridge Collectors
and the network components they monitor are not shown.

is typically impossible for an end-user to obtain SNMP access to the
relevant routers, but the Benchmark Collector performs active probes
across that span of the network to the remote site, where a local SNMP
Collector performs its monitoring.

In the remainder of this section, we describe how each Collector
is implemented and how they communicate with one another. We
conclude with a brief description of the Modeler implementation.
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3.1. SNMP CoLLECTOR

The SNMP Collector is the basic Collector that Remos uses for most
of its network information. SNMP is a database protocol designed to
provide network administrators with direct access and control over
the status of network devices (Stallings, 1996). The SNMP Collector
uses these features to make passive queries that obtain network-level
information about topology and performance directly from routers and
switches. Because the SNMP Collector has direct access to the informa-
tion the network itself stores, this Collector is capable of answering the
flow and topology queries that require an understanding of the details
of the network’s structure (Miller and Steenkiste, 2000). The SNMP
Collector operates on routed networks (layer 3).

An SNMP Collector is assigned to monitor a particular network,
generally an IP domain corresponding to a university or department.
Because SNMP agents are normally only accessible from local IP ad-
dresses, these administrative restrictions dictate the location and areas
of responsibility for the SNMP Collectors.

The SNMP Collector monitors the network on an on-demand basis.
It waits for application queries, then explores and begins monitoring
the network components needed to respond to that query. Once it
begins monitoring parts of the network, it will continue with periodic
monitoring to collect history of that network for use in predictions. The
Collector can also be configured to begin monitoring specific resources
at startup for use in a computational center or with other known
resources.

The first and most complex step the SNMP Collector must take
upon receiving a query is topology discovery. Using the IP addresses
of the nodes in the query and the routers they are configured to use,
the Collector follows the route hop-to-hop between each pair of nodes
in the query. While simple, the algorithm is quite expensive since it
has a running time of D x N?, where D is the diameter of the network
and N is the number of endpoints in the request. However, to help
reduce the actual running time, our algorithm stops a path search
between a pair of nodes when an earlier discovered path is reached
to the same destination. Also, in subnets where routes are symmetric,
half the queries can be eliminated.

Once the Collector has discovered the routes between the nodes,
it queries the routers along the path for the link bandwidth between
each pair of routers. It then periodically monitors the utilization of
each segment by querying the octet counters for each interface on the
routers. By default, the utilization is monitored every five seconds,
although this is a configurable parameter.
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The final responsibility of the SNMP Collector is representing the
network with a virtual topology graph. We use the term “virtual” here
because the the graph may not perfectly map the underlying network:
when the Collector discovers nodes connected to a shared Ethernet
or connected to routers it cannot access, it represents their connection
with a virtual switch. In the case of shared Ethernet, this switch can be
annotated with the bandwidth capacity and utilization of the shared
Ethernet, which represents its functionality within a standard graph
format.

The SNMP Collector is implemented with Java threads, so it is
capable of monitoring a number of routers and responding to many
queries simultaneously.

3.2. BRIDGE COLLECTOR

By itself, the SNMP Collector is only capable of monitoring layer 3
routed networks. While many research and campus networks are con-
nected using only routers, the majority of LANs are implemented using
layer 2 switched Ethernet. Unfortunately, Ethernet switches do not
provide explicit topology information as is provided by the IP routing
tables. The Bridge Collector addresses this problem by determining the
topology of the Ethernet switches using their forwarding databases. In
the Remos architecture, it exists entirely to inform the SNMP Collector
of the Ethernet topology, allowing the SNMP Collector to obtain the
actual utilization measurements from the switches.

The Bridge Collector begins its topology discovery immediately at
startup. It is capable of determining the topology between any switches
that implement the forwarding database specified in the RFC1493
Bridge MIB. The complete forwarding database is downloaded from
each bridge in the Ethernet LAN. Using this information, the Bridge
Collector determines how the bridges are connected, thus deriving
the topology for the entire Ethernet network (Lowekamp et al., 2001).
Once the Bridge Collector has determined how the bridges are con-
nected, it then finds the location of all the hosts in its monitoring list.
The Bridge Collector now has a complete picture of the layer 2 topology
provided by the Ethernet LAN.

3.2.1. Topology Maintenance

After completing the initial discovery phase, the Bridge Collector be-
gins monitoring the location of all the hosts it is aware of on the
LAN. It selects appropriate monitoring intervals for each host based
on historical information indicating its likelihood to move, leave the
network, or go down.
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To update the location of a previously discovered host, the Bridge
Collector performs a “quick check,” which consists of sending a ping
and immediately querying the bridge to which the host was last known
to be connected. If the host has not moved, the bridge immediately
reports it to be in the same position. If the host has moved, the Bridge
Collector waits for a response to its pings and then searches through
the bridges in the same manner as for an unknown host.

