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Abstract

Networking researchers have been using tools like wireshark
and tepdump to sniff packets on physical links that use dif-
ferent types of datalink protocols, e.g. Ethernet or 802.11,
allowing them to monitor higher level protocols sharing these
links. However, monitoring wireless links is more challeng-
ing, since the transmission medium is shared by flows us-
ing diverse datalink protocols (e.g. 802.11, Bluetooth) and
physical layer schemes (e.g. QPSK and GFSK). To this end,
we propose RFDump, a software architecture for monitoring
packets on heterogeneous wireless networks. The key idea
underlying our architecture is the use of a fast detection
stage which can tentatively map signals to protocols very
efficiently. As a result, RFDump can scale up to a modest
number (5-10) of wireless technologies.

We implemented RFDump on the GNU Radio and USRP
platforms. This is, to our knowledge, the first inexpensive
software-based infrastructure for simultaneously analyzing
multiple wireless protocols in real-time. Using traces from
the real world and from a wireless emulator testbed, we show
that our implementation is efficient and accurate. Further,
we demonstrate that our system is extensible and scales with
the addition of new protocols.
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1. INTRODUCTION

Tcpdump, Wireshark/Ethereal and similar applications
have become a critical part of the tool collections used by
networking researchers, networking administrators and ap-
plication developers. These tools expose the operation of
a network in a detailed, cross-layer fashion. Based on this
exposed information, users are able to monitor and analyze
the interactions between different nodes, different protocols,
different protocol layers and different applications in the net-
work. This has enabled activities such as diagnosing network
protocols, optimizing network performance and even teach-
ing network protocol operation.

Unfortunately, applying these tools in wireless networks
fails to provide the same level of insight into the operation of
the network. There are two reasons for this problem. First,
these tools operate at the link-layer and above. In wireless
settings, the behavior of the physical layer is critical to the
operation of the network. Second, these tools are limited to
operation over a single network interface card (NIC), such
as an 802.11 NIC. As a result, they can only report on the
detailed operation of the associated network link technology.
However, unlike wired networks, the physical medium over
which the network operates is shared by many link technolo-
gies. For example, the 2.4 GHz unlicensed spectrum band is
shared by 802.11, Bluetooth, ZigBee, cordless phones and a
wide range of other link technologies. Making observations
on a single link technology hides many of the node, protocol
and application interactions that users are attempting to ob-
serve with such tools. In this paper, we describe the design
of RFDump, a tool that extends the monitoring capabilities
below the link layer and enables more effective monitoring
of the wireless ether.

In order to be practical, a monitoring tool for wireless
networks must meet two key requirements. First, we must be
able to monitor packets that use a wide variety of protocols,
so the tool must efficiently support multiple protocols and
it must be easy to add new protocols in the future. Second,
the tool must run in real-time so it can be used for run-
time analysis and troubleshooting. Note that we do not
expect our system to interact with the monitored links (i.e.,
it does not need to implement the link-layer protocol). As
a result, our system can process transmissions after some
delay (e.g., a second) but the processing must keep up with
the rate of packet transmissions. In addition, while core
functions, such as identifying packets and the technology
they use, must occur in real time, more complex functions,
such as full decoding of payloads or deep packet inspection,
may only be feasible for a subset of the traffic in the ether.
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Figure 1: The naive architecture

This may not seem like a significant challenge since tools
such as Tcpdump are able to decode a wide range of proto-
cols efficiently. The key to this efficiency is that each proto-
col layer specifies the protocol used by its contents. For ex-
ample, the IP header contains a protocol field that identifies
the transport protocol of the datagram contents. This allows
Tcpdump to run just the code needed to decode the appro-
priate protocol. Unfortunately, the physical layer does not
explicitly identify the protocol used by an active transmis-
sions. Instead wireless networking cards use a combination
of preambles, modulation and coding schemes, and header
information to determine the protocol. As a result, the most
obvious and naive solution (Figure 1) to performing wireless
monitoring would require that we monitor all link-layers in
parallel (i.e. try to interpret every signal with every proto-
col). This solution is either expensive (for hardware) or slow
(for software).

The core of our design is the decomposition of the prob-
lem into a detection stage followed by the demodulation
stage. The detection stage can tentatively map signals to
protocols very efficiently — essentially providing a protocol
tag much like the ones that Tcpdump relies upon. We rely
on some key observations to make these detection modules
much more light-weight than complete demodulation. First,
these detectors can operate with some delay, which enables
the use of algorithms that are not appropriate for demod-
ulation. Second, unlike demodulators, these detectors are
allowed to have false positives. If that happens, the signal
is passed to demodulation code to interpret the content of
the transmission and the demodulator will then determine
that the signal does not represent a valid packet for that
protocol.

This paper makes three contributions. First, we present
the RFDump architecture for monitoring diverse wireless
links. The architecture introduces a light-weight detection
stage before demodulation so that demodulation needs to be
performed only on actual RF transmissions. Second, we in-
troduce a specific set of fast early detectors for devices using
802.11b/g and Bluetooth, as well as other RF devices such
as microwave ovens. Finally, we present a prototype imple-
mentation of the RFDump architecture on the GNU Radio
[14] and USRP [17] software defined radio (SDR) platforms.
Our implementation is an early prototype (limited in various
ways by the underlying hardware platform we use) used to
evaluate the potential benefits of the architecture. We com-
pare its performance with a naive solution and show that
our architecture is much more efficient, while maintaining
the same level of accuracy. We not only detect most of
the packets detected by the naive solution, but also packets

GNU Radio CPU time /
Block Real time
802.11 demodulation (1 Mbps) 0.6
Bluetooth demodulation 0.7
Peak/Energy detection 0.05

Table 1: Time taken by some blocks

which cannot be demodulated due to the limitations of the
USRP interface. Although the individual detection mod-
ules themselves play a key role in achieving efficiency and
scalability, the main contribution of the paper lies in how
the architecture is designed for monitoring different types of
wireless link technologies in an efficient manner.

