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Abstract: An increasingly important requirement for software systems is the capability
to adapt at run time in order to accommodate varying resources, system errors,
and changing requirements. For such self-repairing systems, one of the hard
problems is determining when a change is needed, and knowing what kind of
adaptation is required. Recently several researchers have explored the possibil-
ity of using architectural models as a basis for run time monitoring, error de-
tection, and repair. Each of these efforts, however, has demonstrated the feasi-
bility of using architectural models in the context of a specific style. In this
paper we show how to generalize these solutions by making architectural style
a parameter in the monitoring/repair framework and its supporting infrastruc-
ture. The value of this generalization is that it allows one to tailor monitor-
ing/repair mechanisms to match both the properties of interest (such as per-
formance or security), and the available operators for run time adaptation.
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1. INTRODUCTION

An increasingly important requirement for software-based systems is the ability
to adapt themselves at run time to handle such things as resource variability, chang-
ing user needs, and system faults. In the past, systems that supported self-adaptation
were rare, confined mostly to domains like telecommunications switches or deep
space control software, where taking a system down for upgrades was not an option,
and where human intervention was not always feasible. However, today more and
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more systems have this requirement, including e-commerce systems and mobile
embedded systems. Such systems must continue to run with only minimal human
oversight, and cope with variable resources (bandwidth, server availability, etc.),
system faults (servers and networks going down, failure of external components,
etc.), and changing user priorities (high-fidelity video streams at one moment, low
fidelity at another, etc.).

Recently a number of researchers have proposed an approach in which system
models – and in particular, architectural models – are maintained at run time and
used as a basis for system reconfiguration and repair [21] rather than relying on sys-
tem-specific built-in mechanisms. Architecture-based adaptation has a number of
nice properties: As an abstract model, an architecture can provide a global perspec-
tive on the system. Architectural models can make “integrity” constraints explicit,
helping to ensure the validity of any change. Suitably-designed architectures permit
flexible evolution of systems by providing loose coupling between components.

A key issue in making this approach work is the choice of architectural style
used to represent a system. Previous work in this area has focused on the use of spe-
cific styles (together with their associated ADLs and toolsets) to provide intrinsi-
cally modifiable architectures, or the use of low-level architectural adaptation opera-
tions. Taylor and colleagues use hierarchical publish-subscribe via C2 [20, 23];
Gorlick and colleagues use data-flow style via Weaves [10]; Magee and colleagues
use bi-directional communication links via Darwin [14]; and Wermelinger and col-
leagues [25] use architectural primitives, independent of particular architectural
styles, to effect architectural changes.

The specialization to particular styles has the benefit of providing strong support
for adapting systems built in those styles. However, it has the disadvantage that a
particular style may not be appropriate for an existing implementation base, or it
may not expose the kinds of properties that are relevant to adaptation. For example,
different styles may be appropriate depending on whether one is using existing cli-
ent-server middleware, Enterprise JavaBeans (EJB), or some other implementation
base. Moreover, different styles or views may be useful depending on whether adap-
tation should be based on issues of performance, reliability, or security.

In this paper we show how to generalize architecture-based adaptation by mak-
ing the choice of architectural style an explicit design parameter in the framework.
This added flexibility allows system designers to pick an appropriate architectural
style in order to expose properties of interest, provide analytic leverage, and map
cleanly to existing implementations and middleware.

The key technical idea is to make architectural style a first-class run time entity.
As we will show, formalized architectural styles augmented with certain run time
mechanisms provide a number of important capabilities for run time adaptation: (1)
they define a set of formal constraints that allow one to detect system anomalies; (2)
they are often associated with analytical methods that suggest appropriate repair
strategies; (3) stylistic constraints can be linked with repair rules whose soundness is
based on corresponding (style-specific) analytical methods; (4) they provide a set of
operators for making high-level changes to the architecture; and (5) they prescribe
what aspects of a system need to be monitored.

In the remainder of this paper we detail the approach, focusing primarily on the
role of architectural styles to interpret system behaviour, identify problems, and
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suggest remediation. To illustrate the ideas we describe how the techniques have
been applied to self-repair of an important class of web-based client-server systems,
based on monitoring of performance-related behaviour. As we will show, the selec-
tion of an appropriate architectural style for this domain permits the application of
queuing-theoretic analysis to motivate and justify a set of repair strategies triggered
by detection of architectural constraint violations.