For previously unknown hosts, the Bridge Collector pings the host
until it receives a response, which places the host’s MAC address in
the ARP cache of the machine and ensures that at least some bridges
have seen the host. The Bridge Collector then begins at the root of the
switch topology and locates the host in the topology.

The Bridge Collector assumes that while hosts may move, the
switches themselves do not move. This assumption is almost always
true for any non-mobile network. In the event that system administra-
tors reconfigure the network, the Bridge Collector must be restarted to
repeat its initial topology discovery.

3.2.2. Communication with the SNMP Collector

The Bridge Collector informs the SNMP Collector of LAN topology
only when presented with a query. When the SNMP Collector receives
a query from the Modeler for a host or hosts of which it is unaware, it
forwards a topology query request to the Bridge Collector. The Bridge
Collector replies to the SNMP Collector with the bridges and links used
in the topology between the hosts in the query. The SNMP Collector
caches its knowledge of these bridges and hosts, and adds them to the
list of links that it monitors.

To simplify the implementation, the Bridge Collector does not main-
tain state for which portions of the topology the SNMP Collector has
queried. Instead, when it observes a host it is monitoring move, it sends
an invalidate message to any SNMP Collector with an open connection.
If the SNMP Collector had previously cached information about that
host, it will delete it and optionally request the new information. If
it is unaware of the moved host, then it merely ignores the invalidate
message.

3.2.3. Runtime Costs

Analyzing the runtime of the Bridge Collector is difficult because the
actual topology algorithms runs very quickly. The time-consuming por-
tion of the Bridge Collector is the process of retrieving information from
the bridges without overloading them (which is sometimes perceived
as an attack by the bridges). The initial download of the forwarding
databases from the bridges takes several minutes on a typical 100
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host network and somewhat under two hours on a 3000 host network.
Because the Bridge Collector answers most queries from its cache of
topology information, after the initial discovery phase is run, this cost
no longer matters to the runtime of Remos.

The most relevant cost of the Bridge Collector for Remos is the time
it takes to reply to a query from the SNMP Collector. In cases where
the Bridge Collector has all hosts being queried for in its cache, and the
query does not require more recent updates than are currently cached,
the response is immediate. If the query requests a host the Bridge
Collector has not seen before, or requests more information than is
currently cached, then the Bridge Collector must search for or update
the location of each host.

Performing a quick check to confirm a host is in the same location
as before is of minimal cost, only the time it takes to issue and receive a
response to one SNMP query. Discovering the location of an unknown
host can take longer, as the time for this operation depends on the time
before a ping response is received, the time to send an SNMP query
to each bridge, and the number of bridges that must be queried before
the host is located in the topology. Typically, however, an active host
can be located within one or two seconds. If a host is not responding to
pings, the Bridge Collector waits a predetermined time before reporting
the host as unavailable.

For queries of very large numbers of new hosts, the search could be
parallelized. However this optimization has not been made to reduce
the load placed on the bridges.

3.3. BENCHMARK COLLECTOR

While SNMP offers excellent information, Remos generally cannot
obtain SNMP access to network information for WANs or other net-
works where the Remos administrator does not have an account on
a machine. In that case, Remos falls back on a Benchmark Collector,
which uses active probes to determine the performance characteristics
of the network. A Benchmark Collector is run at each site where an
SNMP Collector is. When a measurement of performance between
multiple sites is needed, the Benchmark Collector sends an active
TCP probe between itself and the Benchmark Collector running at
the other site of interest. By measuring the bandwidth and latency
between sites, the Benchmark Collectors determine the performance of
the links connecting the network and report this information to the
Master Collector. This technique is similar to the techniques used by

NWS (Wolski et al., 1997).
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To measure bandwidth we use Nettest (Cray Research Inc., ), and
for delay we use traceroute. To run these programs the Benchmark
Collector must have permission to run code on the endpoints it uses
for measurements. The Benchmark Collector is also expensive: the al-
gorithm is N2 with a large constant (time to execute a benchmark). In
practice we only use this Collector for wide area networks, so endpoints
correspond to subnets and N is in practice small. Also, in an environ-
ment with many Remos users, we would rely on caching to keep track
of connectivity to a larger number of subnets. The frequency with with
the Benchmark Collector probes can be controlled; we typically use an
interval on the order of 10 minutes.

There are some interesting differences between the SNMP and the
Benchmark Collector:

— The active probes used by Benchmark Collector can add a consid-
erable load to the network traffic. The SNMP Collector’s passive
probes, on the other hand, add very little traffic but may place
an additional load on the routers because they must respond to
SNMP queries.

— The Benchmark Collector measures user-level performance. In con-
trast, the SNMP Collector collects historical data on bandwidth
use, which then must be translated into an estimate of how much
bandwidth a new user can expect. While our results show that this
is possible, more experience is needed to show how accurately this
can be done across a range of networks.

