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ABSTRACT

A Content Discovery System (CDS) enables content con-
sumers to discover content published by content providers
via a set of content resolvers. Existing solutions to CDS
systems have difficulties in achieving both rich functionality
and scalability. In this paper, we present a distributed and
scalable approach based on Rendezvous Points (RPs) that
efficiently supports flexible search of dynamic contents. Our
system deploys load balancing matrices (LBMs) to dynam-
ically balance registration and query load across resolver
nodes to maximize system utilization. Our system utilizes
existing hash-based algorithms for content and query distri-
bution within the overlay resolver network. We use simula-
tion to validate our design.
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1. INTRODUCTION

A Content Discovery System (CDS) is a distributed sys-
tem that enables the discovery of contents. Such a system
typically consists of three types of logical entities: content
providers (servers) that publish and provide contents, con-
tent consumers (clients) that issue queries to locate contents,
and content resolvers that determine the set of contents that
match content consumers’ queries.

There exists a wide spectrum of distributed applications
that either themselves are a CDS or use a CDS as one of
their major components. We use the term “content” in a
broad sense and its meaning may differ from application to
application. As an example, a service discovery system is a
CDS system in which users discover and utilize the abun-
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dance of devices and sensors running on the Internet. In
such a system, “content” refers to the description of a ser-
vice or a device, e.g., a printer, or a camera. As another
example, in recent years, peer-to-peer (P2P) applications,
such as on-line music sharing and file swapping, have gained
great popularity among Internet users. The primary com-
ponent of a P2P application is also a CDS system. In this
case, peers can act as servers, clients, or resolvers in that
they can provide contents to share with others, can discover
contents on other peers, and can also help to resolve other
peers’ queries.

We use a nationwide highway traffic monitoring service
as an example to illustrate the type of applications we are
targeting. Devices such as cameras and sensors are installed
along the road side of highways or mounted on patrol cars,
to monitor traffic status, road and weather conditions, and
measure speed. Cameras and sensors must frequently send
updates to the system to accurately reflect the status of the
highways. Users may send a wide range of queries to the
system, such as, “What is the speed at Fort Pitt Tunnel?”,
“Find a camera on Mt. Washington that overlooks the city
and can accept new connections for live images”, “Identify
the highway sections to the airport that are icy, so that a
driver can avoid them”.

This example represents a large category of applications
that pose the following challenges for a CDS system:

e Contents stored in the CDS must be searchable: A
client can locate content via the CDS without having
to specify its canonical name. Instead, it can do so by
specifying a combination of attributes and values that
describe the content.

o Contents stored in the CDS may be dynamic and inde-
pendent from each other: The property of a particular
content may be changing over time and so will be the
description or the “name” of the content. In addi-
tion, unlike web pages that are linked to each other,
content descriptions are often independent from each
other, and they may not necessarily display hierarchi-
cal properties, as do domain names.

e The CDS must scale with both the registration and
query load: In the above example, the number of de-
vices and users may be in the order of hundreds of
thousands, and the devices may update their informa-
tion as frequently as every few minutes. By scalabil-
ity we mean that the performance of the CDS, such



as success rate and response time for registrations and
queries, should not degrade significantly as the amount
of available contents, the rate of content registration
and the rate of queries increase.

In this paper, we present a distributed and scalable ap-
proach to the content discovery problem that meets the
above challenges. Content names and queries are repre-
sented with attribute-value pairs, and clients can search con-
tents using any combination or subset of attributes and val-
ues. We achieve scalability through the use of Rendezvous
Points (RPs). The RP-based registration and query design
avoids network flooding. We address the load concentration
problem in our RP-based design by balancing the load across
resolver nodes using Load Balancing Matrices (LBMs).

The rest of the paper is organized as follows. In Section 2,
we present the basic RP-based CDS system design. In Sec-
tion 3, we discuss how load balancing addresses the load
concentration problem. We present simulation results that
demonstrate the effectiveness of the system in Section 4. We
present related work in Section 5 and conclude in Section 6.