The rest of the paper is structured as follows. The next
section presents the REFDump architecture and Section 3 de-
scribes our early detection modules that can detect packets
belonging to a number of protocols without demodulating
and decoding. Section 4 describes the implementation of
the architecture on the GNU Radio and USRP framework.
Section 5 evaluates our implementation for efficiency and ac-
curacy by comparing it with straightforward but naive alter-
natives. Section 6 compares our architecture with alternate
approaches and we summarize our work in Section 7.

2. ARCHITECTURE

2.1 Maotivation and Requirements

Monitoring wireless networks is difficult because activity
on the transmission medium (the ether) is difficult to observe
and decode. The problem is that unlicensed spectrum is
open to anybody with only minimal limitations, and as a
result, a wide variety of physical and datalink layers are in
use. Nevertheless, it is important to get a full picture of
the activity in the shared spectrum. For example, when
diagnosing Wi-Fi problems, a full picture is critical because
non-Wi-Fi users can reduce the (Wi-Fi) network capacity by
reducing transmission opportunities or, even worse, cause
high packet error rates if the technologies cannot coexist.

This leads to the following requirements for a wireless
monitoring tool.

e Multi-protocol: it must support simultaneous mon-
itoring of at least a small (e.g. 5-10) number of proto-
cols and RF sources.

e Real-time: it must perform core functions, e.g. iden-
tifying packets and the technology they use, in real
time.

e Protocol Extensible: it must be relatively simple to
add support for new protocols, e.g. 802.11n.

e Functionality Extensible: it should be possible to
add additional modules that further analyze traffic,
e.g. demodulator, diagnostic modules, deep packet in-
spection. Unless otherwise specified, we refer to the
process of demodulation, decoding and analysis to-
gether as demodulation for the rest of the paper.

Given these high-level requirements, let us consider the
suitability of the naive architecture shown in Figure 1. Here,
the entire input stream is sent to demodulators for all tech-
nologies that may be in use. Implementing this architec-
ture using separate hardware for each demodulator is both
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Figure 2: Illustration of RFDump architecture

expensive and impractical (e.g. conflicting drivers, accom-
modating many cards on a single machine). An alterna-
tive is to use a software defined radio (SDR) and perform
demodulation in software. Unfortunately, demodulation in
software is a computationally expensive operation and the
system in Figure 1 would not scale to even a modest number
of protocols. The first two rows of Table 1 show how slow
demodulation is compared to real time; these numbers are
for GNU Radio processing a sample stream generated by a
USRP radio at 8 million samples per second on a 2.13 GHz
Core 2 Duo processor (see Section 4.1 for details). Even
with a faster platform, this approach will not scale to 5-10
protocols, especially if we also want to support higher speed
protocols such as 802.11g and 802.11n.

With advancements in software radios, we expect the size
of the input data stream per unit time (~480 Mbps for
USRP to ~1 Gbps for USRP2) to go up over time. To be
able to sustain real-time throughput, we need to make the
analysis phase very efficient. For example, we need to limit
the number of accesses to the data stream to reduce load
on the memory system, avoid redundant computation, and
discard uninteresting blocks of samples as early as possible
in the process.

An obvious optimization to the above design is to reduce
the load on the demodulators by using an energy-based fil-
tering stage before demodulation. This filter would only pass
blocks of samples that exceed a minimum energy threshold
so the demodulators would only be applied to the parts of
the sample stream that are likely to include useful signals.
The “energy detection” row in Table 1 shows that energy
detection is a cheap operation compared to demodulation.
After the energy detection stage, the demodulation cost will
scale with the level of activity in the ether, i.e. if the ether
is busy 20% of the time, the demodulation cost would be
reduced by a factor of five compared with the naive archi-
tecture. While a big step forward, this solution still does not
scale to even a modest number of protocols. Even worse, its

cost will be high (comparable to that of the naive archi-
tecture) when the ether is very busy, which is likely when
monitoring is most critical.

2.2 Architecture Overview

RFDump extends upon the energy filtering-based naive
design by improving the filtering of the signal. Instead of
simply passing all signals, or all signals above some energy
threshold, to all demodulators, the RFDump architecture
attempts to only pass signals that are of a particular tech-
nology on to the appropriate demodulators/analyzers. This
ensures that minimal amount of work is done in demodulat-
ing signals.

While the task of classifying signals is obviously a subset
of demodulating a signal, this design does raise the concern
of how to efficiently classify signals to a particular technol-
ogy. As we show in this paper, the process of classifying
signals (i.e. detecting activity of a specify technology) is
much more light-weight than full demodulation. We believe
that this will always be true for a few reasons beyond just
the relative complexity of the tasks. First, the architecture
tolerates false positive classification errors gracefully. The
goal of the classification stage is to reduce the amount of
work done by the demodulators. As a result, as long as it
is filtering signals relatively effectively, passing a few extra
signals will not impact the correct operation of the design.
Second, unlike typical demodulation applications, our target
application accommodates some latency (but not through-
put degradation) in processing the signal. We believe that
classification can make far greater use of this delay tolerance
than demodulation or other analysis tasks. As we show in
the remainder of this paper, this enables the creation of very
light-weight classification schemes.

