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Abstract— The Internet is rapidly evolving from a net-
work that provides basic best-effort communication service,
to an infrastructure capable of supporting complex value-
added services. These services typically have multiple flows
with inter-dependent resource requirements. Taking advan-
tage of these relationships, the same set of resources can
be shared among multiple service flows over time leading to
significant resource gains. We call this type of sharing tem-
poral resource sharing. Exploiting temporal sharing requires
support in the signaling protocol that performs resource al-
location for the related flows. However, the signaling proto-
cols previously described in literature provide very limited
support for such temporal sharing.

In this paper, we examine the problem of supporting tem-
poral sharing in a signaling protocol. This paper makes the
case that temporal sharing support must be designed to be
extensible, so that service providers can define and implement
new sharing behaviors without having to modify the signal-
ing protocol. We motivate the need for an extensible design
by showing that the range of possible temporal sharing be-
haviors is large and supporting the most general forms of
temporal sharing is computationally expensive. We then
present a design for extensible signaling support for tempo-
ral sharing.

We have implemented the temporal sharing design pre-
sented in this paper in the Beagle signaling protocol. We
present an evaluation of the Beagle design and contrast it
with other signaling protocols like RSVP and Tenet-2.

Keywords— Resource allocation, Signaling protocols, Ac-
tive networks.

I. INTRODUCTION

HE Internet is rapidly transitioning from a set of wires

and switches that carry packets to a sophisticated in-
frastructure that delivers a set of complex value-added ser-
vices to end users. These services typically involve mul-
tiple end-points and use multiple flows often with inter-
dependent resource requirements. Traditional flow-based
signaling protocols allocate resources for each flow indepen-
dently. This is based on the underlying assumption that
each flow in the network is independent of all other flows
in terms of its resource utilization. However, most services
with multiple flows exhibit temporal relationships in the
way their flows utilize the resources allocated to them. In
such cases, these “related” flows can share the same set of
resources over time. We call this type of behavior tempo-
ral sharing and define it as the sharing of resources among
multiple flows with temporally interleaved resource usage.
Temporal sharing forms a middle ground between inde-
pendent flow-based allocation and periodic renegotiation
by combining the low signaling overhead and predictable
behavior of independent flow based allocation, with savings
in resource consumption obtained using periodic renegoti-
ation.

Temporal sharing was first introduced in the original
RSVP design paper [1]. RSVP introduced the notion of
resource reservation styles that allowed different senders
to a multicast group to share the same set of resources.

A subset of the styles introduced in the original paper is
supported in the RSVP specification [2]. Temporal shar-
ing has also been studied in the context of other signaling
protocols like Tenet-2 [3] and ST2+ [4]. Although these
signaling protocols represent an important first step in ex-
ploiting temporal sharing, the “one size fits all” approach
they take limits their usefulness. The support they provide
1s mostly suited for conference style applications. However,
as will be described later, there is a much wider spectrum
of application behaviors that can benefit by using tempo-
ral sharing. The temporal sharing support provided by the
above protocols is inadequate for these applications.

This paper makes the case that temporal sharing support
must be designed to be extensible, so that service providers
can define and implement new sharing behaviors without
having to modify the signaling protocol. This is based on
the observation that temporal sharing is an optimization
that closely depends on the behavior of the service and
is therefore best performed using service-specific knowl-
edge. We consider the range of possible temporal shar-
ing behaviors and show that while supporting the most
general forms of temporal sharing is computationally ex-
pensive, several useful temporal sharing behaviors can be
supported cheaply either by using service-specific knowl-
edge, or by trading off resource efficiency for computation
overhead. We describe the design and prototype implemen-
tation of extensible temporal sharing support in a signaling
protocol called Beagle.

The rest of the paper is organized as follows. Section II
outlines the motivation for this work and gives examples
of application behaviors that exhibit temporal sharing. In
Section IIT we consider the range of possible temporal shar-
ing behaviors. Section IV evaluates the computational
complexity of supporting different temporal sharing behav-
1ors. We discuss the design of extensible temporal sharing
support in Section V. Section VI describes the Beagle pro-
totype implementation. Section VII presents an evaluation
of the Beagle implementation of temporal sharing. Finally,
Section VIII contrasts our approach with related work and
Section IX presents the conclusions.

II. MOTIVATION

Most applications with multiple flows exhibit some form
of temporal sharing. In this section we consider a few ap-
plications and show how temporal sharing can be exploited
to save resources. We also the present the abstraction of a
flow group that captures temporal sharing relationships in
a general fashion.

A. Conferencing

The most well-known style of temporal sharing is that
exhibited by conferencing applications with some form of
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Fig. 1. Example of Beagle temporal sharing in a conference appli-
cation with at-most two active speakers: (a) without temporal
sharing, (b) with temporal sharing.

“floor control” which limits the number of active speakers.
Figure 1 shows the use of conference style temporal sharing
in a video conference among six participants, A through F.
Each participant multicasts video coded as either JPEG
(requiring 2 units of bandwidth) or MPEG-2 (requiring 1
unit of bandwidth). The video conference application is
structured so that there are at most two simultaneously
active speakers. Figure 1(a) shows the resource allocation
at links in the network with independent per-flow alloca-
tion. For simplicity, resource allocation is shown only along
the directions specified on the links. Without temporal
sharing, the resource allocation on a link increases with
the increasing number of sources upstream. Therefore at
receivers E and F a bandwidth of 7 units is allocated to
account for video flows of all five sources upstream (two
JPEG and three MPEG-2). Using conference style sharing
all flows through a link share the same set of resources.
As shown in Figure 1(b), it is sufficient to allocate band-
width at each link that covers the total bandwidth of the
two highest bandwidth sources upstream. For example, at
receivers E and F, a bandwidth of 4 units is allocated to ac-
count for the two JPEG sources upstream. As shown in the
figure, this significantly reduces the resource requirements
when compared to the earlier scenario without temporal
sharing.

Conferencing 1s an example where temporal sharing
arises as an inherent property of the application. We call
such applications self-limiting applications using the ter-
minology from [5]. Other examples of self-limiting appli-
cations are distributed interactive simulations, multiparty
games and statistical multiplexing.