2. BASIC CDS DESIGN

In this section, we present the basic Rendezvous Point-
based CDS design.

2.1 Naming scheme

2.1.1 AV-pair representation

Contents in our system are represented using attribute-
value pairs (AV-pairs), e.g., a device in a service discov-
ery system may be described with attributes such as Type,
Location, and Model, etc. Similarly, in a music sharing ap-
plication, the representation of a song may have attributes
such as Title, Artist, Album, and Year etc. We refer to
the collection of the AV-pairs as the content’s “name”, or
content “description”. Content discovery is the discovery
of the “content name”, not the content itself. This type of
naming scheme has been used in other work, e.g., INS [3],
SDS [5], Siena [4].

An AV-pair is written in the form of {a; = v;}, or {a;v;}
for short, where a; is an attribute, and v; is its value. We
only consider exact matches in our current system. A con-
tent name that consists of n AV-pairs is represented as
CN : {a1v1,a2v2, ...,a,v, }. In an actual implementation,
a more powerful language like XML [1] may be used to rep-
resent names. Figure 1 is an example name for a highway
monitoring camera.

Camera ID = 5562
Camera Type = Q-cam
Highway Number = I-279
Exit Number = 4
City = Pittsburgh
Speed Measured = 45MPH
Road Condition = dry
Connection availability = yes

Figure 1: An example content name.

In this paper, we only consider names that are comprised
of orthogonal attributes, which means they exist indepen-

dently of each other. Attributes that depend on the pres-
ence of other attributes in a name, such as Exit Number in
the above example, can be dealt with similarly. Dynamic at-
tributes, such as Speed Measured, may take on different val-
ues at different times. When the value changes, the content
name effectively changes. Dynamic content makes caching
unsuitable, and requires continuous active registering.

2.1.2 Searchability and subset matching

A query is also comprised of a set of AV-pairs, e.g., @ :
{a1v1,a2v2,...,amvm} contains m AV-pairs. The matched
content name must simultaneously satisfy all the AV-pairs
present in the query.

Our CDS supports subset matching, i.e., a content name
matches a query if and only if the set of AV-pairs in the
query is a subset of the set of AV-pairs in the content name.
In other words, there may be AV-pairs in that query that are
not in the content name. Subset matching enables search-
ability in that to find a content name, the query does not
have to have the exact same set of AV-pairs as the content
name. The number of subsets (excluding the empty set) of
a content name that consists of n AV-pairs is 2" — 1, which
means it can match 2" — 1 different queries.

2.2 CDS overlay network

Nodes participating in the CDS connect to each other
in a peer-to-peer fashion to form a CDS overlay network.
Figure 2 shows the software architecture on a node. The
CDS layer is designed as a common communication layer
on which higher level applications, such as service discovery
and file sharing, can be built. The primary responsibility of
the CDS layer is to decide on the set of nodes that a content
name or query should be sent to. For the actual forwarding
of messages, the CDS system utilizes existing hash-based
overlay network mechanisms ([16], [13], [14], [18]).

Application
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Figure 2: CDS node architecture.

Before a node can join the CDS system, it must first join
the overlay network. It locally computes its overlay network
address (node ID) by using a system-wide hash function H.
The overlay network is structured in such a way that node
IDs encode network topological information: The node ID
determines the set of nodes that this node will be neighbor-
ing with, and which node to use when forwarding a message
in the overlay network. To preserve scalability, the number
of neighbors is kept relatively small in these schemes, e.g.,
O(log N¢) in Chord[16], where NN, is the number of nodes in
the network. The path length between any two nodes in the
overlay is also kept short, e.g., O(log N.) in terms of overlay
hops in Chord.



2.3 Rendezvous Points-based content distri-
bution and discovery

The fundamental problem in designing the CDS is where
to store the content names. In a centralized system, names
and queries are sent to one central location, which forms
the single point-of-failure of the system and may become the
bottleneck as load increases. Approaches based on flooding
the CDS network with registrations or queries eliminate the
single point-of-failure, but the amount of duplicated con-
tents or queries makes them unscalable.