Figure 2 illustrates the REDump architecture that imple-
ments the above design. Our architecture broadly consists
of a detection stage and an analysis stage. We further di-
vide the detection stage into a protocol-agnostic detection



stage and a protocol-specific detection stage. The protocol-
agnostic detection stage identifies properties of blocks of
samples that could be of interest to multiple protocols and
associates confidence values with these properties. This is a
concise representation of the sample stream and it is stored
separately as metadata associated with each block of sam-
ples. A simple example of a protocol-agnostic detection
stage is a peak detector that reports the start and end times
of RF transmission. The protocol-specific modules in the
next stage use the information from the protocol-agnostic
stage to determine which blocks of samples could be part of a
packet of a particular protocol, and they selectively forward
only those blocks of samples to the analysis phase for the
respective protocols. The protocol-specific modules in the
detection stage typically access the metadata from the pre-
vious stage and the same metadata will often be reused by
multiple protocol-specific modules. An example of protocol-
specific processing might be to examine the peaks reported
by the peak detector to identify timing behavior specific to
a protocol.

After the detection stage, the stream of signal is only ac-
cessed as needed, i.e. uninteresting blocks of samples are
discarded, while promising blocks are only read if further
analysis (e.g. demodulation) is needed. In our implemen-
tation, the analysis stage typically demodulates Wi-Fi and
Bluetooth signals, but other analysis tools could be used,
e.g. demodulation of headers only.

RFDump meets the requirements listed in Section 2.1. For
an architecture to support 5-10 protocols, the incremental
cost (CPU cycles spent) for additional protocols should be
low. The reason is that the functionality of the first phase
of detection is protocol-agnostic (e.g. a peak detector) and
is shared by multiple protocols. The protocol-specific detec-
tion stage is also inherently fast as it works at a much coarser
granularity — it only operates on the meta data. Adding
support for more protocols is usually easy since the code in
the protocol-specific detectors typically performs just sim-
ple operations on the metadata created by already exist-
ing protocol-agnostic modules. For example, many different
protocols can make use of the output of a peak detector
to perform relatively simple time-based detection schemes.
As we show later, the same is true for phase-based and
frequency-based detection. One nice property of our system
is that we can mostly use existing demodulation code (e.g.
BlueSniff [15] and BBN’s 802.11 demodulator [1]). Develop-
ers would simply need to implement appropriate detection
code, which tends to be far less complex than demodulation,
to add such existing analysis/demodulation code to the sys-
tem.

Note that the RFDump architecture in Figure 2 (simi-
lar to the naive architecture) has inherent parallelism that
can be exploited using multi-threading. This is, of course,
important on today’s multi-core CPUs. Unfortunately, our
platform (GNU Radio) currently does not support multi-
threading, so the measurements in this paper only use a
single core.

3. EARLY DETECTION MODULES

We now describe the early detection modules we used in
our prototype system. They can tentatively map signal be-
longing to 802.11b, Bluetooth, and microwave ovens. We
also discuss how the modules can be extended to support
other protocols.

Protocol Timing Phase Channel
(us) (Modulation) width
(Mbps) | Slot| SIFS Scheme [Spreadingl (MHz)
b (1) 20 10 DBPSK?| Barker
802.11| b (2) 20 10 DQPSK®| Barker 22
b (5.5/11) 20 10 |DQPSK®| CCK
g 9 10 OFDM"¢ 20
Slot
Bluetooth GFSK FHSS 1
625
802.15.4 Slot IFS
. QPSK 5
(ZigBee) 320 | 192/600
Residential AC cycle
. 10-75
Microwave 16667,/20000

“Preamble is sent using DBPSK

bCTS-to-self packets use one of the 802.11b rates
“Uses BPSK, QPSK, 16-QAM or 64-QAM for the subcarriers

Table 2: Relevant features for different wireless pro-
tocols in the 2.4 GHz ISM band

3.1 Fast Early Detection

We require that fast detection modules for our architec-
ture to be extensible to a range of, including future, wireless
technologies. As described earlier, the goal of the fast de-
tectors is to efficiently identify key properties of the signal
that can be used to tentatively map sample blocks to pos-
sible protocols. An important challenge in the design of
fast detectors is to determine the right tradeoff between (a)
maximizing the level of accuracy and confidence in the infor-
mation that is extracted and (2) minimizing the processing
and memory access cost. For example, submitting the signal
to a group of demodulators may yield detailed and accurate
information, but it is very expensive. We need much cheaper
detectors, even if this reduces the confidence in the results
slightly.

Our current prototype includes fast detectors for time,
phase, and frequency analysis of the signal samples to detect
packets of different wireless standards. Table 2 shows some
relevant frequency, timing, and phase properties of wireless
protocols in the 2.4 GHz ISM band that can be used for
their detection. To see how these properties are used in
the fast detection stage, consider the row corresponding to
one of the protocols, say 802.11b (2 Mbps). We have a
protocol-agnostic peak detection module that identifies the
timing between RF transmissions. This timing information
is passed on to all protocol-specific modules and any new
protocol added will reuse the computation of the peak de-
tection module for timing-based detection. The protocol-
specific timing module for this variant of 802.11b could look
for RF transmissions that were spaced by 10 ps which would
suggest transmissions spaced by the 802.11 SIFS. Similarly,
we can have a set of protocol-agnostic modules that look for
the use of specific forms of phase modulation (e.g. DBPSK,
DQPSK). The protocol-specific module could use this to
identify signals that used a combination of DBPSK, which
is used in 802.11b’s PLCP preamble, and DQPSK, which
is used to transmit 802.11b data. Note that the results of
the protocol-agnostic module could also used by a ZigBee
protocol-specific detection block, which uses QPSK, and by
other forms of 802.11, which use different combinations of
DBPSK and DQPSK.
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Figure 3: SIFS timing in 802.11

It is important to consider the computational complex-
ity of the detection blocks. For example, if analyzing the
phase of the signal at this level is too expensive, a lighter
weight analysis that just detects a pattern in the phase may
be sufficient to perform effective classification of the signal.
Note that the frequency, phase, and timing detectors that
we present in this paper are just simple examples of detec-
tion blocks that our system can use. It is likely that other,
possibly more efficient detectors will be identified over time.