— The information from the Benchmark Collector is less detailed.
For example, suppose we have a three node query (nodes A, B,
C). If benchmarks show that the A-C bandwidth is 4 Mbs and
B-C is 5 Mbs, the Benchmark Collector cannot predict what the
result would be if A-C and B-C stream data at the same time. An
SNMP Collector would return a logical topology that shows where
the bottleneck is, i.e. whether it is shared between the two flows
or not.

Overall, our experience indicates that SNMP Collectors are less intru-
sive and provide more accurate information, although it is difficult to
evaluate the impact of the SNMP queries on router performance.

3.4. MASTER COLLECTOR

Queries involving a single subnet can be handled entirely by the Col-
lector responsible for that subnet. However, distributed applications
that need to obtain information about multiple subnets cannot get all
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Figure 4. Master Collector example.

the information they need from a single Collector. The Master Collector
was designed to solve this problem. Despite its name, a different Master
Collector can be used in each network where Remos applications are
running.

The current implementation of the Master Collector uses a database
to keep track of all the Collectors it knows about. The Collectors reg-
ister with the database, giving information that includes the type of
Collector and the domain it is responsible for, represented by one or
more subnet addresses and netmasks.

The Modeler used by the Remos application submits a query to
its Master Collector. When a query is received, the first task of the
Master Collector is to identify the IP networks and subnets involved in
the query, along with the associated SNMP and Benchmark Collectors
for those networks. For instance, a user might ask about hosts from
both ETH and CMU in the same query, as shown in Figure 4. 2 of the
hosts (A.ETH and B.ETH) are in a LAN which is separated by a wide
area network from the hosts at CMU (C.CMU and D.CMU).

The Master Collector uses the IP addresses of the hosts requested to
identify the Collectors needed to answer the query. It chooses the SNMP
Collectors that are responsible for the domains containing hosts listed
in the query (leaf subnets), and then also picks Benchmark Collectors to
get information about the wide area networks between the leaf subnets.

It then breaks up the query for the different Collectors and sends
the correct piece to each Collector. This problem is trivial if we know
the IP addresses of (the relevant ports on) edge routers that connect
the subnets. However, this information is not part of the query request.
One solution is to have the Master Collector discover this information,
e.g., using traceroute, or have it request the information from the data
Collectors. This approach has the drawback that the Master Collector
must learn about and keep track of information that is subnet specific.
Instead, we place the responsibility for identifying edge routers with
the data Collectors. For each data Collector, the Master Collector for-
mulates a request that contains not only the endpoints of the subnet
it’s responsible for, but also one endpoint from each of the other leaf
subnets. Then the Master Collector uses a separate thread to send the
queries to all the Collectors in parallel.
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Figure 5. Master Collector merging process.

For the example given in Figure 4, the Master Collector would deter-
mine that it needs to contact three Collectors: an SNMP Collector for
ETH, another SNMP Collector for CMU, and a Benchmark Collector to
get information about the wide area network between ETH and CMU.

When an SNMP Collector gets a query from the Master Collector,
it uses the IP addresses of the hosts in the query to determine if any
of them are outside its domain. If there are any, it discovers the routes
within its own network up to and including its edge router. In its
response to the Master Collector, it returns both the relevant local
topology and information about the edge router. Benchmark Collectors
have to replace the endpoints outside their domains with the addresses
of nodes in the same subnets that can be used to run benchmark
programs (e.g., a peer Benchmark Collector).

Once all the queries have been sent out, the Master Collector waits
for each thread to finish receiving the responses from all the Collec-
tors. Then the Master Collector merges the results of each query and
removes duplicate node and link information. In this process, node
and link information from an SNMP Collector takes precedence over
the same information from a Benchmark Collector since the SNMP
Collector’s data is more accurate. Furthermore, if the response from
an SNMP Collector contains an edge router, it will also include a list
of all of the IP addresses associated with that edge router. This is
important because a router that is identified by one IP address in the
response from a Benchmark Collector might be identified by a different
IP address in a response from an SNMP collector. The Master Collector
uses the edge router information to determine that these two different
IP addresses belong to the same node.

Figure 5 shows the merging process for the example given in Fig-
ure 4. The Master Collector takes the information from the three
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Collectors involved in the query and merges it into one seamless picture
of the network connecting the hosts listed in the original query. This
result is then returned to the Modeler.

3.5. MODELER

The application queries information about the network via the API
that is provided by the Remos Modeler. The Modeler is a single-
threaded entity that opens and maintains a TCP connection to its
Master Collector. The location and the port of the Master Collector
are configured at application startup. The Modeler is available in C
and Java implementations.