To address the scalability problem, we introduce an ap-
proach based on Rendezvous Points(RPs). In this approach,
a content name is registered only with a small set of nodes
in the system, known as the Rendezvous Points; thus full
duplication of contents at all nodes is avoided. Queries
are directly sent to the proper RPs for resolution, and no
network-wide searching is needed. The term “rendezvous”
is used because the RPs are where queries and the matched
contents meet. This approach is in part motivated by the
PIM-SM [6] multicast protocol, which reduces the amount
of group information that must be stored on each router,
and thus improves the scalability of IP multicast.

2.3.1 Registration with the RP set

To register a content name, the provider node must first
determine the set of resolver nodes that should receive this
name. It does this by applying the system-wide hash func-
tion, #, to each AV-pair in the content name. For example,
given content name CN : {a1v1,a2v2,...,a,Vy, }, which has
n AV-pairs, the provider computes the following:

H(avi) = N;

for 1 = 1,n. For N;, if there exists a node whose ID is equal
to NN, then it will become one RP node; otherwise, the node
whose ID is numerically closest to IV; will become the RP
node. These nodes (n of them assuming no hash collision)
form the RP set for this content name. The content name
is then sent to each of the n nodes (Figure 3), which results
in n replications of the name. From an RP node’s point of
view, it becomes a specialized node for the AV-pairs that
are mapped onto it, e.g., /N1 contains all the names in the
system that have aiv; in their names.

This scheme of hashing each AV-pair individually has the
following properties. First, it yields an RP set size of n
for a name that has n AV-pairs, and it requires the content
provider to send O(n) messages per registration. In practice,
n is typically a small number on the order of 20 to 30, and
thus registration is done efficiently. Second, it guarantees
system correctness, in that, any query that is a subset of
a content name, e.g., the query @ : {a1v1}, which contains
only one of CNi’s AV-pair, can discover CN; by going to
node Ni. As a comparison, registering with all nodes corre-
sponding to all the 2" — 1 subsets of the content name would
also ensure correctness, but requires an exponential number
of registration messages. Third, from the system’s point of
view, hashing attribute and value together to determine the
set of RP nodes rather than hashing attribute only provides
a natural way of spreading registrations to more nodes in
the system.

RP nodes store names in a soft state fashion, i.e., regis-
trations automatically expire after a certain time interval.
Therefore names must be periodically refreshed to avoid ex-
pirations. This provides protection against certain types of

CN1:{alvl, a2v2, a3v3, adv4} CN2:{alvl, a2v2, abv5, abve}

Q{alvl, a2v2}

©

Figure 3: Example registration and query process-
ing with RP set.

failures. For example, when an RP node leaves or crashes,
the refresh messages will allow a lost content name to be
registered at an active node. Also, when a name contains
dynamic attributes, the RP nodes for the dynamic attributes
may be different every time the value changes.

2.3.2  Query resolution

To resolve queries, clients must determine the set of RPs
that may contain matching content names. As described
in the previous section, all content names that contain a;v;
are stored in the node N;(=H(a;v;)), therefore query @ :
{a1v1, azvs, ...,amvm} can be sent to any one of the m RP
nodes, N, ..., N, (Figure 3). Since an RP node maintains
the full list of the AV-pairs in a name, when a query arrives
at this node, it can fully determine whether a name matches
this query by comparing the name’s AV-pair list with that
of the query’s.

Given these m candidate RP nodes, the client may pick
one randomly, or send one query message to each of the m
nodes. In addition, the client may use the following two-pass
query optimization algorithm to select an RP node. It first
sends a probe message to all the m nodes and then selects
one based on their responses. The client has two choices:
(1) it can send the query to the node that has the smallest
response time, or (2) it can send to the node that has the
smallest database. Choice (2) is often more beneficial from
a system’s point of view. As we will discuss in the next
section, a node may have to replicate its database on other
nodes when it observes high query load. For efficiency, the
replication of a smaller database is preferred. Both with
and without query optimization, the number of messages
required to resolve a query is O(m), which preserves system
scalability.