The simplest design for REDump would simply apply the
fast detectors to the full signal stream. There are however
two simple techniques that can be used to further reduce
the overhead of the detection stage. The first technique is
a simple energy detector that discards blocks of signals that
are below a certain level (e.g. at the noise floor). This can
significantly reduce processing costs, especially if there is a
low level of spectrum utilization. This is especially useful
when scanning, e.g. a single radio looks at multiple fre-
quency bands over time, since efficiency is then a concern
even for idle bands. Filtering based on energy detection
should be conservative: it should not discard short burst of
low-energy samples that sit between two sample blocks of
interest. A second technique is to use sampling: when ana-
lyzing a burst of samples with consistent signal strength, it
may be sufficient for the fast detectors to only look at a sub-
set of the samples. This helps further reduce the cost of the
detection stage, with minimal impact on accuracy and con-
fidence. Our current prototype implements energy detection
but does not use sampling.

In the following sections, we describe the design of our
timing, phase and spectrum fast detectors. Note that many
of the algorithms used by these detectors are well known.
The key novelty of the design is how the detectors leverage
properties such as tolerance to delay and false positives (ex-
plained in Section 2.2) in the detection stage to provide a
light-weight mechanism to classify the signals.

3.2 Timing Analysis

Most wireless protocols define timing information like In-
terframe Space (IFS) and slot times. For example, in 802.11,
a packet and the MAC-level acknowledgment have a time
gap corresponding to SIFS (Short Interframe Space) as shown
in Figure 3; whenever there is contention, 802.11 packets are
separated by a time interval of DIFS + kxST, where DIFS
is the Distributed Interframe Space, k € [0, CW], CW is the
contention window and ST is the slot time; in Bluetooth,
packets are sent in TDD (Time Division Duplex) slots of

625 ps (1600 hops in a second), with the master and slave
alternating. Similar timing properties have been used for
service discovery and device identification in the context of
spectrum management in cognitive networks [11]. Much
like RFDump, spectrum management applications do not
need to meet protocol-level timing requirements. In fact,
since these applications have weaker performance require-
ments, they use even coarser grain and slower timing-based
pattern search (e.g., by using AP’s beacon spacing). Our
work shows that timing-based pattern recognition can be
extended even further and can meet the real-time require-
ments of REDump.

In the time domain, we need to find the spacing between
peaks (packets) and correlate it to different protocols. We
divide this process into two parts — a single protocol-agnostic
peak detector block, and protocol-specific peak and gap anal-
ysis blocks, one for each protocol. The peak detection block
computes the running average of energy over a window of
consecutive samples. Based on empirical thresholds for en-
ergy level of the current window of samples, the previous
window of samples, and the noise floor, the protocol-agnostic
module determines the beginning and the end of peaks.
Samples are averaged to reduce the chance that noise would
cause the detector to split up a peak (packet) into multiple
shorter ones. It communicates with the analysis modules by
passing metadata containing succinct information regarding
the peaks detected in every fixed chunk of samples along
with a pointer to the history of peaks detected. The history
is an array of starting and ending timestamps of recent peaks
and it is useful for finding both the length of peaks and the
time gap between consecutive peaks. By having a protocol-
agnostic peak detection block do all the computation on the
input stream, we reduce the load on the protocol-specific
detectors, which work only on the metadata.

Extending timing analysis to future protocols requires the
minimal work of writing a protocol-specific block for com-
paring the peaks and spacings with values that apply to the
new protocol. For example, a ZigBee timing block would
look for spacings that are a multiple of backoff periods (slot
time), LIFS (Long Interframe Space), Short Interframe Space
(Short Interframe Space) or tack (Time between a packet
and the MAC-level ACK). A microwave timing block might
look for peaks occurring at the rate of AC frequency (60 Hz,
i.e. once every 16.67 ms). Some protocol-specific blocks may
require deeper analysis such as correlating signal strengths
(which are present in the metadata). For example, since
the emitted signal from a residential microwave has con-
stant power, we can use signal strength information to ver-
ify whether the amplitude of the signal is constant across
peaks.

3.3 PhaseAnalysis

A number of protocols use some form of phase modula-
tion. The idea of the phase analysis module is to deter-
mine the phase of the samples in the sample stream and
to identify whether a particular pattern is present. Differ-
ent levels of analysis may be used with different precision
versus overhead tradeoffs. The simplest check could be to
simply determine whether a pattern is present or not; the
value of this information is limited to determine whether the
protocol uses phases modulation or not. A more balanced
alternative is to determine the specific modulation scheme.
For example, QPSK and DPSK will result in specific phase



Figure 4: Estimating constellation

values dominating. GMSK, which changes phase incremen-
tally, will have discrete values for the first derivative of the
phase. An even more aggressive analysis may determine the
type of coding is used; this is however unlikely to appropri-
ate for a fast detection stage.

Two additional issues need to be considered during the
phase analysis. First, different protocols can use different
symbol rates, which must be considered by the analysis. Of
course, the symbol rate is also an identifying feature of a
protocol. Second, the center frequency of the signal under
investigation may be offset relative to the center frequency
of the frequency range being sampled. This results in a
constant drift of the phase over time. Again, this is use-
ful information since the drift allows us to determine what
channel is used by the protocol packet.