2. RELATED WORK

Considerable research has been done in the area of dynamic adaptation at an im-
plementation level. There are a multitude of programming languages and libraries
that provide dynamic linking and binding mechanisms, as well as exception han-
dling capabilities (e.g., [6, 12, 13, 18]). Systems of this kind allow self-repair to be
programmed on a per-system basis. For self-repair to be useful in a large range of
mobile, defence, or e-commerce systems, it is desirable that application writers not
code specific solutions for each application; nor should users of each application be
burdened with interacting with different change mechanisms. Rather, we require
external, reusable mechanisms that can be added to systems in a disciplined manner.

A more disciplined approach can be found in the area of distributed debugging
systems [11]. However, those systems have focused on user-mediated monitoring,
whereas our research is primarily concerned with automated monitoring and recon-
figuration.

Most closely related is the research on architecture-based adaptation, mentioned
earlier. As we noted, the primary difference between our work and earlier research
in this area is the decoupling of style from the system infrastructure so that develop-
ers have the flexibility to pair an appropriate style to a system based on its imple-
mentation and the system attributes that should drive adaptation. To accomplish this
we must introduce some new mechanisms to allow “run time” styles to be treated as
design parameters in the run time adaptation infrastructure. Specifically, we must
show how styles can be used to detect problems and trigger repairs. We must also
provide mechanisms that bridge the gap between an architectural model and an im-
plementation – both for monitoring and for effecting system changes. In contrast, for
systems in which specific styles are built-in (as with [10, 23]) this is less of an issue
because architectures are closely coupled to their implementations by construction.

Finally, there has been some work on formally characterizing architecture styles,
and using them as a basis for static system analysis [7, 22]. Our research extends this
by showing how to turn “style as a design time artefact” into “style as a run time
artefact”. As we will see, this requires two significant additions to the usual notion
of style as a set of types and constraints: (1) style-specific repair rules, and (2) style-
specific change operators. Some other efforts in this area have investigated formal
foundations for this in terms of graph grammars and protocols, but have not carried
the results through to implementation [2, 15, 25].
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3. OVERVIEW OF APPROACH

Our starting point is an architecture-based approach to self-adaptation, similar to
[21] (as illustrated in Figure 1): An executing system (1) is monitored to observe its
run time behaviour (2). Monitored values are abstracted and related to architectural
properties of an architectural model (3). Changing properties of the architectural
model trigger constraint evaluation (4) to determine whether the system is operating
within an envelope of acceptable ranges. Violations of constraints are handled by a
repair mechanism (5), which adapts the architecture. Architectural changes are
propagated to the running system (6).
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Figure 1. Adaptation Framework.

The key new feature in this framework is the use of style as a first class entity
that determines the actual behaviour of each of the parts. Specifically, style is used
to determine (a) what properties of the executing system should be monitored, (b)
what constraints need to be evaluated, (c) what to do when constraints are violated,
and (d) how to carry out repair in terms of high-level architectural operators. In
addition we introduce a style-specific translation component to map high-level
architecture operations into lower-level system operations.

To illustrate how the approach works, consider a common class of web-based
client server applications that are based on an architecture in which web clients ac-
cess web resources by making requests to one of several geographically distributed
server groups (see Figure 2). Each server group consists of a set of replicated serv-
ers, and maintains a queue of requests, which are handled in FIFO order by the serv-
ers in the server group. Individual servers send their results back directly to the re-
questing client.

The organization that manages the overall web service infrastructure wants to
make sure that two interrelated system qualities are maintained. First, to guarantee



Using Architectural Style as a Basis
for System Self-repair

5

quality of service for the customer, the request-response latency for clients must be
under a certain threshold (e.g., 2 seconds). Second, to reduce costs, the active serv-
ers should be kept as loaded as possible, subject to the first constraint.

Since access loads in such a system will naturally change over time, the system
has two built-in low-level adaptation mechanisms. First, we can activate a new
server in a server group or deactivate an existing server. Second, we can cause a
client to shift its communication path from one server group to another.

Figure 2. Deployment Architecture of the Example System.