An alternative to having queries fully resolved at the RP
node is to have clients resolve the query based on informa-
tion provided by the RP nodes. In this approach, the client
has to send its query to multiple resolver nodes, each of
which resolves the query partially and returns any matches.
The client then performs a “join” operation to determine the
final set of matched names. While this approach reduces the
computation load on resolver nodes, it adds potentially sig-
nificant communication overhead due to large sets of partial
matches to the network and client. Given that exact match-
ing for AV-pairs is a relatively light-weight operation, it is
more efficient to do the matching on the RP nodes.



3. SYSTEM WITH LOAD BALANCING

We extend our basic system to deal with load imbalances.

3.1 Load concentration problem

The basic system tries to spread registrations to different
nodes in the network by using a different set of RP nodes for
different content names. However these sets may still overlap
if the names share some common AV-pairs, e.g., node N;
and N in the scenario shown in Figure 3. Similarly, queries
that share an AV-pair may also be sent to the node that
corresponds to the common AV-pair.

Registration and query load observed on each resolver
node are determined by the AV-pair distributions in con-
tent names and queries. These distributions are likely to be
skewed as some AV-pairs are common or significantly more
popular than others. For instance, it has been observed that
the popularity of keyword search! strings in Gnutella follows
a Zipf-like distribution [15]. In the CDS system, consider the
case where the number of names that contain a;v;, Najv;,
follows a Zipf distribution:

1
Nojv; = Ns - k- i:’

for © = 1...N4, where Ny is the number of different AV-
pairs in the system. k and o are two parameters with «
close to 1. Ny is the total number of names in the system
and ¢ is the rank of AV-pair a;v; in terms of its frequency
of occurring in names; ¢+ = 1 corresponds to the AV-pair
that is contained in the most number of names. Suppose
in a particular application, there are N, = 10° names, and
k = 0.5,a = 1. In this example, half of the 10° names would
contain the most popular AV-pair, which would be mapped
onto one node in the basic system. On the other hand, for
nodes that correspond to AV-pairs ranked from 10% to 10%,
each would receive fewer than 50 names. Clearly, a few
nodes will be swamped by registrations, while the majority
of nodes in the system are only rarely used.

In this section we introduce a distributed load balancing
solution that allows the CDS to utilize lightly loaded nodes
to share the registration and query load of heavily loaded
nodes.

3.2 Load balancing matrix (LBM)

For a popular AV-pair, the CDS system uses a set of nodes
instead of one to share the registration and query load. This
set of nodes is organized into what we call the Load Balanc-
ing Matrix (LBM). Figure 4 shows the layout of the matrix

for AV-pair a;v;. A node in the matrix is denoted by N*",
where p is its column index and r is the row index. The
nodes’ IDs are determined by applying the hash function, H
to the AV-pair, the column and row indices:

NP7 = H(agwi,p,r).

As an optmization technique, for each matrix, a node Ni(o,o) =
H(a;v;,0,0), called the “head node”, is used to store the size
of the matrix.

Each column contains a subset, or partition, of the content
names that contains a;v;. Nodes in the same column are
replicas of each other, i.e., they all host the same set of
names. The matrix dynamically grows or shrinks depending

'Note that AV-pair based search is more general than key-
word based search.

Head node

/ ﬁitions \

\oele

Figure 4: Load balancing matrix for a;v;.

Replicas

on the load along its two dimensions. New partitions are
added when the registration load of the pair a;v; increases,
and new replicas are added when the query load increases.
The matrix may consist of only one node when the load is
low, as was the case in the basic system. It may also be
in the shape of one row, when only the registration load is
high, or one column, when only the query load is high.

To grow and shrink the matrix, each node maintains the
following statistics: the number of names it receives, the reg-
istration and query rates. Corresponding to these statistics,
each node also keeps three thresholds: T¢y, the maximum
number of content names a node can hold; T4, the max-
imum rate of registration it can sustain; and 7,, the max-
imum query rate the node can sustain. It is worth noting
that in our design, the decisions on when to grow or shrink
a matrix are made distributedly by individual nodes based
purely on local information.