The Modeler uses the raw network information provided by the
Collector to build up a topology structure of the underlying network.
It connects nodes and links to form a network graph, and it may add
virtual switches to simplify the network topology.

The Modeler implements both the topology and flow queries. Al-
though our intention was to allow information that could not be
represented as part of the topology response to be used to answer flow
queries, in practice we have not been able to explore this option because
we have collected little information that cannot be represented in our
topology graphs. However, we have found that the most important
advantage of the flow queries is their ability to simplify application
programming.

The Modeler’s implementation of the flow queries can be quite use-
ful for applications. The algorithm assumes that the application will
receive the unutilized bandwidth on each link of the network and uses
the max-min fair share algorithm (Jaffe, 1981) to determine how the
messages presented in the flow query will use the available bandwidth.
By implementing this complex approximation in the Modeler, a Remos
application developer can quickly form a complex query and rely on the
Modeler to perform the analysis, rather than performing it within the
application. The API allows the user to specify fixed-rate, proportion-
ally adjustable, and best-effort flows to mimic the behavior of a variety
of application types.

The topology information returned by the Modeler is summarized
to describe only the portion of the network required by the list of nodes
it is interested in (e.g., the end systems of a network). The routers and
bridges used to connect those hosts are returned, and large uninterest-
ing parts of the network (a series of bridges or routers with no queried
hosts attached) are compressed with virtual switches representing their
bandwidth and latency restrictions to simplify the topology description.
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All Remos queries contain a age field. This age specifies the allowed
age of a measurement. That is, an application can specify how old a
measured value can be to be considered accurate for a given application.
Long-running or loosely coupled applications can likely make use of
older measurements than can a short-lived or fine-grained application.
This age parameter allows the customization of Remos to the needs of
different applications.

4. The Grid and Related Work

Grid-based distributed computing has brought about the need for
systems that monitor and predict both application and resource in-
formation. In addition to Remos, a number of systems have been
developed that address various information needs of Grid appli-
cations (Wolski et al., 1998, Tierney et al., 2000, Ribler et al., 1998,
Tierney et al., 1998). One of the principle differences between Remos
and these systems is that Remos was intended to provide applications
with end-to-end data derived from component sensors across the net-
work, and integrate these measurements with traditional sensor-based
data and end-to-end benchmarks.

While other projects have developed techniques to de-
rive  Internet  topology  (Govindan and Tangmunarunkit, 2000,
Theilmann and Rothermel, 2000, Jamin et al., 2000,
Obraczka and Gheorghiu, 1997,  den Burger et al., 2002),  Remos
was the first to integrate LAN topology information with performance
measurements. Because the link-sharing found on LANs can have a
profound influence on an application’s performance, providing this
information as well as site-to-site performance measurements has
proven useful for predicting application performance.

Research  into  resource  prediction has  focused on
determining  appropriate  predictive  models for host  be-
havior (Dinda and O’Hallaron, 2000, Wolski et al., 1999,
Samadani and Kalthofen, 1996), and network behavior (Wolski, 1997,
Basu et al., 1995, Groschwitz and Polyzos, 1994). The RPS toolbox
used by Remos incorporates many of the models studied by this
research. RPS is also available as an independent tool for other
research requiring predictive models.

One of the products of the Global Grid Forum is the Grid Monitoring
Architecture (GMA) (Tierney et al., 2002), which was developed by
the performance working group. The architecture is based on informa-
tion producers and consumers that find each other through a directory
service. There are several similarities between the Remos architecture
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Figure 6. SNMP and Bridge Collector response times.

and GMA. Collector are producers. The Master Collector is a combined
consumer/producer, but is also responsible for aggregating information
before providing it to another layer. The Modeler can be viewed as a
consumer, since it represents the application, but it provides end-to-end
performance predictions using the component data available from the
Collectors. In the Remos architecture, Collectors use a limited directory
service to locate each other. The directory service of the GMA would
be natural to use for this purpose.

Associated with the format of the GMA is the method used to
store grid information in the first place. Significant discussion is
ongoing about the advantages and disadvantages of a hierarchical
approach, such as MDS-2 (Czajkowski et al., 2001), or a relational ap-
proach (Dinda and Plale, 2001). Both proposals present models that
are capable of associating Remos with the resources it monitors, which
is the fundamental requirement Remos has for a directory service.

5. Evaluation

The flexibility and portability aspects of Remos have been discussed
in other Sections, especially Section 3. Here, we discuss scalability and
functionality results for the different Remos components and the system
as a whole.
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5.1. LAN SCALABILITY

In a first set of experiments, we look at the response time of the SNMP
Collector deployed in the local area network in the School of Com-
puter Science at CMU. The network is a very large bridged network,
so the Bridge Collector must also be used to get complete topology
information.