B. Virtual Private Networks

Virtual Private Networks (VPNs) are overlay networks
laid over the existing Internet that connect several sites

together. An important component of a VPN service is
resource management. Recently, a new model has been
proposed for resource management in VPNs called the hose
model [6]. According to the hose-model, in a VPN with N
sites, each site 7 1s connected by an access link of bandwidth
h; called a “hose”. Therefore, a hose limits the amount of
traffic generated or received by the site.

The hose model provides an opportunity for temporal
sharing in VPNs. Consider a VPN with N sites intercon-
nected together. Because each site can transmit to all the
other sites, there are N (N — 1) unicast flows. Each unicast
flow connecting a pair of sites is capable of using the full
bandwidth of the hoses at each end. However according to
the hose model, all the N flows generated at a site ¢ share
an aggregate bandwidth limit of h; which is the capacity of
the source hose at i. Similarly all the N flows destined to
the site j share an aggregate bandwidth limit of h; which
is the capacity of the destination hose at j. Taking ad-
vantage of these limits imposed by the hoses, it is suffi-
cient to allocate at each link in the network the bandwidth
given by the minimum of total upstream and downstream
hose bandwidths considering all the VPN flows at that link.
This can lead to large resources savings over independent
allocation.

Figure 2 shows the use of the hose-based VPN sharing
style. We consider a VPN involving four sites A through D.
A and D have hoses with 2 units of bandwidth, C has a hose
with 3 units of bandwidth and B has a hose with 4 units of
bandwidth as shown in the figure. Each site has a unicast
flow from itself to each of the other sites. For simplicity,
we only show all the unicast flows destined to sites C and
D in Figure 2(a). Each unicast flow has a bandwidth re-
quirement that is defined by the minimum of the two hose
bandwidths at either end of the flow. For example, the
flow from A to C would have a bandwidth requirement of
2 units. Figure 2(b) shows the bandwidth allocation with
independent flow-based allocation. As with the previous
example, we show bandwidth allocations only in the direc-
tions specified along the links to keep the figure simple.
Figure 2(c) shows the bandwidth allocations with hose-
based VPN sharing. As discussed before, at each link the
bandwidth allocation is calculated by taking the minimum
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for each video channel. One flow would be a high
idth (B units shown using a thick line), high quality
orresponding to the channel being viewed as the fore-

wo out of the four flows at a time, choosing one high-
vidth and one low-bandwidth flow as shown in the

Fig. 3. Example of a broadcast TV application with picture-in-
picture capability.

of the total upstream and downstream hose bandwidths at
that link. For example, at the link from R1 to R2, the
total upstream hose bandwidth is 6 units (A and B) and
the total downstream hose bandwidth is 5 units (C and D).
Therefore 5 units of bandwidth is allocated. As shown in
the figure, there is significant reduction in bandwidth allo-
cation at internal links (from R1 to R2) when compared to
independent allocation. Also, the allocation at each hose
reflects the limitation of that hose, in contrast to indepen-
dent allocation. This shows that using hose-based VPN
style sharing can significantly reduce the resource require-
ments of a VPN.

The hose-based VPN resource allocation is an example
where temporal sharing arises because the network imposes
limits on aggregate traffic carried by a group of flows. We
call such applications network-limited applications. A more
general example of a network-limited application is the vir-
tual mesh as described in [7]. A virtual mesh is charac-
terized by several end-points, a few designated routers and
several virtual links between them. The virtual links might
impose limits on aggregate resource usage which provides
opportunities for temporal sharing. For example a vir-
tual mesh over a Differential Services Internet [8], might
have limits imposed on aggregate traffic at interconnection
points between different administrative clouds.

C. Broadcast TV with Picture-in-Picture

Consider a broadcast TV application with a picture-in-
picture (PIP) capability as shown in Figure 3. A typical
scenario in which the PIP capability is useful is the live
transmission of simultaneous sports events (e.g NFL foot-
ball games). In the application shown in the figure, each
football game is a separate video channel that is multicast
to a set of independent viewers. Viewer A is watching two
video channels simultaneously switching back and forth be-
tween the two channels making one channel the main chan-
nel and the other the inset. Viewer B, on the other hand,
is tuned only into one of the channels.

One way to implement this application is to have two

ﬁguré. Temporal sharing can be exploited in this case by
allocating resources for one high-bandwidth and one low-
bandwidth flow (instead of allocating resources for all four
flows) and allowing the viewer to dynamically associate the
shared resources with the appropriate flows at any point in
time.

This application 1s an example where temporal sharing
arises because receivers tune into and out of a set of inde-
pendent multicast flows over time. We call such applica-
tions channel switching applications, again using the termi-
nology given in [5]. Other examples of channel-switching
applications include distributed processing of data for an
array of sensors (e.g. an array of radars or weather satel-
lites) and Enhanced TV where a video flow is augmented
by a real-time data flow carrying extra information about
the video (e.g. real-time statistics during a televised foot-
ball game).

D. Flow Groups

Temporal sharing between a group of flows can in general
be represented by a flow group, which identifies the group
of flows, and a rule to compute the resource requirements
of the group of flows. The rule consists of a formula to cal-
culate the resource requirements and a set of parameters
(e.g. flow specs). The formula wil depend on the shar-
ing behavior between the flows while the parameters will
depend on the specific nature of this flow group instance.

Flows can be members of one or more flow groups. In
the case of self-limiting applications, each flow is a mem-
ber of one flow group. The group QoS spec associated with
that flow group reflects the inherent limit imposed by the
application. In the case of network-limited applications,
each flow is a member of m flow groups where m is the
number of network-imposed aggregate limits encountered
along the path of the flow. For example, m = 2 in the
case of hose-based VPNs because each end-to-end flow be-
tween any two sites goes through one source hose and one
destination hose. Finally, in the case of channel-switching
applications, each flow is typically a member of more than
one flow group where, a flow group is defined by the re-
ceiver.

III. RANGE oF TEMPORAL SHARING BEHAVIORS

The examples presented in the previous section represent
a small sample of a wide range of possible temporal sharing
behaviors. In this section we explore the range of possible
temporal sharing behaviors and present a two-dimensional
design space that characterizes all possible temporal shar-
ing behaviors. In the next section, we evaluate the compu-
tational complexity of supporting different temporal shar-
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ing behaviors.

A. Flow Types

The earlier examples exhibit two types of flows, relate
flows and independent flows, that differ in how the aggre
gate resource requirement is calculated and how the sharec
resource is arbitrated among the flows during runtime.