We now describe the registration and query operations
with a matrix and the matrix management mechanisms. For
simplicity, we assume all nodes are homogeneous in that they
have the same processing power and network connectivity.

3.3 Registration and partition management

Unlike in the basic system, where a content provider reg-
isters its content name with each RP node that corresponds
to an AV-pair, with LBM, the provider must register its
content name with a column of nodes in each matrix that
corresponds to an AV-pair (Figure 5).

~
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CN:{alvl, a2v2, adv3}

LBM for a3v3

Figure 5: Registration with load balancing matrices.

The registration pseudo code is shown in Figure 6. To
register with the matrix LBM; corresponding to AV-pair
a;v;, the content provider must first discover its size: the



1: Register_Name(name) {

2 foreach AVpair a;v; in name {

3 do {

4: N  H(a;v;,0,0);

5: (P, R) « retrieve_matrix_size(Ni(o’o), aiv;);
6: p < generate_random number(1, P);
7 r¢1;

8: NP Haivi, p,7);

9: flag < send_to(N """, name);

10: } until (flag equals to SUCCESS);

11: }

12:}

Figure 6: The algorithm for content providers to
register with LBM.

number of partitions, P, and the number of replicas, R. It
can do so in several ways. The most efficient way is to re-
trieve the size from the pair’s corresponding head node (line
4, 5). In the case that the head node is down or becomes
a bottleneck, the provider may find out the matrix size by
directly sending probe messages to the nodes in the matrix.
For example, to discover P, the provider may first estimate
a maximum number Py, and probe a node in the Pyth par-
tition, e.g., Ni(PO’l). Node Ni(PO’l) can determine whether it
belongs to LBM; by examining its database: if it has seen
a;v; before, then it does; otherwise, it does not. Since the
partitions are ordered, the current number of partitions can
be discovered in O(log Po) steps via binary probing between
partition 1 and Py. Content providers may cache an AV-
pair’s matrix size and use it without rediscovering it. This
will for example be useful when refreshing registrations.
Once the size of the matrix is found, the content provider
selects a random partition between 1 and P (line 6) and
registers with the nodes in that column (line 8, 9). The
provider may send the registration to the first node in the
column (line 7) and let it propagate the message to other
nodes, or it can register with each node directly. In case
the registration at this selected partition fails, the provider
will have to repeat the registration process (line 10). In
practice, an upper limit is set for the maximum number of
partitions a matrix can have, and a registration will fail if
its corresponding matrix has reached the maximum value.
New partitions are introduced to a matrix when the ma-
trix receives more names than the current partitions can
host or when the name registration rate observed by the ma-
trix exceeds what the matrix can sustain. Figure 7 shows
the pseudo code for adding new partitions to the matrix.
New partitions are added only by nodes in the last par-
tition. For example, when a node in the last partition,
Ni(P’T), reaches threshold Tcn or Treg (line 3), it will send
an INC_P message to the head node (line 6, 7). When the
head node receives such a message, it increases the P value
corresponding to this AV-pair. In an additive increase ap-
proach, it increases P value by 1, whereas in a multiplicative
approach, the P value is doubled every time. We are eval-
uating both approaches. Suppose only one new partition
is added, then nodes in the new column have the following
IDs: H(asvi, P + 1,7) = Ni((P-H)’T). Based on the regis-

1: Receive_Name(name, a;v;) {

2 check node_status();

3 if ( reach Ton or Trey) {

4 reject(name) ;

5: if ( partition_added flag equals to FALSE) {
6 N H(avi,0,0);

7 update_ma‘crixsize(Ni(o’o)7 a;v;, INC_P);
8 }

9 } else {

10: insert_to_database(name) ;

11: }

12:}

Figure 7: The algorithm for adding new partitions
to LBM,; used by RP nodes for AV-pair a;v;, which

is contained in name.

tration algorithm, future registrations will be shared by the
P + 1 partitions.