Figure 6 shows how the response time increases with the number
of nodes specified in the query. All measurements are averaged over
at least 10 runs. There are seven scenarios; the first 3 were run with
the SNMP Collector only, and the last four included results from the
Bridge Collector as well. The query time added in the last four scenarios
includes both the Bridge Collector’s costs in adding new hosts to its
topology as well as the SNMP Collector’s overhead in monitoring the
utilization along each link of the reported Ethernet LAN topology.

— SNMPColl only: Cold cache: the SNMP Collector has just started
up so it has no information on either the static topology or the
dynamic performance metrics.

— SNMPColl only: Part-Warm cache: the SNMP Collector has some
cached information, namely the result from the previous query
(typically about 1/2 of the data).

— SNMPColl only: Warm cache: the SNMP Collector has both the

static and dynamic data in its cache.

— Both Collectors: Cold cache: Both the SNMP Collector and Bridge
Collector have just started up and have no information on either
the static topology or the dynamic performance metrics.

— Both Collectors: Part-Warm cache: Both the SNMP Collector and
Bridge Collector have some cached information, namely the result
from the previous query (typically about 1/2 of the data).

— Both Collectors: Warm cache: Both the SNMP Collector and
Bridge Collector have the static and dynamic data cached.

—  Warm BridgeColl, Cold SNMPColl: The Bridge Collector has all
the topology data already cached, but the SNMP Collector has
just started up and has no static or dynamic information.

We can make a number of observations. First, it clearly pays off
to cache information. The warm-cache results are a factor of three or
more better than the cold cache results. Second, the worst case cost of
a cold cache query is O(N?). However, we implemented a number of
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Figure 8. Average transfer rates for poorly-connected sites.

optimization that reduce the cost, especially for large N; the measure-
ments show the effect. Finally, the cost of warm-cache queries should
be O(N). We see that the cost actually grows faster, probably because
of increasing memory requirements, which reduce execution efficiency.

5.2. MIRRORED SERVER EXPERIMENT

One simple use of Remos is to help applications choose a remote server
from a set of replica servers based on available network bandwidth.
We have written a simple application that reads a 3MB file from a
server after using network information obtained from Remos to choose
the best server (Miller and Steenkiste, 2000). Socket buffer sizes were
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set to 128KB for both Remos and the file transfer application in all
experiments.

We ran two sets of mirror experiments: one that used remote sites
with good network bandwidth, and another experiment using sites with
poor bandwidth. For the first experiment, we ran the application at
Carnegie Mellon and servers at Harvard, ISI, Northwestern University
(NWU), and ETH. Averaged over all 108 trials, we observed an average
throughput of 2.03 Mbps from Harvard, 2.15 Mbps from ISI, 4.11 Mbps
from NWU, and 1.99 Mbps from ETH. For the second experiment, we
ran the application at Carnegie Mellon and the servers at the University
of Coimbra, Portugal (average throughput 0.25 Mbps), the University
of Valladolid, Spain (average throughput 1.02 Mbps), and the third
server was run on a machine in Pittsburgh connected via a DSL link
with a maximum upstream bandwidth of 0.08 Mbps. We ran 72 trials
using the poorly connected sites.

To evaluate the quality of the Remos information, we modified the
application to read the file from all three servers, starting with the
server that, according to Remos, has the best network connectivity.
In the first experiment using well connected sites, Remos chose the
remote site that ended up having the fastest transfer rate 83% of the
time. Figure 7 shows the difference in throughput between the 1st place
site Remos chose and the other 3 sites. The left half of the graph shows
the throughput when Remos chose the best site, and the right half of
the graph shows the throughput when Remos did not choose the fastest
site. The second bar in each group shows effective bandwidth for the
site Remos chose. This bandwidth includes the time it took to get an
answer back from the Remos system.

In the second experiment, which used sites that were not well con-
nected to CMU, Remos chose the remote site that ended up having
the fastest transfer rate 82% of the time. Figure 8 shows the difference
in throughput between the 1st place site Remos chose and the other 2
sites. As in Figure 7, the left half of the graph shows throughput for
when Remos chose the best site, and the right half shows throughput
for when it didn’t. The second bar in each group once again shows the
effective bandwidth for the site Remos chose.

We included the effective bandwidth measurement to show that
even though it takes some time to consult Remos to choose a server,
performance is still better than choosing one of the slower sites. These
experiments also show that using Remos to pick a site is effective even
when all of the sites have poor connectivity.
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Table 1. Server location, the available bandwidth (Mbps) and

the standard deviation, measured by Remos.

Average Standard

Server location bandwidth  deviation
ETH Zurich 63.1 5.61
EPFL Lausanne 3.03 0.17
CMU 0.50 0.28
University of Valladolid, Spain 0.37 0.28
University of Coimbra, Portugal 0.18 0.07

5.3. APPLICATION EXPERIMENT—VIDEO TRANSFER

In the previous example, Remos used the available bandwidth as a
metric. This metric, however, does not always directly correspond to
the metric in which the application is interested. For example, the
quality of a video application that downloads and plays the video in
real time may be rated by the number of correctly received frames at
the client (Hemy et al., 2000). This experiment shows how the Remos
metric corresponds to such an application-defined metric.