Related flows are those that exhibit temporal relation
ships among sources. In this case temporal sharing occurs
as a result of the peaks of activity of different sources being
interleaved in time. This can occur as inherent applicatior
behavior as in the case of self-limiting applications, or car
be artificially imposed to save resources as in the case of
network-limited applications. For related flows, the shared
resource is arbitrated in an end-to-end fashion through co-
ordination among the sources. This coordination can be
achieved in several ways: for e.g., at the application layer in
the form of a conference manager or at the transport layer
using protocols such as TCP to detect the available band-
width. The algorithm to calculate the aggregate resource
requirement for related flows has to determine the set of
flow groups that minimizes the total resource requirement
at a link. Temporal sharing for related flows characterizes
source behavior and therefore applies to both unicast and
multicast flows.

Independent flows are those where, the sources do not
exhibit any temporal relationships. Temporal sharing is
still possible in this case because receivers switch over time
among a set of sources from which they receive data. This
type of temporal sharing is exhibited by channel-switching
applications where, a receiver need not allocate resources
for all sources in which 1t is interested. Instead, it allo-
cates an aggregate set of resources enough to handle the
worst-case combination of simultaneous sources, and then
switches among the sources at runtime. For independent
flows, the shared resource is explicitly associated with the
set of currently “active flows” specified by the receivers
downstream. The calculation of the aggregate resource re-
quirement for groups with independent flows has to de-
termine the maximum possible resource requirement de-
pending on the worst-case choices made by receivers down-
stream. Temporal sharing for independent flows character-
1zes receiver behavior and applies to multicast flows.

B. Temporal Sharing Design Space

The two types of flows described above capture all possi-
ble temporal sharing behaviors by representing both source
and receiver relationships. Therefore, related and indepen-
dent flow types define a design space for temporal sharing.
All possible temporal sharing behaviors can be represented
as points in this design space as shown in Figure 4. The
two axes defining this space are the two flow types in the
network. These two axes define the options for temporal
sharing between groups of flows and applications can have
multiple groups of flows with different sharing behavior

Each axis represents the tradeoff between computa-
tional complexity and resource efficiency. Applications can
achieve the lowest resource consumption by specifying the

Related Flows |
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Fig. 4. Points in the design space of temporal sharing behaviors

most general forms of temporal sharing for the two types
of flows. As shown in the next section, this is computation-
ally expensive. Applications can either opt for less optimal
resource consumption in favor of simplified specification as
in the case of broadcast TV with picture-in-picture exam-
ple; or use application-domain knowledge to simplify the
calculation complexity, while still achieving best possible
resource consumption as in the case of conferencing and
VPN applications.

IV. ANALYSIS OF SHARING BEHAVIORS

In an ideal world, there would be a single general formula
for specifying temporal sharing and the signaling protocol
would support this single format. In this section we show
that the general way of supporting temporal sharing is very
expensive. Fortunately, by exploiting application proper-
ties (customization) or by being less aggressive in exploit-
ing temporal sharing, the cost of temporal sharing can be
reduced. In this section we illustrate this using the VPN
sharing type as an example. A more detailed discussion on
the complexity of exploiting temporal sharing can be found
elsewhere [9].

A. General Case

Let F' be the set of flows f;,7# = 1---N at a link. Let
Gj,j=1---M be the set of flow groups at that link.

Gj={f:fer} (1)

Hence G; C F. In the most general form of temporal
sharing for related flows, each flow f; can be a member of
any number of groups G;. Define F to be the family of
single subsets of F' and G to be the family of subsets of F
defined by the flow groups Gj.

F o= {hh A} AN} (2)
g = {GlaGQa"'aGM} (3)

Let X = F|JG. Each element ¢ in X has a resource re-
quirement ¢; which 1s either the QoS of the flow f; or cal-
culated using the rule associated with the group G;. The
calculation of the aggregate resource requirement requires
determining the family C C A" that covers the set F' with
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minimum resource requirement.

F=1J8:) ¢s<> gs,C'Cx.C#£C

SeC Sec Sec’

This problem is the well-known weighted set covering
lem and is known to be NP-complete.

B. Virtual Private Networks

In the hose-based VPN case, each flow f is a m
of two groups: one reflecting the limit on the agg
traffic generated by the source site and another refl
the limit on the aggregate traffic that can be sin._ =
the destination site. Therefore, in this case we have two
families of flow groups Gs and Gr corresponding to flow
groups defined by the source access link limitations and
destination access link limitations respectively. And both
families of flow groups consist of disjoint subsets that cover

F:

F o= [JS and VS,8€Gs,SNS =¢ (5
S€EGs

F o= |J S and VS.5€Gr,SNS =¢ (6)
SeEGR

A characteristic of the hose-based VPN application is that
Gs and Ggr are the only two coverings of the set F' to con-
sider because all other coverings contain one of these two
and hence have a higher resource requirement. To state
this more formally, let G = Gs U Gr represent the family
of all flow groups at the link. If C C G is any covering of
the set F' then, CNGs = Gs or CNGr = Gr. To prove
this, we represent the set of flows F' at the link under con-
sideration in a p x ¢ matrix M where, p is the number of
upstream sources and ¢ 1s the number of downstream des-
tinations. The family of groups Gs and Gr are formed by
taking rows and columns of the matrix M respectively. All
the elements of the matrix are covered by the set of rows Gs
or by the set of columns Gr. Any other attempt to cover
all the elements of the matrix would involve a subset of the
rows and all columns or vice-versa. Therefore any other
covering of the set F' would include either the source group
family or the destination group family and has a higher
resource requirement.

Because Gs and Gz contain disjoint subsets of F', the set
covering problem reduces to an iteration among the groups
G; and with group G; being chosen if its resource require-
ment is less than the sum of the member flows’ resource
requirements. The aggregate resource requirement ¢ for
the set of flows F' can be calculated as follows:

> minqgs, Y gr . Y. minggs, Y gy

S€EGs fes SEGR fES

¢ = min

(7)

The worst-case complexity of calculating the total resource

requirements is of the order O(N) where N is the number
of flows at the link.

In summary, calculating the aggregate resource require-

ment for a set of related flows at a link can be NP-hard
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Fig. 5. Example network topologies for calculating asymptotic re-
source consumption gains.