The number of partitions of a matrix should be kept as
small as possible, since more partitions would require clients
to send more messages when resolving queries. Push and
pull techniques are used to reduce the number of partitions,
e.g., older partitions, when they have space available, can
“pull” names from the last partition. When the last column
is not holding any content, it will remove itself from the
matrix. The head node will then decrease P by 1.

3.4 Query and replication management

Similar to the basic system, clients can use any matrix
that corresponds to an AV-pair in the query for query reso-
lution. To collect all the possible matched names, the client
must send the query to all the columns of the selected matrix
because each column stores only a fraction of the names that
have that AV-pair. In selecting a matrix, the client may use
the query optimization mechanism to probe the head node
of each corresponding matrix to get their sizes and then se-
lect the one that has the fewest columns. Since the nodes in
the same column are replicas of each other, the query needs
only to be sent to one node in each column. To balance
the load within each column, the client picks a random one.
Thus, the query load observed on each node in a matrix is
uniformly distributed.

Suppose matrix LBM; currently has R rows, or replicas.
New replicas will be added to the matrix as the query load
of the matrix increases. In particular, when the query rate
observed by a node Ni(l’J ’R), in the last row, reaches Ty, it

will send an INC_R message to the head node Ni(o,o). Sup-
pose replicas are added additively, then the head node will
increase R by 1 and send DUPLICATE messages to all nodes
in the last row, asking them to replicate themselves. For
example, node Ni(l’R) will send its names that contain a;v;
to node Ni(l’RH).

More replicas in the matrix means providers must register
with more nodes. To reduce the number of replicas, when
the last node in each column observes that its query rate
drops below a threshold, it can remove itself from the matrix.
Due to the uniform query load distribution in the matrix,
in fact, the last row will be removed.



3.5 System properties with LBM

When LBMs are created, both the registration and query
costs increase. Consider matrix LBM,; which corresponds
to a;v; and has P partitions and R replicas. Registering
a name with LBM; takes O(R) messages. A client that
chooses LBM; to resolve its query that contains a;v; must
send O(P) messages to LBM;. The values of P and R in-
crease linearly with the overall registration load and query
load of a;v; respectively. Our design ensures that a matrix is
not large in both dimensions: the query optimization mech-
anism makes sure that a matrix that has many partitions
will not have many replicas. This is important because we
expect popular AV-pairs to show up both in many registra-
tions and many queries.

From a resolver node’s point of view, its observed load
is limited by the thresholds, and thus it can process regis-
trations and queries efficiently. From the system’s point of
view, it does not reject registrations or queries prematurely,
and tries to balance load across all nodes until every node
reaches its capacity.

4. SIMULATION EVALUATION

In this section, we use simulation results to demonstrate
the effectiveness of the designed system.

4.1 Simulator implementation

We developed an event-driven simulator to evaluate the
CDS system. The simulator implements both the basic de-
sign and the load balancing mechanisms, excluding the ma-
trix shrinking. Events in the simulator include registrations,
queries, probe messages, and their replies. A node uses an
FCFS queue to process registrations and queries with expo-
nentially distributed service rates. Each node estimates the
registration and query rates it observes based on a simple
sliding window of recently received registrations and queries.

The simulator uses a 24-bit name space for node IDs and
the hashed values of AV-pairs, and node IDs are assigned
in such a way that each node covers an equal slot in the
entire name space to ensure an even mapping of hashed
values onto nodes. One requirement of the hash function
used by the system is that it must be able to generate val-
ues uniformly distributed in the name space and insensitive
to the input. The simulator uses Unix’s random number
generator to produce “hashed” values, and in practice, de-
terministic cryptographic functions such as SHA-1 should
be used. The simulator assumes the existence of Chord-like
underlying overlay management and routing mechanisms.

4.2 Experiment setup

In the following experiments, we consider a CDS network
that has N, = 10" nodes. There are 50 attributes in the
system, and each of which can take on 200 values (N; = 104
distinct AV-pairs).