For the experiment, the video client is located at ETH. Servers from
which the videos can be downloaded are placed at different locations
in Europe and the U.S (see Table I). The video server is able to adapt
the outgoing video stream to the available bandwidth by intelligently
dropping frames of lower importance (Hemy et al., 2000). It thereby
maximizes the numbers of frames that are transmitted correctly.

The bandwidth of the local server at ETH is an order of magnitude
higher than EPFL, which in turn is an order of magnitude larger than
the others.

Before downloading a video, the client issues a Remos query to mea-
sure the available bandwidth to all servers. It then downloads the movie
from the server with the best connectivity. To compare the results, the
client subsequently also downloads the same video from all other sites
in the decreasing order of the available bandwidth. This experiment
was run several times within 24 hours with different movies.

Figure 9 shows the number of correctly received frames for each
experiment. The server that is selected first according to the band-
width measurements by Remos is indicated by a large circle. The figure
excludes the results from ETH and EPFL because the bandwidth is al-
ways higher than the bandwidth required by the application. If ETH is
included, the client always picks the server at ETH, and the downloaded
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Figure 10. The bandwidth measured by the application, averaged over different time
intervals, and the bandwidth reported by Remos.

video does not lose any frames. If ETH is excluded, the system always
selects EPFL and also gets the video without dropped frames. If both
ETH and EPFL are excluded, the client-perceived quality corresponds
to the reported bandwidth in 90% of the cases, i.e. the client receives
the most frames correctly from the server with the highest bandwidth.
In the two cases where the best server is not picked, an inspection shows
that the server only sent about half of the packets, probably due to a
high load on the server.

The results show that the available bandwidth corresponds well
to the application-perceived quality. However, the two wrong picks
indicate that the bandwidth alone does not guarantee a good video
download. Other parameters may influence the download as well and
must be taken into account.
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Figure 10 shows two experiments in detail. The same movie is down-
loaded from 2 different servers, a local server with a high-bandwidth
connectivity and the remote server with a limited bandwidth. Each
packet that arrives at the client is timestamped and the application-
perceived bandwidth is calculated as the average over three different
time intervals: 1, 2 and 10 seconds.

The download from the local server is not limited by the band-
width. The average over small intervals shows that the bandwidth
requirements vary over time. These fluctuations can be explained by
the variation of the movie content. Averaging the bandwidth over a
larger interval smooths the variations.

For the remote server experiment, the bandwidth measured by Re-
mos is the horizontal line at 0.15 Mbps. This line corresponds well
to bandwidth measured by the application if it is averaged over a
large interval. The 10 second interval corresponds to the time interval
that Remos uses to measure the available bandwidth. Calculating the
average over smaller intervals shows higher fluctuations. The reported
bandwidth does not correspond well to the bandwidth of these small
intervals.

This experiment demonstrates that optimal results can only be
achieved when not only the metric of Remos and the application corre-
spond, but also when the interval over which the bandwidth is reported
matches the varying needs of the application. Although Remos is not
currently able to fully address these points, this experiment still shows
that Remos is well able to provide useful guidance to this type of
application. It can help the video client to select the server. In addition,
it might similarly be used to determine alternate servers and routes for
a dynamic video handoff (Karrer and Gross, 2001).

5.4. SUPPORT FOR APPLICATION-LAYER ROUTING

The traditional IP routing algorithm minimizes the number of hops
in a connection. However, many applications, e.g., multimedia appli-
cations, are sensitive to bandwidth rather than the number of hops.
Studies, e.g., by Savage et al. (Savage et al., 1999b), have shown that
alternative paths can be constructed in the Internet which provide a
better bandwidth than the default routing path.

Recent approaches in overlay network advocate the routing
via end-systems in a network (Chu et al., 2000, Zhao et al., 2001,
Jannotti et al., 2000, Savage et al., 1999a, Chu et al., 2001). That is,
data is sent from a sending host via one or multiple third-party host
inside the network to the final destination. Default IP routing is used
to tunnel data between overlay nodes.
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Table II. Data threshold [KB] for which the alternative path has
a better download time than the default routing path.

src/dst  ETH  EPFL CMU NWU UVA UFMG

ETH — 165.5 305.3 358.4 290.1 182.7
EPFL  1180.6 — 331.8 385.4 316.5 146.8
CMU 514.8 349.8 — 686.7
NWU 667.1 406.8 390.6 — 1365.2  1037.2
UVA 401.5 347.2 — 384.4
UFMG  150.5 167.5  1125.2 355.6 —

We claim that Remos is well suited to support such overlay networks
because Remos provides the necessary network information while hid-
ing the details of the information gathering from the overlay structure,
e.g., the use of the right tool to measure bandwidth in a LAN or in a
WAN.