TABLE I
RESOURCE ALLOCATION FOR A VPN SERVICE WITH n SITES, EACH
WITH UNIT HOSE CAPACITY.

| Topology || Independent | VPN sharing | Ratio
Linear @ "2—2 %(n - %)
m-Tree 2n[(m—1):1nlig1m n—n+1] 2nlog,, n n— 7(m_’11)_1§gm
Star 2n(n—1) 2n n—1

in the general case. But, using domain knowledge in the
case of the VPN service, the calculation complexity can be
reduced to be linear in the number of flows at the link.
Note that this reduction in complexity is not achieved at
the expense of resource consumption.

C. Resource Allocation Gain

In [5], the self-limiting and channel-switching temporal
sharing styles are analyzed to calculate the resource alloca-
tion gains obtained over the three representative network
topologies shown in Figure 5. Using the same methodology,
we carry out an analysis of the VPN sharing style to deter-
mine the gains in resource allocation. Consider a VPN with
n sites connected by one of the three candidate topologies.
We assume that each site has unit hose capacity. In the
case of independent flow-based allocation, each site is con-
nected to every other site by a unicast flow. Therefore there
are n(n — 1) flows each of which can transmit at full hose
capacity (i.e 1). Therefore the total resource allocation for
the VPN is n(n — 1) A where A is the average length of the
path for each flow. Due to space considerations, we omit
the details of the calculation of the average path length A
and refer the reader to [5]. The results are summarized in
Table 1.

In the case of hose-based VPN, as shown in Sec-
tion IV the resource requirement at each link is given by
min{ng, ng} where ng is the number of source hose groups
and ng is the number of receiver hose groups at the link.
Calculating the total resource requirement in this case re-
quires the evaluation of the min function for each of the
three topologies. Again, we omit the details of the analy-
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sis and refer the reader to [5] for an evaluation of the min
function. The results are summarized in Table I. As seen
from Table I, using temporal sharing in hose-based VPN
service reduces the resource requirements by a factor O(n)
over independent flow-based allocation.

V. EXTENSIBLE TEMPORAL SHARING DESIGN

In this section we consider the design of signaling sup-
port for temporal sharing in the context of service-oriented
networks. The design of signaling support for temporal
sharing must meet the conflicting goals of supporting the
wide range of possible temporal sharing behaviors and at
the same time providing the support in an efficient man-
ner. Supporting the most general form of temporal sharing
is computationally expensive. While this complexity can
be reduced by exploiting service properties or by trading
off some complexity for increased resource allocation, this
results in a large number of sharing styles that must be sup-
ported. Moreover, it is also likely that implementation and
user experiences will lead service providers to implement
new sharing behaviors.

Therefore, signaling support for temporal sharing must
not be designed with hard-wired sharing mechanisms.
Rather, the signaling support for temporal sharing must
be designed to be extensible. Extensibility provides ser-
vice providers with the ability to dynamically define and
use new sharing behaviors without having to modify the
signaling protocol. Such a design has the advantage of be-
ing able to cover the wide range of behaviors and at the
same time allowing service providers to use service-specific
knowledge and make intelligent tradeoffs to improve com-
putation efficiency.

In this section, we discuss the design of extensible sup-
port for temporal sharing in the Beagle signaling protocol.
We first briefly describe the design of the Beagle signaling
protocol and mechanisms for flow setup. We then describe
how temporal sharing information is represented in Beagle.
We then focus on a single node and describe the design of
the temporal sharing execution environment and give ex-
amples to illustrate the setup of flows with temporal shar-
ing. Finally, we give examples to show the application of
the conference and VPN sharing styles.

A. Quverall Design and Beagle Mechanisms

A flow setup in Beagle is based on the standard three-way
handshake mechanism realized by the exchange of three
messages (SETUP_REQUEST, SETUP_RESPONSE and
SETUP_CONFIRM) between neighboring routers along
the path of the flow. The SETUP_REQUEST message
carries a list of objects including those that provide in-
formation about the traffic carried by the flow and the
QoS requirements for that flow. The Beagle entity at
each router along the path processes this information, allo-
cates resources required by the flow and forwards it to the
next hop. In addition to the basic objects listed above, a
SETUP_REQUEST message may also carry temporal shar-
ing information if the flow is part of a flow group. This in-
formation is carried in the form of a TemporalSharing ob-

105

Conference Flow Group

Group ID
k

Temporal Sharing Object

Sharing Type
Code URL
Group Instance

VPN Flow Groups

Group ID
Hose Type
Site Address
Hose QoS Spec

Group Data

(a) (b)

Fig. 6. (a) Temporal sharing object (b) Flow groups for conferencing
and VPN sharing behaviors.

ject which is described in the next section. The information
in the TemporalSharing object is interpreted by dynami-
cally downloaded code modules that implement support for
a particular style of temporal sharing (such as conference,
VPN, etc.). These code modules execute inside a temporal
sharing execution environment (TSEFE) which is responsi-
ble for interacting with the Beagle entity at that router to
setup resources for flows with temporal sharing behavior.
The design of the TSEE is described in a later section.

The overall design described above supports extensibil-
ity in two ways. The representation of temporal sharing is
itself extensible by service providers as shown in the next
section and the interpretation of temporal sharing informa-
tion is by dynamically loaded code modules which can also
be customized by service providers.

B. Temporal Sharing Representation

Temporal sharing information for each flow 1s repre-
sented by the TemporalSharing object shown in Fig-
ure 6(a). Each TemporalSharing object has a globally
unique sharing type which represents a particular type of
sharing behavior. Examples of sharing types are conferenc-
ing, VPN, etc. Associated with the sharing type is a code
URL which provides the location of the code module that
implements the temporal sharing behavior for that type.
Beagle dynamically downloads the code module from the
specified URL if it has not been downloaded before. Each
TemporalSharing object also has a group nstance field
which uniquely represents an instance of a particular shar-
ing behavior within an application. For example, if a VPN
service creates two different VPNs, two different group in-
stances of the VPN sharing type would be created. All
flows at a link falling under the same group instance share
the same set of resources at that link.

The TemporalSharing object also contains information
which is opaque to Beagle (shown shaded in Figure 6(a)).
This opaque data is interpreted by downloaded temporal
sharing modules of that sharing type and contains infor-
mation about one or more flow groups that the flow is a
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member of. Figure 6(b) shows the information containe
in flow groups for the conference and VPN sharing types
Each flow group is identified by a group «d which is uniqu
within the application. The conference flow group also ha
a parameter k& which specifies the number of simultaneousl
active sources. The VPN flow group has a hose type paramr
eter which specifies whether the hose information pertain
to a source hose or a destination hose. It also has parame
ters to specify the address of the site connected to the hos
and the QoS spec of that hose.