The challenge is to engineer things so that the system adapts appropriately at run
time. Using the framework described above, here is how we would accomplish this.
First, given the nature of the implementation, we decide to choose an architectural
style based on client-server in which we have clients, server groups, and individual
servers, together with the appropriate client-server connectors (Figure 3(a)). Next,
because we are focussing on performance, we adapt that style so that it exposes per-
formance related properties and makes explicit constraints about performance (Fig-
ure 3(b)). Here, client-server latency and server load are the key properties, and the
constraints are derived from the two desiderata listed above. Furthermore, because
of the nature of communication we are able to pick a style for which formal per-
formance analyses exist – in this case M/M/m-based queuing theory.

To make the style useful as a run time artefact we now augment the style with
two specifications: (a) a set of style-specific architectural operators, and (b) a collec-
tion of repair strategies written in terms of these operators associated with the style’s
constraints. The operators and repair strategies are chosen based on an examination
of the analytical equations, which formally identify how the architecture must
change in order to affect certain parameters (like latency and load).

There are now only two remaining problems. First, we must get information out
of the running system. To do this we employ low-level monitoring mechanisms that
instrument various aspects of the executing system. We can use existing off-the-
shelf performance-oriented “system probes.” To bridge the gap between low-level
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monitored events and architectural properties we use a system of adapters, called
“gauges,” which aggregate low-level monitored information and relate it to the ar-
chitectural model. For example, we have to aggregate various measurements of the
round-trip time for a request and the amount of information transferred to produce
bandwidth measurements at the architectural level.

The second problem is to translate architectural repairs into actual system
changes. To do this we write a simple table-driven translator that can interpret archi-
tectural repair operators in terms of the lower level system modifications that we
listed earlier.

In the running system the monitoring mechanisms update architectural proper-
ties, causing re-evaluation of constraints. Violated constraints (high client-server
latencies, or low server loads) trigger repairs, which are carried out on the architec-
tural representation, and translated into corresponding actions on the system itself
(adding or removing servers, and changing communication channels). The existence
of an analytic model for performance (M/M/m queuing theory) helps guarantee that
the specific modification operators for this style are sound. Moreover, the matching
of the style to the existing system infrastructure helps guarantee that relevant infor-
mation can be extracted, and that architectural changes can be propagated into the
running system.

4. STYLE-BASED ADAPTATION

We now elaborate each aspect of this framework, focussing on the way stylized
architectural models support problem detection and repair. Given limits of space, we
omit details on the monitoring and run time system change infrastructure, which are
described elsewhere [4, 9].

4.1 Architectural Models and Styles

The centrepiece of our approach is the use of stylized architectural models. We
adopt an approach in which an architectural model is represented as an annotated,
hierarchical graph.1 Nodes in the graph are components, which represent the princi-
pal computational elements and data stores of the system. Arcs are connectors,
which represent the pathways of interaction between the components. Components
and connectors have explicit interfaces (termed ports and roles, respectively). To
support various levels of abstraction and encapsulation, we allow components and
connectors to be defined by more detailed architectural descriptions, which we call
representations.

To account for various semantic properties of the architecture, elements in the
graph can be annotated with extensible property lists. Properties associated with a
connector might define its protocol of interaction, or performance attributes (e.g.,

1 This is, in fact, the core architectural representation scheme adopted by a number of ADLs,
including Acme [8], xADL [5], and SADL [17].
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delay, bandwidth). Properties associated with a component might define its core
functionality, performance attributes, etc.

Representing an architecture as an arbitrary graph of generic components and
connectors has the advantage of being extremely general and open ended. However,
in practice there are a number of benefits to constraining the design space for archi-
tectures by associating an architectural style with the architecture. An architectural
style typically defines a set of types for components, connectors, interfaces, and
properties together with a set of rules that govern how elements of those types may
be composed.

Requiring a system to conform to a style has many benefits, including support
for analysis, reuse, code generation, and system evolution [7, 23, 24]. Moreover, the
notion of style often maps well to widely-used component integration infrastructures
(such as EJB, HLA, CORBA), which prescribe the kinds of components allowed
and the kinds of interactions that may take place between them.

As a result a number of ADLs and their toolsets have been created to support
system development and execution for specific styles. For example, C2 [23] sup-
ports a style based on hierarchical publish subscribe; Wright [1, 2] supports a style
based on formal specification of connector protocols; MetaH [24] supports a style
based on real-time avionics control components.