To illustrate how phase information can be computed cheaply,

consider the following scenario: Assume our RF frontend
outputs complex values representing the observed signal,
sampled and translated down to some intermediate frequency
(IF). Also assume the band being monitored contains a PSK
signal, though possibly at a different center frequency (what
follows can be generalized to QAM). Now, with one arctan
operation per sample we get the phase of the IF signal. The
frequency offset between monitored band and PSK signal
will contribute a constant to the first derivative of this IF
phase, which is computed by subtracting the phase of one
sample from the next. Whenever we find the phase jump by
more than this offset, we have found a symbol transition. By
observing such symbol transitions over a sufficiently long pe-
riod, we can estimate the number of points in the PSK con-
stellation diagram (Figure 4). In fact, for differential modu-
lation schemes like DBPSK and DQPSK, symbol transitions
are themselves the information being carried by the signal.
BPSK and QPSK would require synchronization, i.e. align-
ing the observed constellation diagram with the axes). We
can even identify the exact scheme by computing a phase
histogram with some number of bins, and making sure the
appropriate bins are filled while others are empty. Figure 4
divides the complex plane into four bins to identify the signal
as BPSK.

Many protocols can share the above computations. They
can be shared regardless of channel center frequency, sym-
bol rate, exact constellation diagram, and need for coherent
detection (aligning the constellation diagram with the axes).
GFSK is a popular exception to the QAM pattern, but even
that can be detected by checking that the second derivative
of phase is always zero.

Since our hardware did not support monitoring OFDM
protocols, we did not explore OFDM. We believe it should
be possible to build quick detectors for OFDM.

3.4 Frequency Analysis

We can also use frequency analysis to detect protocols.
Detection in the frequency domain requires us to perform a
Fast Fourier Transform (FFT) operation to find the portion
of the spectrum occupied by a block of samples. Frequency
analysis will provide useful information about the protocol
being used, as all wireless standards define their channel
width and operational frequencies. For example, 802.11 de-
fines 11 channels with a width of 22 MHz and center fre-
quency ranging from 2.412 GHz to 2.462 GHz; Bluetooth
does frequency hopping between 79 channels with a chan-
nel width of 1 MHz. Also, the signal from many protocols
has a distinctive shape in the frequency domain, which, at
an additional processing cost, could be used to increase the
confidence level in the classification of the signal.

For the limited number of protocols that we can study
using USRP 1, the timing and phase analysis work well al-
ready, so we do not incorporate frequency analysis in our
RFDump prototype. However, in Section 5.1, we use fre-
quency analysis along with packet length-based matching to
evaluate our Bluetooth detectors.

4. IMPLEMENTATION

We implemented our architecture on the GNU Radio and
USRP platforms. Note that due to limitations of the USRP
1 platform, our current implementation does not represent
an ideal picture of the architecture. For example, the current
implementation does not incorporate energy filtering before
the detection stage, as shown in Figure 2, and the imple-
mentation of the phase detector is fairly complex. Despite
this, our prototype implementation is effective for evaluat-
ing the benefits of the proposed architecture. We give a brief
overview of GNU Radio architecture and terminology before
moving on to implementation details.

4.1 GNU Radio and the USRP

GNU Radio [14] is an open source software toolkit for
building software radios. The Universal Software Radio Pe-
ripheral [17] is the corresponding hardware which has 12-bit
64M sample/sec ADCs (Analog to Digital converter), 14-
bit 128M sample/sec DACs (Digital to Analog converter), a
million-gate FPGA (Field Programmable Gate Array) and a
programmable USB 2.0 controller (USRP2 supports Gigabit
Ethernet). It also has daughterboards on which RF front-
ends for transmitting and receiving in different frequency
bands are implemented.

GNU Radio provides a library of signal processing blocks
that are implemented in C++4-. These blocks process infi-
nite streams of data flowing from their input ports to their
output ports. In order to build a radio using these blocks, a
flowgraph is created in GNU Radio. A flow graph is a DAG
(Directed Acyclic Graph) with vertices as the signal process-
ing blocks and the edges representing the data flow between
them. These flow graphs can be created in C++ or using a
python wrapper. The GNU Radio scheduler schedules these
blocks at run-time as the input buffers of these blocks start
getting filled.

A major bottleneck in our system is the USB connection
between host machine and USRP hardware. Inherently, the
USRP can provide a stream of 24-bit complex samples at
64 million samples per second, thus allowing us to monitor
a frequency band up to 64 MHz. However, the limited speed
of USB (480 Mbps) forces the USRP’s FPGA to decimate



the signal down to a bandwidth of 8 MHz, which is: only a
tenth of the 2.4 GHz ISM band in the US.

4.2 Design

The design for RFDump on GNU Radio directly follows
the architecture in Figure 2. We can use either USRP or a
trace file as the source for our system. Instead of having the
energy-based filter as in Figure 2, we integrate this filtering
into the peak detector, and it is from this block that the
detection modules derive their input. The reason is that
the incoming sample stream does not contain timestamps.
As a result, if we do energy-based filtering early without
adding timestamps, we would lose any notion of time. The
peak detection block, on the other hand, reads data from the
source buffer and associates metadata with each block of n
samples, listing information about the peaks it detected. By
integrating the filtering into the peak detector, it is easy to
keep track of time since we can simly add timing information
to the metadata block. The metadata consists of aggregate
peak information (e.g. number of peaks) for a chunk, and a
pointer to a history window of recent peaks detected.

There is a tradeoff to make when chunking samples. On
the one hand, chunking reduces the amount of metadata
required to be sent per sample, when compared to keeping
metadata per sample. However, larger chunk sizes can lead
to more noise data being sent along with useful samples to
the demodulators. Based on our experience, we have chosen
a chunk size of 25 pus (200 samples) as a tradeoff between
these factors.