As workload, we generate two sets of content names and
one set of queries. Each name dataset contains 10° names
and each name is comprised of n = 20 AV-pairs. The AV-
pair distributions in names are shown in Figure 8. In the
uniform dataset, each AV-pair is equally likely to appear in a
name, and on average each AV-pair occurs in 200 names. In
the skewed case, some AV-pairs are assigned higher weights,
and the overall distribution of AV-pairs is Zipf-like, as it is
close to a straight line in the log-log plot(a ~ 0.88), and the
most popular AV-pairs are contained in over 23,000 names.
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Figure 8: AV-pair distributions in two sets of con-
tent names.
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Figure 9: AV-pair distribution in queries.

The query dataset contains approximately 10° queries and is
generated based on a Zipf distribution with a = 1 (Figure 9).
The maximum number of AV-pairs a query has is 10 and the
average is 4. The most popular AV-pair in queries occurs in
about 25,000 queries. Both the arrival times for names and
queries are modeled with a Poisson distribution.

In our experiments, we limit the size of a matrix for any
AV-pair to be at most 10 x 10, i.e., 10 partitions and 10
replicas. The size is a tunable parameter, whose value should
be determined based on an application’s requirement. The
larger the size is, the more registration and query load the
system can sustain, but with higher cost.

4.3 Balanced name distribution

We first study how well the system balances content names
across nodes by applying the two name datasets to the sys-
tem under two schemes: the basic system without LBMs,
and the system with LBMs. To deploy LBMs, a node can
either set Tcn to limit the number of names it will receive,
or set Treq4 to limit the rate of registrations coming to it. In
this set of experiments, Ton is set and LBMs are created to
hold extra registrations when a node reaches threshold. A
smaller Ty is used for the uniform set to ensure LBMs will
be deployed.

Results are shown in Table 1. For the skewed dataset,
when no thresholds are set, no LBMs are created, and as
expected, there is a large variance in the name distribution,
e.g., some nodes receive as many as 100 times more names



than the average, and some nodes do not get any names.
For the uniform dataset, names are distributed more evenly,
but since the hashed values of two different AV-pairs may fall
into the range of the same node, a node may be responsible
for multiple AV-pairs, and receive more than the average
number of names. With LBM, in both cases, the maximum
number of names a node stores is reduced to the desired
threshold, and names are distributed more evenly: standard
deviations are reduced by 48% and 40% respectively.

[ Datasets | Schemes | Max | Min | Avg. [ Std. dev. ]
Skewed No LBM 23816 0 200 989
Ten = 2500 | 2500 0 200 512
Uniform No LBM 1218 0 200 200
Ten =320 320 0 200 120

Table 1: Statistics of name distribution on nodes.

4.4 Registration scalability

In the following experiments, we assume each node has ap-
proximately 500K bps available link bandwidth (DSL level),
which is the limiting factor of the node’s performance. Cor-
responding to the bandwidth, each node sets a threshold
of Trey = 50reg/sec as the maximum sustainable registra-
tion rate (assume the registration packet size is 1000 bytes).
We examine how the system scales with registration load by
showing the registration success rate.

Figure 10 plots the effect of arrival rate on registration
success rate. For the uniform dataset, the system works
well without using LBMs as the success rate remains over
95% until the overall rate observed by the system, tsystem,
reaches 2500reg/sec, which translates to tnose = Hreg/sec,
the average registration rate on a node.> The success rate
starts dropping before each node reaches the threshold be-
cause: (1) names are not truly uniformly distributed on
nodes, as seen in the previous section, and (2) T,y is the
peak rate threshold. When LBMs are used, partitions are
added to matrices, and the system can maintain 100% suc-
cess rate until the average registration rate on each node
reaches 40% of the threshold.