In our research we adopt the view that while choice of style is critical to support-
ing system design, execution, and evolution, different styles will be appropriate for
different systems. For example, a client-server system, such as the one in our exam-
ple, will most naturally be represented using a client-server style. In contrast, a sig-
nal processing system would probably adopt a pipe-filter style. While one might
encode these systems in some other style, the mapping to the actual system would
become much more complex, with the attendant problems of making sure that any
observation derived from the architecture has a bearing on the system itself.

For this reason, two key elements of our approach are the explicit definition of
style and its accessibility at run time for system adaptation. Specifically, we define a
style as a system of types, plus a set of rules and constraints. The types are defined
in Acme [8], a generic ADL that extends the above structural core framework with
the notion of style. The rules and constraints are defined in Armani [16], a first-order
predicate logic similar to UML’s OCL [19], augmented with a small set of architec-
tural functions. These functions make it easier to define logical expressions that re-
fer to things like connectedness, type conformance, and hierarchical relationships.
We say that a system conforms to a style if it satisfies all of the constraints defined
by the style (including type conformance).

To illustrate, Figure 3(a) contains a partial description of the style used to char-
acterize the class of web-based systems of our example. The style is actually defined
in two steps. The first step specifies a generic client-server style (called a family in
Acme). It defines a set of component types: a web client type (ClientT), a server
group type (ServerGroupT), and a server (ServerT). It also defines a connector type
(LinkT). Constraints on the style (appearing in the definition of LinkT) guarantee that
the link has only one role for the server and more than one role for the client. Other
constraints, not shown, define further structural rules (for example, each client must
be connected to a server).
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There are many possible kinds of analysis that one might carry out on client-
server systems built in this style. Since we are concerned with overall system per-
formance in this example, we augment the client-server style to include perform-
ance-oriented properties. These include the response time and degree of replication
for servers and the delay time over links. This style extension is shown in Figure
3(b). Constraints on this style capture the desired performance related behaviour of
the system. The first constraint, associated with PAServerGroupT, specifies that a
server group cannot be under-utilized. The second constraint, as part of PAClientRo-
leT, indicates that the latency on this role should be below some specified maxi-
mum.

Having defined an appropriate style, we can now define a particular system con-
figuration in that style, such as the one illustrated in Figure 4.

Family ClientServerFam = {
Component Type ClientT = {…};
Component Type ServerT = {…};

Component Type ServerGroupT = {…};

Role Type ClientRoleT = {…};

Connector Type LinkT = {
invariant size(select r : role in Self.Roles |

declaresType(r, ServerRoleT)) == 1;
invariant size(select r : role in Self.Roles |

declaresType(r, ClientRoleT)) >= 1;
Role ClientRole1 : ClientRoleT;
Role ServerRole : ServerRoleT;

};
};

(a)

Figure 3. (a) Client-Server Style Definition
in Acme; (b) Client- Server Style Ex-
tended for Performance Analysis.

Family PerformanceClientServerFam extends
ClientServerFam with {

Component Type PAClientT extends ClientT with {
Properties {

Requests : sequence <any>;
ResponseTime : float;
ServiceTime : float;

};
};
Connector Type PALinkT extends LinkT with {

Properties {
DelayTime : float;

};
};
Component Type PAServerGroupT extends

ServerGroupT with {
Properties {

Replication : int <<default : int = 1;>>;
Requests : sequence <any>;
ResponseTime : float;
ServiceTime : float;
AvgLoad : float;

};
Invariant AvgLoad > minLoad;

};
Role Type PAClientRoleT extends ClientRoleT with {

Property averageLatency : float;
Invariant averageLatency < maxLatency;

};

Property maxLatency : float;
Property minLoad : float;

};
(b)

4.2 Style-specific Analytical Methods

As we argued above, one of the main benefits of style-based development is the
ability to use analytical methods to evaluate properties of a system’s architectural
design. For example, systems in the MetaH style use real-time schedulability analy-
sis, while those in Wright can use protocol model checking [1, 2, 24].
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To illustrate how this works, consider our web style example. The use of buff-
ered request queues, together with replicated servers, suggests the use of queuing
theory as a basis for under-standing the performance characteristics of systems built
in this style. As we have shown elsewhere [22], for certain architectural styles queu-
ing theory is useful for determining various architectural properties including system
response time, server response time (Ts), average length of request queues (Qs), ex-
pected degree of server utilization (Us), and location of bottlenecks.

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp1 ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp1 ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

Figure 4. Architectural Model of the Example System.