4.3 Peak Detector

Energy-based filtering was integrated into the peak detec-
tor as follows. The energy-based filter first computes the av-
erage energy of the last window of samples within the chunk
to see if there is a chance of having signal information in the
chunk. Only if this average is above a certain threshold (4
dB more than the noise floor) is the chunk of samples ex-
amined sample-by-sample from the start of the peak. This
approach works because our chunk size is smaller than the
smallest packet size for any of the protocols considered and
hence, a chunk of samples cannot encompass a packet plus
sufficient noise to “drown out” the packet. In choosing the
averaging window size, there is a tradeoff between the pre-
cision we get in finding the start and end of the peaks and
the confidence with which we can determine both the start
and end of a peak. Since the minimum timing we currently
detect is 802.11 SIF'S (10 us or 80 samples), we use an aver-
aging window of 2.5 us (20 samples) in our implementation.
Once chunking has allowed us to confidently decide there
is a peak, to most precisely find peak start time, we use
a threshold for the instantaneous (magnitude) value of the
signal as well.

4.4 Timing Analysis

The 802.11 time analysis block looks for a time period of
SIFS £6 (SIFS) or DIFS + kxST £§(DIFS,ST) after a peak
ends as explained in Section 3.2. The value of these timing
parameters for 802.11b/g are listed in Table 2. Note that
DIFS = SIFS 4+2xST. Here, we use ¢ to denote some error
tolerance function. We use a value of 64 for CW, where k €
[0, CW] to bound our latency. The Bluetooth time analysis
block looks for a peak in the history window that started at
a time t—(m x 625us), where t is the end time of the current

peak and m is a positive integer. In order to improve the
efficiency of the above search, we maintain a cache of lat-
est observed Bluetooth activity and check against the cache
before searching through the history window. We also main-
tain a counter for the elements of the cache that correspond
to Bluetooth packets belonging to the same Bluetooth ses-
sion. Our cache eviction policy and confidence value are
based on this counter.

45 Phase Analysis

We incorporated two protocols (Bluetooth and 802.11 base)
that use different modulation schemes (GMSK/GFSK and
DBPSK, respectively) into the phase detector. Unfortu-
nately, Wi-Fi could not share the results of the phase anal-
ysis computation with Bluetooth because it required a spe-
cialized hack to work around the limitations of USRP 1. In
a way, our implementation experience showed us the draw-
backs of not sharing computation. REFDump detects the two
protocols as follows:

Bluetooth uses a continuous-phase modulation technique
called GMSK. Thus, if the second derivative of the phase is
equal to zero, the packet is classified as Bluetooth. The first
derivative identifies the channel. This detection processing
is inexpensive: computing phase change from one sample
to the next costs a complex conjugation, multiplication and
arctan() operation. Subtraction gives the second derivative.

Wi-Fi Given the bandwidth limitation of USRP 1, only
the 1 Mbps data rate can be supported and it uses DBPSK.
However, the channel width is 22 MHz due to Barker chip-
ping at 11 Mbps. This is well beyond the 8 MHz bandwidth
offered by the USRP 1. In addition, the uneven 11:8 ratio
means that the Barker ‘null’ points do not align at sample
boundaries. As a result, we are forced to employ a somewhat
inelegant solution and precompute the sequence of phase
changes across 8 samples expected due to Barker chipping,
and correlate this precomputed signal with the incoming sig-
nal. This technique is also used in the ADROIT project’s
Wi-Fi demodulator for GNU Radio [1]. Unfortunately, this
algorithm is both expensive and protocol specific.

Note that the above phase detection computations overlap
with the computation that is typically done by demodula-
tors. It might be possible to save the computational re-
sults to be re-used as part of demodulation. We did not
consider this in our design and it is unclear whether the
computational savings would justify the additional software
complexity.

4.6 Frequency Analysis

Though we did not include frequency analysis in the pro-
totype implementation of RFDump, we implemented a ba-
sic frequency detection module for Bluetooth. This module
looks at chunks of samples from the input stream and trans-
lates from time domain to frequency domain using a Fast
Fourier Transform (FFT). Since we have 8 Bluetooth chan-
nels in the 8 MHz band we are monitoring, we divide the
FFT values into 8 bins. The module then finds the bins that
are above a threshold. If there is only one such bin, then
it is identified as part of a Bluetooth transmission. Using a
start and an end state, we track the beginning and end of a
packet.

As we used this detector as only a high-level indicator to
match peaks to Bluetooth packets in our evaluation, we have
not studied it in detail. These are some of the parameters



that would have to be considered when including frequency
analysis into our monitoring system: (1) Slotted vs Sliding
window of samples, (2) Number of bins (granularity) and
(3) Threshold for choosing bins. All these involve a trade-
off between accuracy and efficiency. We could also use the
spectral shape of the different modulation schemes for more
accurate identification.

4.7 Decoders

For the decoding stage, we use existing decoders — the
ADROIT BBN 802.11b decoder [1] for decoding 802.11b (1
Mbps and 2 Mbps) packets and the BlueSniff [15] decoder for
decoding Bluetooth packets. The USRP’s maximum sam-
pling rate of 8 MHz (see Section 4.1) does place some im-
portant limitations on decoding 802.11 and Bluetooth sig-
nals. In the case of 802.11, we can monitor only one out the
3 non-overlapping channels at any one time. In addition,
the 802.11 decoder can only decode most 1 Mbps packets
and a few 2 Mbps packets (in a particular channel) under
high signal-to-noise conditions since it is only processing 8
MHz of the 22 MHz 802.11 transmission. Since Bluetooth
signals have a width of 1 MHz only, we do not have any
issues with decoding an observed transmission. However,
we can detect only one-tenth of the transmitted Bluetooth
packets because we monitor only 8 out of 79 channels. We
found that these demodulator implementations are not very
mature and, as a result, they are not accurate enough to be
used for evaluating the accuracy of our system. We mainly
use the demodulators to evaluate the performance and ex-
tensibility of our system.