The group QoS spec for a flow group can also be speci
fied in several different ways depending on the sharing style
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Apart from the two ways of representing a flow group fc
conference and VPN styles as shown above, a flow grou
can use a general function f(n) which calculates the re
source requirement based on the n of flows actually shan
ing the resource. An example of this would be statistice
multiplexing of a number of video or audio flows.

Service providers can define custom representations for
the TemporalSharing object by using service-specific flow
groups. For example, a conference application that is
also part of a VPN might define a flow group that com-
bines the information in the conference and VPN flow
groups described above. Broadcast-TV with PIP applica-
tions can define a flow group based on receiver preferences.
Service providers defining custom representations for the
TemporalSharing object must also provide the appropri-
ate code modules to interpret the flow group data.

The design of the TemporalSharing object strongly
couples a flow with a particular sharing type. This
is because each flow setup message can carry at
most one TemporalSharing object. Allowing multiple
TemporalSharing objects in a flow setup message has the
potential advantage of allowing applications to combine
sharing styles (e.g. conference and VPN as described ear-
lier). However, the disadvantage of this design is that it
complicates the interaction between Beagle and the code
modules that implement a particular sharing type. At
each node, Beagle will need to interact with multiple shar-
ing modules and will need to combine the results of these
interactions in a generic way, which likely will make the
computation of temporal sharing NP-complete. The design
presented here does not preclude services from combining
sharing styles. Instead, it forces services combining differ-
ent sharing styles to implement a new sharing type and a
sharing module for that type. This has the advantage of
allowing services to use domain knowledge to simplify the
calculation of the aggregate resource requirement.

C. Temporal Sharing Ezxecution Environment Architecture

Figure 7 shows the design of the temporal sharing execu-
tion environment. The temporal sharing support primarily
consists of three interacting modules: a) core Beagle, b)
temporal sharing manager and c) active sharing modules.
The core part of Beagle is responsible for flow setup pro-
tocol processing and maintaining flow state. This module
does not interpret temporal sharing information and treats
temporal sharing as an optimization. If temporal shar-

Core Beagle Conf Module ginst | groups
3 Confl
ginst | stype | gos | flows | — TS Manager / 4 Conf2
11 |13 |12 |5
211 3 (3) ‘
3 2 6 @ [ ‘
4 2 15 |(6,7,8) ginst | groups
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VPN Module
Control Plane
Data Plane \
13 36 15
@ @ ® @
group instances

Fig. 7. Beagle extensible temporal sharing design.

ing information is not available or unusable on account of
an error, this module falls back on independent flow-based
allocation. As shown in Figure 7, the core part of Beagle
maintains a list of group instances and the list of flows that
fall under a particular group instance. Resource allocation
is based on group instances with the traffic aggregate de-
fined by the union of the filters of all flows that fall under
that instance. The aggregate resource requirement for a
group instance is provided by the sharing module corre-
sponding to that particular sharing type. The core part
of Beagle interfaces with the sharing modules through the
temporal sharing manager.

The temporal sharing manager 1s responsible for the dy-
namic loading, instantiation and caching of sharing mod-
ules. It acts as an intermediary between core Beagle and
the active sharing modules. The temporal sharing man-
ager maintains a list of sharing types and references to cor-
responding sharing modules. When a new sharing type is
received, the sharing manager obtains the code that imple-
ments the sharing module from the URL associated with
the sharing type and instantiates the sharing module. The
sharing manager is also responsible for directing requests
from core Beagle to the appropriate sharing module. The
sharing manager may also enforce computational and stor-
age resource limits on the sharing modules. In addition,
the sharing manager may act as a cache manager by main-
taining all the sharing modules in a cache and paging out
modules that have been inactive over a period of time.

Active sharing modules are responsible for implementing
different sharing behaviors. Each sharing module is respon-
sible for computing the aggregate resource requirement for
a particular group instance. Each module can optionally
keep flow group state for group instances of that type. For
example, Figure 7 shows a VPN sharing module which has
cached state for two VPN group instances. Keeping cached
state allows a sharing module to optimize computational
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TABLE 11 . .
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5 1 |2 |t 5 | 2] 2 [(ffo)
Interface call Des: Init(5, 1)
TSI _Init Initialize group instance spe OK(1)
TSI_AddFlow Add flow to a particular grc AddFlow(f,, 5. 2, ..)
TSI DelFlow Delete a flow from a partict By _
TSI GetQoSSpec || Get the aggregate QoS spec Core Beagle . OK Conference Sharing Module
GetQoS(5)
o . QoS3
overhead by using incremental calculation when X3
setup or torn down. Each sharmg module .mterginst ‘ stype ‘ qos ‘ flows ginst ‘ K ‘ qos ‘ flows
core Beagle through the sharing manager using t 5 1 3 | (f fo ) 5 5 3 | (fafo f)
Temporal Sharing Interface (TST). N D O B R
The Beagle Temporal Sharing Interface (TSI) d

interface between Beagle and the active sharing moaules.
Every sharing module must implement this interface. The
TSI calls are shown in Table II. The TSI_Init initializes
state in the sharing module for a particular group instance.
This results in the downloading of the module if necessary.
It returns an indication regarding whether the module has
cached state for that particular group instance. If the mod-
ule does not have cached state, Beagle is responsible for
initializing the state for all the flows under that group in-
stance. The TSI_AddFlow call adds a flow to a particular
group instance. This call passes the opaque flow group data
associated with that flow to the sharing module. The call
returns an error indication if the flow group information is
inconsistent or erroneous; or if the operation fails for some
other reason. The TSI DelFlow call deletes a flow from
a particular group instance. The TSI _GetQoSSpec call re-
turns the aggregate resource requirements for a particular
group instance.