In the case of our example style, we have an ideal candidate for M/M/m analysis.
The M/M indicates that the probability of a request arriving at component s, and the
probability of component s finishing a request it is currently servicing, are assumed
to be exponential distributions (also called “memoryless,” independent of past
events); requests are further assumed to be, at any point in time, either waiting in
one component’s queue, receiving service from one component, or travelling on one
connector. The m indicates the replication of component s; that is, component s is
not limited to representing a single server, but rather can represent a server group of
m servers that are fed from a single queue. Given estimates for clients’ request gen-
eration rates and servers’ service times (the time that it takes to service one request),
we can derive performance estimates for components according to Table 1. To cal-
culate the expected system response time for a request, we must also estimate the
average delay Dc imposed by each connector c, and calculate, for each component s
and connector c, the average number of times (Vs, Vc) it is visited by that request.
(Given Vs and the rates at which client components generate requests, we can derive
rather than estimate Rs, the rate at which requests arrive at server group S.)

Applying M/M/m theory to our style tells us that with respect to the average la-
tency for servicing client requests, the key design parameters in our style are (a) the
replication factor m of servers within a server group, (b) the communication delay D
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between clients and servers, (c) the arrival rate R of client requests and (d) the ser-
vice time S of servers within a server group.

In previous work [22] we showed how to use that analysis to provide an initial
configuration of the system based on estimates of these four parameters. In particu-
lar, Equation (5) in Table 1 indicates for each server group a design trade-off be-
tween utilization (underutilized servers waste resources) and response time. Utiliza-
tion is in turn affected by service time and replication. Thus, given a range of ac-
ceptable utilization and response time, if we choose service time then replication is
constrained to some range (or vice versa). As we show in the Section 4.3, we can
also use this observation to determine sound adaptation policies.

Table 1. Performance Equations From [3].
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We can use the performance analysis to decide the following questions about our
architecture, assuming that the requirements for the initial system configuration are
that for six clients each client must receive a latency not exceeding 2 seconds for
each request and a server group must have a utilization of between 70% and 80%:
– How many replicated servers must exist in a server group so that the server

group is properly utilized?
– Where should the server group be placed so that the bandwidth (modelled as the

delay in a connector) leads to latency not exceeding 2 seconds?
Given a particular service time and arrival rate, performance analysis of this

model gives a range of possible values for server utilization, replication, latencies,
and system response time. We can use Equation (5) to give us an initial replication
count and Equation (6) to give us a lower bound on the bandwidth. If we assume
that the arrival rate is 180 requests/sec, the server response time is between 10ms
and 20ms the average request size is 0.5KB, and the average response size is 20KB,
then the performance analysis gives us the following bounds:
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Initial server replication count= 3-5 (in one server group)
Zero delay System Response Time = 0.013-0.026 seconds
0 < Round-trip connector delay < 1.972 seconds, or
0 < Average connector delay < .986 seconds
Average Bandwidth > 10.4KB/sec

4.3 Using Styles to Assist Adaptation

The representation schemes for architectures and style outlined above were
originally created to support design-time development tools. In this section we show
how styles can be augmented to function as run time adaptation mechanisms. Two
key augmentations to style definitions are needed to make them useful for run time
adaptation: (1) the definition of a set of adaptation operators for the style, and (2) the
definition of a set of repair strategies.

4.3.1 Adaptation Operators

The first extension is to augment a style description with a set of operators that
define the ways one can change instances of systems in that style. Such operators
determine a “virtual machine” that can be used at run time to adapt an architectural
model.

Given a particular architectural style, there will typically be a set of natural op-
erators for changing an architectural configuration and querying for additional in-
formation. In the most generic case, architectures can provide primitive operators for
adding and removing components and connections [20]. However, specific styles
can often provide higher-level operators that exploit the restrictions of that style and
the intended implementation base.

Two key factors determine the choice of operators for a style. First is the style it-
self – the kinds of components, connectors, and configuration rules. Based on its
constraints, a style can both limit the set of operations, and also suggest a set of
higher-level operators. For example, if a style specifies that there must be exactly
one instance of a particular type of component, such as a database, the style should
prohibit addition or removal of an instance of this type. On the other hand, if another
constraint says that every client component in the system must be attached to the
(unique) database, a “new-client” operation would automatically create a new client-
database connector and attach it between the new component and the database.
These style-specific operators are defined in terms of lower-level style-neutral op-
erators such as “add component” or “remove connector,” such as those defined in
[25] or [26].