To show this suitability, we have implemented an application-specific
routing protocol for a collaborative application using Remos. The col-
laborative application must transmit data of different types, and hence
of different sizes, from one sender to multiple receivers. The set of
collaborating nodes forms a kind of an overlay network. Depending on
the size of the data and depending on the available resources along the
paths, the application must decide which path is the best. The algo-
rithm for the path selection uses the following equation to determine
the transmission time of a data item: ¢, qnsmission = % + latency
For small amounts of data, as for text, the latency is the dominant
factor, whereas the bandwidth becomes more important with the in-
creasing data size. The current values of the available bandwidth and
the latency can easily be gathered using Remos.

To show the effects of the routing, we perform an Internet experi-
ment. We have collected a set of Internet traces between several hosts in
Europe and the U.S. Every host can act as sender, proxy or receiver. Al-
ternative paths are constructed by concatenating two path, as proposed
by Savage et al. (Savage et al., 1999b). The bandwidth of an alternative
path is the minimum of the two individual bandwidths and the latency
is the sum of the individual latencies. As in (Savage et al., 1999b), we
found that alternative paths exist with a significantly better bandwidth
than the default routing path.

The gain of alternative path routing can be shown by comparing the
transmission time of the default routing path to the best alternative
path. The default path typically has a low latency because it crosses a
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Figure 11. Transmission time over default and alternative paths, as a function of
the data size.

small number of hops. For small data items, the default path is prefer-
ably used, whereas alternative paths are often used for large data sizes
because of the greater bandwidth capacity. That is, there is a threshold
above which the alternative path provides a better connectivity than
the default routing path. The threshold depends on the differences in
the latency and the bandwidth.

Table II shows this data threshold for 6 hosts in the experiment. The
numbers, expressed in KB, are average values of 250 measurements. A
field is empty if the default path is better than the alternative paths
even for large data sizes. The results show that most thresholds lie
between 400 KB and 1.5 MB. According to these results, text and small
images should be sent over the default path whereas larger images and
video should be sent over the alternative path. For large data sizes,
such as multimedia streams, the increased bandwidth availability can
have a significant effect on the quality of the video.

The effects on the application-perceived transmission time are shown
in Figure 11. This figure compares the default path with the best alter-
native path, as a function of the destination host and the data size. The
logarithmically scaled y-axis denotes the transmission time in seconds.
For the first host (EPFL), the default path is always better than the
alternative path. For all others destinations, however, the default path
is only better for small data sizes because it has a better latency. As
soon as the data size increases, the better bandwidth availability of the
alternative paths pays off.

The conclusion from this experiment is that Remos is able to provide
resource information about a network that can be used for application-
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layer routing. This information can be used for overlay networks.
However, it can also be used directly by network-aware applications
to deploy application-specific routing. Overlay networks are typically
transparent to an application and route the data based on a single met-
ric. However, this experiment also stresses the importance of separate
routing schemes, e.g., depending on the size of the data.

6. Reflections

In this section we try to capture what we learned about resource mon-
itoring systems in the last four years. While these comments are of
course quite subjective, we hope our thoughts will help others working
in the same area.

6.1. WHAT WORKED

The first step in the Remos development was the definition of the
Remos API (Lowekamp et al., 1999a). We kept the API simple and
focused on simple network performance properties that are of interest to
applications. While the API supports several performance metrics, our
initial implementation focused on bandwidth. Our experience suggests
that these were the right design decisions. The API provides a good
balance between simplicity and the amount of information provided.
It is kept small and simple to simplify application development and to
hide underlying details. The API works for all the networks we have
encountered so far, i.e. it is network independent. Finally, bandwidth
is by far the most important metric for many applications.
Underneath the fixed API, we decided to use a systems architecture
that was modular and extensible. This choice also worked well. Our
initial system consisted of just an SNMP Collector, and later we were
able incorporate Benchmark, Bridge, and Master Collectors, without
changes to the API. Because of the modular design, we were also able
to use different data gathering techniques for different networks. While
benchmarks are an effective way of collecting bandwidth information,
they are too expensive and intrusive for many types of networks, and we
need to utilize more lightweight techniques such as the SNMP Collector.