The TSI design presented here allows sharing modules to
further optimize for computational overhead by performing
incremental calculations using previously cached state for
a group instance. For example, a conference sharing mod-
ule may keep the flow QoS specs for each group instance
in a sorted list and add the %k highest QoS specs when-
ever the aggregate QoS spec for that group instance is re-
quested. An alternative TSI design would be to pass all
the flow QoS specs in a group instance to the sharing mod-
ule every time the aggregate QoS spec needs to be calcu-
lated. This design has the advantage that the sharing mod-
ules can be stateless and therefore simpler to implement.
However, the disadvantage is that sharing modules cannot
amortize the cost of computation over several flow setups
within a group instance. The TSI design presented in this
paper also supports stateless sharing modules through the
use of the TSI_Init call which indicates if a module has
cached state. This provides the flexibility for applications
to choose either stateless or stateful implementations for
sharing modules.

The design of temporal sharing support in Beagle is
driven by the goal of keeping the active sharing modules
as simple as possible. Therefore, most of the functionality
required to implement temporal sharing such as the defi-

Fig. 8.
module during a flow setup.

Interaction between core Beagle and the conference sharing

nition of group instances, allocation of resources for group
instances and arbitration of the shared resource during run-
time are all implemented in the core non-extensible part of
Beagle. The active sharing modules need only be concerned
with calculating the aggregate resources for a particular
group instance. This isolates the active sharing modules
from the details of having to deal with the traffic control
entities and simplifies the implementation of new sharing
behaviors.

Another design goal is to provide robust and predictable
behavior in the presence of failures in the temporal sharing
execution environment. Although extensibility provides
applications with great flexibility in defining and imple-
menting new sharing behaviors, the downside is the in-
creased security risks and the possibility of errors in active
sharing modules leading to unpredictable behavior. The
design of the TSI guards against this possibility by provid-
ing a very simple interface that restricts the scope of actions
that can be performed by the active sharing modules.

Another advantage of the design outlined here is that
it allows the temporal sharing execution environment to
operate without local knowledge about the network node
which allocates the resources. This opens up the possibility
of running the temporal sharing execution environment on
a separate “control station” that is common for an entire
subnet of routers in the network. This results in improved
scalability and robustness; and can also enhance security.

D. Ezxample

In this section we give an example to show the sequence
of calls that are made across the TSI when a new flow is
setup.

Consider the conferencing example shown in Figure 1.
Figure 8 shows the interaction between Beagle and the con-
ference sharing module at router R1 during the setup of
the video flow from B (fp) across the link between routers

R1 and R2. We assume that the video flows from A (f4)
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Fig. 9. Beagle temporal sharing implementation.

and C (fc) have been setup previously. Therefore, before
the setup of flow fp, Beagle has allocated a bandwidth of
2 units at the link from R1 to R2. This is reflected in
the state maintained by Beagle for the group instance that
defines the video conference application as shown in the
figure (group instance 5, sharing type 1). The conference
sharing module also has cached state for this group in-
stance as shown. When the flow setup message for flow
fp 18 received, Beagle first initializes the state for this
group instance maintained by the sharing module by calling
TSI_Init (shown as Init(5,1)). The sharing module indi-
cates that it has cached state for this group instance in its
reply (shown as OK(1)). Beagle then adds the new flow to
the group instance by calling TSI_AddFlow. Upon receiv-
ing a positive response from the sharing module, Beagle
obtains the new aggregate QoS spec for the group instance
by calling TSI _GetQoSSpec. The sharing module adds flow
fB to the group instance and returns the newly computed
aggregate bandwidth of 3 units in the response. This up-
dates the resource allocation state maintained by Beagle
for that group instance as shown in the figure. If the con-
ference sharing module did not have cached state (i.e. it
returns OK(0) in response to the TSI_Init), Beagle initial-
izes the state by calling TSI_AddFlow for flows f4 and feo
before adding flow fp.

VI. IMPLEMENTATION

In this section, we describe the implementation of the
temporal sharing execution environment (TSEE) in the
Beagle prototype. As shown in Figure 9, the TSEE inter-
acts with the Beagle daemon using a TCP connection. We
use the Java programming language to implement the ac-
tive sharing modules based on its support for safe-execution
of downloaded code modules, support for implementing se-
curity policies and wide-spread popularity. The TSEE is
implemented as Java virtual machine process using JDK
1.1. The Beagle daemon is itself implemented in C and
allocates resources for a flow using the traffic control inter-
face (TCI) at a router.

The main thread of control in the TSEE is the temporal
sharing manager (TS manager). The TS manager main-
tains a module table that has references to downloaded
sharing modules of a particular type. The module table can
also be used to implement caching strategies. The TSEE
also implements a class loader that can dynamically load
classes that implement a particular sharing module given
the code URL associated with that module.

The TSI is specified as a Java interface specification.
Each active sharing module must define a class that im-
plements this interface. Each sharing module can create
multiple threads. The TS manager thread can control how
much CPU is allocated to the sharing module by enforcing
thread priorities. The TS manager acts as an intermediary
between the Beagle daemon and the active sharing mod-
ules. It implements a serialization protocol across the TCP
connection to the Beagle daemon that provides support for
each TSI call. Each TSI call by the Beagle daemon causes
the TS manager to invoke the corresponding method of
the sharing module of that particular type. The values re-
turned by the method invocation are serialized and passed
back to the Beagle daemon.

The temporal sharing module of the Beagle daemon
(shown shaded) implements the other end of the serial-
ization protocol between the Beagle daemon and the TS
manager. It provides an interface for the rest of the Beagle
daemon to utilize services provided by the active sharing
modules. Each TSI call is handled as a request-response
transaction over the TCP connection. The temporal shar-
ing module is also responsible for dealing with all the error
conditions that might occur during any TSI transaction
over the TCP connection.

VII. EVALUATION

In this section, we present an evaluation of the Beagle
temporal sharing design. In the data plane we demon-
strate the operation of the VPN temporal sharing style
by doing a proof-of-concept experiment using the Beagle
prototype implementation over a local IP testbed. In the
control plane, we profile the Beagle implementation and
evaluate the cost of having an extensible implementation
of temporal sharing.
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Fig. 10. Experimental setup for the hose-based VPN proof-of-concept
experiment.

A. Cost of Extensible Implementation

We measured the performance of the Beagle prototype
implementation to determine the cost of providing exten-
sible temporal sharing. The experiment involved repeated
trials of setting up flows with conference type sharing on a
local IP testbed. The overhead of invoking each of the TSI
methods is shown in Table III. The setup of a flow with
temporal sharing behavior involves at least three TSI calls
(Init, AddFlow and GetQoS). There may more TSI calls
if the sharing module does not keep cached state. There-
fore the minimum cost of setting up a flow with temporal
sharing is 1469.34 ps. This is in addition to the overhead
of processing flow setup messages and allocating resources
through the traffic control interface.