The second factor is the feasibility of carrying out the change. To evaluate feasi-
bility requires some knowledge of the target implementation infrastructure. It makes
no sense to prescribe an architectural operator that has no hope of ever being carried
out on the running system. For some styles, the relation is defined by construction
(since implementations are generated from architectures). More generally, however,
the style designer may have to make certain assumptions about the availability of
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implementation-changing operators that will be provided by the run time environ-
ment of the system

In terms of our example, we define the following operators:
– addServer(): This operation is applied to a component of type ServerGroupT

and adds a new component of type ServerT to its representation, ensuring that
there is a binding between its port and the ServerGroup’s port.

– move(to:ServerGroupT): This operation is applied to a client and deletes the role
currently connecting the client to the connector that connects it to a server group
and performs the necessary attachment to a connector that will connect it to the
server group passed in as a parameter.

– remove(): This operation is applied to a server and deletes the server from its
containing server group. Furthermore, it changes the replication count on the
server group and deletes the binding.
The above operations all effect changes to the model. The next operation queries

the state of the running system:
– findGoodSGroup(cl:ClientT,bw:float):ServerGroupT; finds the server group

with the best bandwidth (above bw) to the client cli, and returns a reference to
the server group.
These operators reflect the considerations just outlined. First, from the nature of

a server group, we get the operations for activating or deactivating a server within a
group. Also, from the nature of the asynchronous request connectors, we get the
operations of adapting the communication path between particular clients and server
groups.

4.3.2 Repair Strategies

The second extension to the notion of style is the specification of repair strate-
gies that correspond to selected constraints of the style. When a stylistic constraint
violation is detected, the appropriate repair strategy will be triggered.

4.3.2.1 Describing Strategies
A repair strategy has two main functions: first, to determine the cause of the

problem, and second, to determine how to fix it. Thus the general form of a repair
strategy is a sequence of repair tactics. Each repair tactic is guarded by a precondi-
tion that determines whether that tactic is applicable. The evaluation of a tactic’s
precondition will usually involve the examination of various properties of the archi-
tecture in order to pinpoint the problem and determine applicability. If it is applica-
ble, the tactic executes a repair script that is written as an imperative program using
the style-specific operators described above.

To handle the situation that several tactics may be applicable, the enclosing re-
pair strategy decides on the policy for executing repair tactics. It might apply the
first tactic that succeeds, such as the approach we use for this example. Alterna-
tively, it might sequence through all of the tactics, or use some other style-specific
policy.
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4.3.2.2 Choosing Tactics
One of the principal advantages of allowing the system designer to pick an ap-

propriate style is the ability to exploit style-specific analyses to determine whether
repair tactics are sound. By sound, we mean that if executed, the changes will help
re-establish the violated constraint.

In general, an analytical method for an architecture will provide a compositional
method for calculating some system property in terms of the properties of its parts.
For example, a reliability analysis will depend on the reliability of the architectural
parts; a performance analysis will depend on various performance attributes of the
parts. By looking at the constraint to be satisfied, the analysis can point the repair
strategy writer both to the set of possible causes for constraint violation, and for
each possible cause, to an appropriate repair.

Illustrating this idea in our example, the repair strategy developed from the theo-
retical performance analysis in the following way: The equations for calculating
latency for a service request (Table 1) indicate that there are four contributing fac-
tors: 1) the connector delay, 2) the server replication count, 3) the average client re-
quest rate, and 4) the average server service time. Of these we have control over the
first two. When the latency is high, we can decrease the connector delay, by finding
another server group that has a higher bandwidth to a client, or increase the server
replication count, by adding another server to a server group, to decrease the latency.
Determining which tactic depends on whether the connector has a low bandwidth
(inversely proportional to connector delay) or if the server group is heavily loaded
(inversely proportional to replication). These two system properties form the pre-
conditions to the tactics; we have thus developed a repair strategy with two tactics.