For the skewed dataset, the system behaves similarly:
with LBMs, the system can sustain a registration rate that
is 6 times higher than without LBMs, while maintaining
100% success rate. Due to the extreme name concentration,
in both schemes, with and without LBMs, the success rates
drop below 100% at a lower incoming rate compared to the
uniform dataset. Additional experiments, where more than
10 partitions are allowed for each LBM, show that success
rates can be further increased for a given registration rate.

4.5 Query scalability

To test the system’s scalability property with regard to
queries, we first inject the skewed name dataset into the
system and then issue the set of Zipf queries. The query
rate threshold on each node is set to be T, = 200q/sec (as-
sume the query packet size is 250 bytes). RP nodes for
queries are selected using three different schemes: (1) as a
base case, use the most popular pair in the query, which
is the worst choice; (2) select a random pair; (3) use the
query optimization mechanism, i.e., select the pair that has

2t node = tsystem - n/Ne. For n = 20 and N, = 104, tnode =

tsystem 500
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Figure 10: Registration success rate comparison.
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Figure 11: The success rate of queries under three
schemes: (1) base case, (2) use random pair, (3) with
query optimization. (“with LBM” means allowing
replications in the matrices).

the smallest matrix in terms of the number of partitions. A
query is declared successful if it is not rejected by the in-
tended RP node regardless of whether there are matching
names on the node. For a fair comparison, each query is
sent to the system only once.

Figure 11 shows the success rates from six series of ex-
periments. First we observe that the query optimization
mechanism plays an important role in improving system’s
performance: choosing the wrong AV-pair will easily swamp
a few RP nodes and cause large failure rates, and selecting
a pair randomly does better, but since there are only a few
AV-pairs in each query, there is still a good chance a popu-
lar AV-pair is chosen. With query optimization, the query
load is spread to rarely used nodes, and thus the system can
sustain much higher query load.

The effect of LBM, i.e., allowing nodes to adaptively repli-
cating themselves when load is high, is demonstrated by the
base scheme and the random scheme. For example, in the
base case, the success rate increases from 44.76% to 99.21%
when the query rate is 10%g/sec, and in the random case,
it increases from 70.19% to 93.26% when the query rate is
10%q /sec. In the query optimization scheme, because load is
distributed across nodes, even under the highest query rate
in our experiments, the average rate on a node is far below
T,. LBMs are needed only occasionally, and when they do
the success rate is further increased.



5. RELATED WORK

As with the wide range of applications that use CDS sys-
tems, there are a variety of solutions to the CDS system.
However, these solutions have difficulties in achieving both
scalability and rich functionality. Based on how the resolvers
are organized, we classify the solutions into two categories:
centralized and distributed.

In centralized solutions ([7],[12],[2]), the central resolver(s)
is the bottleneck and single point-of-failure. Distributed so-
lutions based on an unstructured general graph type of re-
solver network ([3],[4],[9],[8]) often need either registration
flooding or query broadcasting, which does not scale with
content names and queries. A hierarchical organization of
resolvers ([17],[5],[10],[11]) scales better but works mostly
for hierarchical content names, e.g., domain names. Recent
hash-based peer-to-peer lookup systems ([16],[13],[14],[18])
improve scalability by organizing resolvers into a structured
network according to hashed IDs, and provide efficient con-
tent name look up by associating names with resolvers. How-
ever these systems typically do not provide content search-
ability, and we use these mechanisms as the underlying sub-
strate in our CDS system.

6. CONCLUSIONS

In this paper, we presented a distributed and scalable ap-
proach based on Rendezvous Points to the content discov-
ery problem. The RP-based content distribution and dis-
covery mechanism allows the CDS system to scale with the
amount of content names and queries by avoiding network-
wide flooding. Load balancing matrices are deployed to
maximize system’s utilization and eliminate hot-spots. Our
approach is fully distributed in that entities in the system,
resolvers, content providers and clients, can make decisions
and compute destinations based on local information and by
taking advantage of the hash-based system.

Our simulation results confirmed the system’s scalability
properties. We are now completing the simulator implemen-
tation and conducting a more comprehensive evaluation. We
will also evaluate the system on the Internet with a real im-
plementation.
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