This overhead is caused mainly by two factors. Firstly,
each TSI method call causes a context switch between the
Beagle daemon and the Java process that runs the temporal
sharing execution environment. This overhead is about 300
pus on each TSI call for a Pentium-1T 400 MHz router run-
ning FreeBSD 3.3. We expect that commercial routers will
offer better context switch performance by using real-time
schedulers and/or multi-processor hardware. Another way
to reduce this overhead could be to embed the temporal
sharing execution environment within the Beagle daemon
process using the Java Invocation API.

The second factor contributing to the overhead is the
performance of sharing modules implemented in Java. For
the experiment described here, we used JDK 1.1 which does
not have support for just-in-time (JIT) compilation. We
expect that the performance can be improved significantly
with the use of JIT and advances in Java compiler technol-
ogy.

It should be noted that both these factors contributing
to the overhead are caused by implementation effects. We
believe there is no fundamental reason why an extensible
implementation should be slower than a non-extensible im-
plementation.

B. Proof-of-concept VPN Ezxperiment

In this section, we describe the results of a proof-of-
concept experiment that shows the operation of the VPN
application described in the example in Section V-D. Our
goal is basically to demonstrate the operation of the Bea-
gle prototype implementation of temporal sharing under a
realistic experimental scenario. The experimental setup 1is
shown in Figure 10. As shown in the figure, four hosts H1
through H4 represent four sites of the VPN. Each site has
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Fig. 11. Bandwidth plot of VPN flows along the link between R1
and R2.
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a hose bandwidth (in Mbps) as shown in the figure. For
simplicity, we only consider the four flows crossing the link
between routers R1 and R2. Using VPN style temporal
sharing, the four flows share an aggregate bandwidth of
5 Mbps. Each of the four sources generates on-off TCP
traffic. Each TCP flow can use as much bandwidth as is
available subject to the constraints imposed by the hoses.

We cycle through each of the 16 on-off combinations of
the four flows. For each combination, there are 5 runs of
the experiment. During each run all the flows in the ’on’
state transmit data for a period of several seconds. At the
end of the run, throughput measurements are made for all
the four flows at the receiving end. We plot the through-
put for all the 80 runs of the experiment in Figure 11.
Also plotted is the aggregate throughput of all the four
flows (shown as the black solid line in the figure). The ex-
periment demonstrates three aspects of temporal sharing.
Firstly, as shown in the figure, the aggregate throughput
for the four flows does not exceed 5 Mbps. This is due
to the limitations imposed by the hoses on the aggregate
traffic and shows that exploiting the limits imposed by the
hoses leads to significant resource savings in the network.
Secondly, each flow is capable of dynamically utilizing all of
the available bandwidth within the limit determined by the
minimum of its hoses at either end as shown in the figure.
This demonstrates a second advantage of hose-based VPN
sharing; networks can improve scalability by aggregating
all of the VPN flows at a link under a single resource and
at the same time provide sufficient flexibility for each end-
to-end flow to dynamically utilize the maximum available
bandwidth.

Finally, the experiment also shows the behavior of ag-
gregate enforcement of temporal sharing. Enforcement of
temporal sharing defines the behavior that results when
the set of flows sharing a resource exceed the aggregate re-
source allocation. Aggregate enforcement simply enforces
the limit on the aggregate traffic generated by a set of flows
sharing a resource. In this case, packets that exceed the ag-
gregate resource allocation are either dropped or forwarded
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Fig. 12. RSVP temporal sharing examples: (a) Conference, (b) VPN
with wildcard filter (WF) style, (c) VPN with shared-explicit
(SE) style.

as best-effort. In most cases, as shown in Figure 11, ag-
gregate enforcement provides fair behavior when two TCP
flows share the aggregate bandwidth. However, in some
cases, one TCP flow grabs all the bandwidth. These case
are highlighted in Figure 11 using circles to show the runs
where the unfair behavior occurs. For example, during runs
15-20, the flow F2 grabs all of the available 2 Mbps band-
width of the destination hose of H4. This behavior can
be remedied by using fair enforcement which ensures that
both flows F1 and F2 would share this bandwidth equally
using RED-like mechanisms [10], [11], [12]. Several other
options for enforcement are described in [9].

VIII. RELATED WORK

As mentioned before, temporal sharing has been studied
in the context of other signaling protocols like RSVP [1],
[2], Tenet-2 [3] and ST24 [4]. In this section we contrast
these protocols with Beagle showing how these protocols
perform in the example scenarios considered in Section V-
D.

Temporal sharing was first considered in the design of
the RSVP protocol [1], [2], [13]. RSVP allows the shar-
ing of reservations among different senders within a mul-
ticast session using reservation attributes called “styles”.
The RSVP version 1 specification defines three reservation
styles. The wildcard filter (WF) style indicates that the
resources reserved for a multicast session has to be shared
by all senders to that session. The fixed filter (FF) style
makes a separate reservation for each explicitly identified
sender in the multicast session. The shared explicit (SE)
style indicates that the resources reserved for the multicast
session must be shared among the explicitly identified set
of senders to the session.

The first difference between Beagle and RSVP temporal
sharing 1s in the scope of its application. Temporal shar-
ing in RSVP is restricted to sharing of resources within a
multicast session. On the other hand, the Beagle notion
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of temporal sharing is more general in scope and applies
to all the flows (multicast or unicast) within an applica-
tion. The second difference is in the range of application
behaviors supported. In RSVP, the FF style is analogous
to independent flow-based resource allocation and there-
fore there i1s no sharing of resources in this case. Both
the WF and SE reservation styles are designed with self-
limiting applications in mind. In contrast, Beagle supports
a much wider set of application behaviors as discussed ear-
lier and provides an interface for applications and services
to dynamically implement new sharing behaviors.