6.2. WHAT NEEDS MORE WORK

We discovered that one of the most difficult challenges in building a
resource monitoring system is making the system easily portable and
robust across diverse environments. Our goal was that Remos must be
able to report resource information for any networked environment with
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minimal, if any, manual configuration. In practice, we discovered that
bringing up Remos in a new environment can be challenging. Problems
range from: network features that we had not encountered before (e.g.
VLANSs), misconfigured network elements, and non-standard features
(e.g. non-standard SNMP implementations). To some extent, these
portability problems should not be a surprise: there are many network
vendors and many ways to configure a network, so this problem is
inherently hard. However, we have learned that, while useful, neither
the SNMP MIB specifications nor the vendors commitment to sup-
port them properly are sufficient to allow the development of totally
portable utilities, such as Remos, that automatically parse and use
the information presented by SNMP agents. After many years, we still
encounter hardware from major networking vendors with new mistakes,
omissions, or unusual interpretations of MIB standards that require a
new kludge or test in Remos to ensure support.

Once Remos runs on a network, it tends to be quite reliable, often
running for weeks or longer. The biggest challenge is topology changes
in the network, which are fairly uncommon in wired networks. Support
for tracking topology changes were only added recently, so we do not
vet know their impact on reliability. Improving the robustness and
portability of Remos is an ongoing effort.

Remos currently relies on SNMP MIB and benchmark information.
Many other sources of information could be tapped, including measure-
ments collected by ISPs for traffic engineering purposes, application-
level information (Stemm et al., 1997), and network information that
is collected in vendor-specific ways. The emerging DMTF CIM stan-
dards offer the promise of better portability. Also, for certain types
of networks, such as shared Ethernets, we need better techniques for
performance prediction.

There are many ways in which the Remos system could be im-
proved. A first issue is that communication between the Remos
components is currently based on a single-purpose, ASCII based pro-
tocol. While this was convenient for debugging and development,
using standard solutions such as SOAP or XML over HTTP would
ease interoperability and extensions. Second, the Benchmark Collector
could be improved by adding support for other types of benchmark-
ing, for example, lighter weight probing techniques based on packet
pairs (Hu and Steenkiste, 2002). Third, evaluating techniques for shar-
ing and caching of prediction results would be interesting, as well as
exploring how well sharing predictions allows the architecture to scale
to large numbers of diverse applications.

Finally, we have also developed a Collector for 802.11 wireless LANs,
although it is currently not integrated in Remos. Similar to the Bridge
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Collector it does topology discovery based on the forwarding databases.
However, unlike the Bridge Collector, it also collects dynamic band-
width information because it can exploit wireless-specific information
such as number of hosts in a cell and transmission rates to estimate
available bandwidth.

6.3. WHEN 1S REMOS MOST USEFUL?

Many applications (e.g., video streaming) only care about the perfor-
mance of a single flow between two nodes that are currently exchanging
data. In such cases, Remos is probably overkill, because the application
can get the required information more cheaply and more accurately by
monitoring its own performance (Bolliger and Gross, 2001). However,
for applications that select a server from a set of options, that select and
assign a set of compute nodes with certain connectivity properties, or
that make critical configuration decisions (e.g., to use remote or local
execution, to use video plus audio, or audio only), Remos provides
explicit connectivity information that would be difficult and expensive
to collect otherwise (Gross and Steenkiste, 1998).

We end up with a model of an adaptive application that com-
bines two types of adaptation using different information sources. The
application performs node and network selection, and high-level self-
configuration based on explicit, Remos-provided resource information.
This type of decision is typically made when the application starts up,
or, for long running applications, periodically during execution. During
execution, the application can fine-tune its performance based on direct
measurements. This model is in part driven by the cost of adaptation:
adaptation that does not involve changes in node usage can be cheap
and fast, while changing nodes or high-level application configuration
will be more expensive.

7. Conclusions

The Remos architecture is designed to provide the information needed
by Grid applications across many diverse environments. Remos has
been implemented and tested in a variety of different networking en-
vironments and has been used to support a variety of applications,
thus demonstrating the flexibility and portability needed for emerging
applications. We have used Remos to support both large numbers of
machines at a single site as well as to support several sites simultane-
ously and find that the architecture scales well. While our architecture
differs somewhat from the proposed Grid Monitoring Architecture,
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a comparison indicates both that Remos should interact well with
GMA-based monitoring tools and that the future development and
performance of tools such as Remos will be easily supported within
the framework of the GMA.

The availability of the Remos API allows application developers to
address new aspects of the environment. Without sacrificing portability
for performance (or vice versa), it is now possible to develop applica-
tions that use information about the status of the network to determine
the next adaptation steps. The availability of and experience with the
Remos architecture backs up the claims made by the Remos API and
provides a practical demonstration that it is possible to find a work-
able compromise between the conflicting objectives of functionality,
performance, and portability. As networks grow in complexity, and as
efforts like the Grid bring more application developers into this domain,
the interest in infrastructure systems like Remos is likely to increase.
Dealing with and obtaining performance information will remain an
important topic; Remos provides both a set of abstractions and an
architecture that have proven their value in practical settings.
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