01 invariant r.Avg_Latency <= maxLatency
02 !
03 fixLatency(r);
04
05 strategy fixLatency (badRole: ClientRoleT) = {
06
07 let badClient: ClienT =
08 select one cli: ClientT in self.Components |
09 exists p: RequestT in cli.Ports |
10 attached(badRole, p);
11 if (fixServerLoad(badClient)) {
12 commit;
13 else if (fixBandwidth(badClient, badRole) {
14 commit;
15 } else {
16 abort ModelError;
17 }
18 }
19
20 tactic fixServerLoad (client: ClientT) : boolean = {
21 let overloadedServerGroups: Set{ServerGroupT} =
22 {select sgp: ServerGroupT in self.Components |
23 connected(sgp, client) and
24 sgrp.Server_Load > maxServerLoad };

25 if (size(overloadedServerGroups) == 0) {26 return false;
27 }
28 foreach sGrp in overloadedServerGroups {
29 sGrp.addServer();
30 }
31 return (size(overloadedServerGroups) > 0);
32 }
33
34 tactic fixBandwidth (client: ClientT,
35 role: ClientRoleT) : boolean = {
36 if (role.Bandwidth >= minBandwidth) {
37 return false;
38 }
39 let oldSGrp: ServerGroupT =
40 select one sGrp: ServerGroupT in
41 self.Components |
42 connected(client, sGrp);
43 let goodSGrp: ServerGroupT =
44 findGoodSGrp(client, minBandwidth);
45 if (goodSGrp != nil) {
46 client.moveClient(oldSGrp, goodSGrp);
47 return true;
48 } else {
49 abort NoServerGroupFound;
50 }
}

Figure 5. Repair Strategy for High Latency
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4.3.2.3 Applying Our Approach
Figure 5 (line 1-3) illustrates the repair strategy associated with the latency

threshold constraint. In line 2, “! ” denotes “execute on constraint violation.” The
top-level repair strategy, fixLatency, in lines 5-17, consists of two tactics. The first
tactic in lines 20-32 handles the situation in which a server group is overloaded,
identified by the precondition in lines 25-27. Its main action in lines 28-30 is to cre-
ate a new server in any of the overloaded server groups. The second tactic in lines
34-51 handles the situation in which high latency is due to communication delay,
identified by the precondition in lines 36-38. In lines 43-44, it queries the architec-
ture to find a server group that will yield a higher bandwidth connection. In lines 45-
47, if such a group exists it moves the client-server connector to use the new group.
The repair strategy uses a policy in which it executes these two tactics sequentially:
if the first tactic succeeds it commits the repair strategy; otherwise it executes the
second. The strategy will abort if neither tactic succeeds, or if the second tactic finds
that it cannot proceed since there are no suitable server groups to move the connec-
tion to.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a technique for generalizing the use of arch models
to support dynamic reapir of systems. Extending earlier work by others, which dem-
onstrated the value of architecture-based adaptation for specific styles of architec-
ture, we have shown how to make the choice of style a parameter of the overall ad-
aptation framework. The explicit incorporation of styles and their assciated analyses
allow one to
– make explicit the constraints that must be maintained in the face of evolution
– define a set of abstract architectural operators for repairing a system
– allow us to select appropriate repair strategies, based on analytical methods

We illustrated how the technique can be applied to performance-oriented adapta-
tion of certain client-server systems, and future work will involve applying our ap-
proach to the performance of commercial web-based systems.

The components required in our approach to monitor the system and map archi-
tectural changes into run time system changes are discussed in [4, 9]. Briefly, the
analysis associated with a style points us to properties in the architecture that need to
be monitored dynamically. Gauges are attached to these properties and generate new
property values based on information from probes that are deployed in the system
implementation. Constraints associated with architectural properties are evaluated
when the properties change to fire the repair strategies. We assume that there are
some primitive, system-specific change operators into which we can map style-
specific change operators. The system-specific operators may be as primitive as op-
erating system calls to stop and start processes, or the system may provide its own
change language that can be utilized in our framework.
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For future research we intend to develop mechanisms that provide richer adapta-
bility for executing systems. First is the investigation of more intelligent repair pol-
icy mechanisms. For example, one might like a system to dynamically adjust its
repair tactic selection policy so that it takes into consideration the history of tactic
effectiveness: effective tactics would be favoured over those that sometimes fail to
produce system improvements. Second is the link between architectures and re-
quirements. Systems may need to adapt, not just because the underlying computa-
tion base changes, but because user needs change. This will require ways to link user
expectations to architectural parameters and constraints. Third is to apply our ap-
proach to some common architectural frameworks, such as EJB, Jini, and CORBA.
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