To see the difference between RSVP and Beagle tempo-

3/7@&1 sharing we show the application of RSVP sharing styles

to the examples of Section V-D in Figure 12. Figure 12(a)
ows the resource allocations for the video conference ex-
ample using either the WF or SE reservation style. Both
styles produce the same resource allocations. Comparing
with Figure 1(b), we see that RSVP over allocates resources
on the inter router links. This is because the WF and SE
styles associate a group QoS spec directly with a set of
multicast flows. This leads to over allocation when all the
flows in a conference do not have the same bandwidth re-
quirement. When all the flows in a self-limited application
have the same bandwidth requirement, both RSVP and
Beagle temporal sharing styles produce the same alloca-
tions. Next, consider the resource allocation with RSVP
for the VPN example shown in Figure 12. In this exam-
ple we ignore the fact that RSVP cannot share resources
between different unicast flows. We assume that the reser-
vation styles can be extended in scope to cover multiple
unicast flows. In this case, the WF style leads to under al-
location of resources on the link between routers R1 and R2
(Figure 12(b)). This is because receivers C and D choose
aggregate bandwidths corresponding to their hose limita-
tions. When these reservations are merged upstream, the
maximum of the two requests is allocated. On the other
hand, using the SE style leads to over allocation along the
access links of hosts A and B (Figure 12(c)). In this case
we assume that both receivers C and D explicitly define
the set of flows that share the aggregate resources defined
by hose limitations. This set of flows is defined by all the
flows converging at that particular receiver. With this as-
sumption, resources are not merged upstream for these two
sets of flows defined by C and D resulting in correct re-
source allocation on the link between R1 and R2. How-
ever, further upstream, independent flow-based allocation
occurs because no two flows belonging to the same set share
the same link. This example shows that RSVP reservation
styles cannot adequately address the needs the network-
limited applications which have multiple limitations on ag-
gregate bandwidth for a set of flows.

Temporal resource sharing was also studied in the Tenet-
2 signaling protocol. In the Tenet-2 model of temporal
sharing, a list of channels can share resources if they be-
long to the same channel group. A channel group is anal-
ogous to the flow group defined in Beagle and defines an
arbitrary association of flows for resource sharing purposes.
Therefore, the Tenet-2 model has the same scope for the



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATION, VOL. XX, NO. YY, MONTH 2000 111

Sharing threshold = 2
MPEG-2 Group BW =4

ONN \ \
R1 » R2
=S
JPEG
MPEG-2
(a)

» R3

MPEG-2

Sharing threshold = 2
Group{A} = 2, Group{B} = 4

20
R1 R2

o O

Fig. 13. Tenet-2 temporal sharing examples: (a) Conference, (b)
VPN with source hose groups, (c) VPN with destination hose
groups.

Sharing threshold = 2
Group{C} = 3, Group{D} = 2

eV

@ 2

()

application of temporal sharing as Beagle. In the Tenet-
2 model, the resource requirements for a channel group is
given directly in terms of a group QoS spec. Associated
with the group resource requirement is a sharing thresh-
old that defines when the group requirement is to be used.
When the number of channels at a link is greater than on
equal to the sharing threshold, the group requirement is
used at that link; otherwise, independent flow-based allo-
cation is performed.

Figure 13 shows the resource allocations with the Tenet-
2 temporal sharing model for the conference and VPN ex-
amples. As shown in Figure 13(a), the Tenet-2 model also
results in over allocation of resources along the inter router
links for the conferencing application. This is because, as
with RSVP, Tenet-2 uses a group QoS spec to directly give
the resource requirements for a group of flows. This is
only accurate if all the sources in a conference have the
same bandwidth requirement. In contrast, Beagle allows
flow groups to have several different rules which give the
aggregate resource requirement. The k-rule 1s appropriate
for conferencing style applications and can handle sources
with non-uniform bandwidth requirements as shown in Fig-
ure 1(b).

Another key difference between the Tenet-2 model and
Beagle is that in Tenet-2 a channel can only be a mem-
ber of one channel group with a resource sharing rela-
tionship. This means, like RSVP, the Tenet-2 model is
mostly suited for self-limiting applications. Therefore, for
network-limited applications like the hose-based VPN, ap-
plications can only satisfy one constraint on the aggregate
bandwidth of a set of flows. This is shown by the ap-
plication of Tenet-2 resource sharing to the VPN exam-
ple where, either the source hose requirements are satisfied
(Figure 13(b)) or the destination hose requirements are sat-
isfied (Figure 13(c)). In either case, resources are over al-
located when compared to the Beagle model of temporal

3
5 7
some of the optional features of the RSVP protocol speci-
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sharing as shown in Figure 2(c). The Internet stream pro-
tocol ST2+ also provides support for sharing of bandwidth
among multiple streams. The sharing model is almost iden-
tical to that provided by the Tenet-2 scheme.

The Beagle design for temporal sharing uses ideas from
the active signaling project [14], [15] at ISI. The active sig-
naling project is developing an active version of the RSVP
protocol that can be dynamically customized by applica-
tions and service providers. The active signaling project
has mainly been concerned with defining the proper pro-
tocol programming interfaces and designing execution en-
vironments using which active protocols can be designed,
implemented and tested. Currently, an active version of the

SVP protocol has been developed where, a base version of

SVP co-exists with an enhanced version which supports

cation. The Beagle design incorporates ideas from active
signaling into the design of the temporal sharing execution
environment.

IX. CoNCLUSIONS

This paper made the case that signaling support of tem-
poral sharing must be extensible by applications. To sup-
port this argument we first presented several classes of ap-
plications that exhibit different styles of temporal sharing.
Then the notion of flow types was introduced which en-
ables the characterization of the temporal sharing design
space using a two-dimensional classification defined by the
two types of flows: related and independent. Using set the-
ory, we showed that supporting the most general forms of
temporal sharing for the two types of flows is computation-
ally intensive. We also showed how several useful styles of
temporal sharing can be supported cheaply either by using
application domain knowledge, or by trading off resource
efficiency for computation overhead.

This paper also presented the design of extensible tem-
poral sharing support in the Beagle signaling protocol. Ex-
perimental evaluation of the Beagle prototype implemen-
tation shows that the overhead incurred by implementing
the extensible parts in Java is reasonable (about 500 us
per call) and will improve with better support for real-
time scheduling on commercial routers and improvements
in Java compiler technology.

We also presented results of a proof-of-concept experi-
ment to demonstrate the use of the hose-based VPN style
to save resources for a VPN service. The Beagle temporal
sharing design was contrasted with other signaling proto-
cols using several examples which clearly showed the ben-
efits of extensible support for temporal sharing.
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