5. EVALUATION

The design of RFDump raises the following critical ques-
tions that we try to answer in our evaluation:

e Do the detectors accurately classify incoming signals?
(Section 5.1)

e Are the detectors computationally inexpensive, espe-
cially in comparison with demodulation and is the re-
sulting system computationally efficient (i.e., it does
not perform significant wasted computation)? (Sec-
tion 5.2)

e Does the system work well in real-world settings (i.e.
with noise, unknown signal sources, etc.)? (Section 5.3)

In answering these questions with experiments, we are
forced to deal with the challenge of creating repeatable, well-
controlled wireless workloads. To ensure repeatability, all
experiments use RFDump’s support for processing recorded
traces. The traces are simply files that store the streams
of samples recorded by the USRP. For example, to evalu-
ate RFDump in real-world settings, we recorded traces of
real-world signal environments. To provide more controlled
settings in which we can probe RFDump’s different com-
ponents, we perform a number of microbenchmarks of RF-
Dump using the wireless emulator testbed [9]. The wireless
emulator allows us to control the traffic that the REFDump
system observes. This provides us with a ground-truth to
compare the RFDump output with, allowing us to evaluate
the accuracy of RFDump. In addition, the emulator en-
ables full control over the signal propagation environment
(e.g. path loss), which enables experiments evaluating the

802.11b
Bluetooth

Monitor

Bluetooth

© 802.11b

Figure 5: Configuration of nodes on the emulator

impact of the RF environment on the accuracy of our sys-
tem.

Experiments with the current version of RFDump show
that the simple detectors described in Section 3 are able to
quickly and accurately demultiplex the signal to the appro-
priate protocol demodulation block. We also found that on
our 2.13 GHz Intel Core 2 Duo based desktop?!, this trans-
lates to an efficiency improvement of a factor three to ten
over the naive strawman, and of a factor or two to three
over simple energy detection. These results hold in both
real-world and emulator testbed scenarios.

5.1 Accuracy

We use three microbenchmarks to test the accuracy of our
fast detection modules: 802.11 Unicast, 802.11 Broadcast
and Bluetooth. Furthermore, we use a traffix mix (802.11
and Bluetooth) to show that RFDump can detect more than
one kind of wireless source at the same time. These exper-
iments use traces collected on the emulator testbed. For
these experiments, we use one or more nodes to generate
the required traffic, a node with USRP for collecting traces
and one or two nodes in monitor mode recording ground
truth using 802.11 NIC cards (see Figure 5). We also vary
the SNR of the transmission to observe the impact on de-
tection accuracy. The key metric for accuracy is packet miss
rate — the ratio of the number of packets in the correct out-
put and not found by the detection modules, to the total
number of packets in correct output. A secondary metric is
the false positive rate — the ratio of the number of non-useful
samples (i.e. not belonging to a valid transmission) to the
total size of the trace. Ideally, we would like the system to
have a zero packet miss rate, since packets that are missed
by the early detectors will not be monitored. While we can
tolerate a non-zero false positive rate, it must be low enough
to ensure the efficiency of the system.

5.1.1 Determining Ground Truth

One surprising challenge in evaluating accuracy is deter-
mining what the correct output should be. User level con-
trol over the transmission of packets is quite coarse-grained.
Packets may be retransmitted, the exact contents of packets
(especially headers) may not be obvious to the user, and ex-
tra packets (especially control messages) may be transmit-

!GNU Radio does not support multi-threading, so we are
using only one core
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Figure 6: 802.11 unicast microbenchmark

ted between user traffic. One obvious way to identify the
ground-truth would be to pass the entire trace of samples to
the different demodulators (i.e. the naive architecture). Un-
fortunately, we found that current demodulator implemen-
tations were of low quality and often failed to demodulate
packets even when the SNR was high. As a result, our de-
tectors often find valid packets that cannot be decoded by
the faulty demodulators. As a result, we developed a few
techniques to identify the ground-truth.

In the case of 802.11 experiments, we use a combination
of tepdump on an 802.11 card and demodulation of the full
trace to determine ground truth. We use 802.11b (1 Mbps)
in all the microbenchmarks unless otherwise specified to
maximize the likelihood that the demodulator works cor-
rectly. We use the packet contents of demodulated packets
to synchronize the tcpdump and demodulator output. Fi-
nally, we combine the synchronized traces to provide our
ground-truth.

In the case of Bluetooth, we can hear only 8 out of the
79 channels and we need to identify what subset of traffic is
actually observed. We modified the 12ping traffic generator
to send a sequence of packets with varying sizes so that
the sequence numbers of the packets can be found using the
packet sizes. These packet sizes (225 - 339 bytes) correspond
to DH5 packets at the link management layer of Bluetooth.
We also use the above information along with hcidump and
frequency analysis to correlate the peaks we find with ground
truth.

5.1.2 802.11 Unicast Microbenchmark

In this microbenchmark, we use ping to send 250 ICMP
echo requests and hence, 250 replies of 500 bytes (588 bytes
including PLCP preamble and header) between two nodes.
Including MAC-level ACKs, there are totally 1000 packets
in these traces.

This microbenchmark tests two of our detectors: the 802.11
timing detection block based on SIFS (Section 3.2) and the
phase detection block for DBPSK (Section 3.3). This is
because our SIFS-based detector should detect all success-
ful 802.11b/g unicast packets since unicast packets have a
MAC-level acknowledgment and because our DBPSK should

identify all our transmission since they use the 1 Mbps DBPSK

modulation.
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Figure 7: 802.11 broadcast microbenchmark

Figure 6 shows the packet miss rate for the SIFS-based
timing detection and DBPSK detection for different SNRs
(as seen by our detectors). Note that the packet miss rate
is shown on a logarithmic scale from 0.001 to 1, and on a
linear scale from 0 to 0.001. This holds for all the graphs in
Section 5.1. We see that the SIFS-based detector has a miss
rate of nearly 0 for SNR values greater than 9 dB. When the
SNR goes below that, the packet miss ratio rapidly increases
as the SNR goes below our threshold for used for peak de-
tection. In the case of phase detection, the SNR limit value
seems to be slightly higher, but it hardly misses packets at
higher SNRs. At low SNRs the signal strength degrades so
much that our detection modules end up splitting a packet
into many shorter peaks. We should note that the SNR
reported by our USRP boards is about 14-17 dB less than
the corresponding values reported by tcpdump. We believe
that this SNR degradation is the primary cause for packet
misses and that RFDump will have a higher true positive
rate at low SNRs. At all the SNR values, we do not have
any false positives. However, we send on an average, about
12 us of excess samples along with each packet due to the
chunk granularity of samples.

5.1.3 802.11 Broadcast Microbenchmark

In this microbenchmark, we use a single node to broadcast
a flood of ICMP echo requests. This ensures that consec-
utive packets are separated by a spacing equal to DIFS +
kxST, where DIFS is 50 us and ST is 20 ps. This bench-
mark tests the 802.11 timing detection block based on DIFS
(Section 3.2). DIFS-based detection can detect 802.11 pack-
ets whenever there is high contention in the medium even if
there are no unicast packets. There are 4000 packets in these
traces. Like the SIFS-based detector, we see that the DIFS-
based detector (Figure 7) has almost zero packet misses for
SNR greater than 9 dB but its accuracy drops significantly
below this SNR threshold.

5.1.4 Bluetooth Microbenchmark

In this microbenchmark, we send Bluetooth L2CAP pings
using 12ping. This tests both the Bluetooth timing and
phase detectors. In total, 6000 L2CAP pings were sent (in-
cluding all 79 channels). In Figure 8, we find that the Blue-
tooth timing detector (Section 3.2) has a very low, but non-
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zero miss rate even at high SNRs. This is because the timing
block misses the first packet in each Bluetooth session. On
the other hand, the GFSK detection block does not miss any
packet at high SNRs. However, timing detection is able to
detect Bluetooth packets with about 99.99% accuracy even
with SNR values as low as 6 dB. This is probably because
of the constant envelope modulation scheme used by Blue-
tooth, which makes it easier for the peak detection block to
detect it. Phase detection, though less accurate than timing
detection at lower SNRs, does well for SNR values as low as
9 dB.

5.1.5 Traffic Mix

To show that the detectors have high fidelity even in sce-
narios where there are several types of transmitter, we use
a traffic mix of 802.11b (1 Mbps) and Bluetooth. As in the
above microbenchmarks, we send Bluetooth L2CAP pings
and ICMP pings simultaneously using two Bluetooth and
two 802.11 nodes (Figure 5). The trace contains 1000 802.11
packets as in Section 5.1.2. For Bluetooth, we have 1000
L2CAP pings (including all 79 channels).

Table 3 lists the packet miss rate and the false positive rate
(in terms of fraction of samples) for both the timing and
phase detector. Since we had both Bluetooth and 802.11
transmitters sending packets simultaneously, a small frac-
tion of packets collided with each other. In this case, this
fraction was roughly 0.016 for 802.11 and 0.012 for Blue-
tooth. As we have not incorporated collision detection in
our detectors yet, these collisions appear as missed pack-
ets. In fact, if we discount this fraction, both the detectors
have a packet miss rate of almost zero. The detectors end
up sending a very small fraction of false positive samples in
general. The timing detector has a slightly higher false pos-
itive rate for Bluetooth as the periodic ICMP pings in our
trace sometimes had a timing similar to that of Bluetooth.
The higher false positive rate of the 802.11 phase detector
could be due to the inelegant solution we are forced to use
to work around the USRP 1 limitation.

5.2 Efficiency

Now that we have seen that our implementation of RF-
Dump fast detectors has a high true positive rate, we move
on to show that our system is efficient and runs in near

Table 3: Traffic mix results summary
Packet miss rate False positive rate

Detector 55T T Bluctooth | 802.1Tb | Bluctooth
Timing | 0.018 0.024 [ 0.0007 | 0.007
Phase | 0.018 0.012 0.01 0.0002

real time. We compare our system (both with and without
full demodulation) with the implementations of the naive
and naive with energy detection architectures. In the em-
ulator testbed, we send 802.11 (1 Mbps) unicast packets
using ping with varying inter-ping spacings to get different
medium utilizations. We use a 802.11 (1 Mbps) demodu-
lator and 8 Bluetooth demodulators (one for each channel)
in the 8 MHz we capture using USRP. Since the naive ar-
chitecture demodulates each and every sample, we see in
Figure 9 that it takes about constant time for all medium
utilizations, which is about 7 times real time. Doing en-
ergy detection before sending the signal to all demodulators
(naive with energy detection) improves the performance sig-
nificantly, but the curve tends towards the naive solution
curve for higher medium utilizations. Most of the increased
cost is due to the fact that all the demodulators process
every signal that passes the energy filter, as the energy fil-
tering cost itself remains a constant (energy filtering without
demodulation).

RFDump with timing detection is about twice as efficient
compared to the energy filtering based naive solution and
at least thrice as efficient compared to the naive solution.
As we used unicast pings with a specific inter-packet spac-
ing, there are some packets in the trace that match expected
Bluetooth spacings and these packets are passed on to the
Bluetooth detectors. Since we have seven demodulators for
Bluetooth, this means that our efficiency is lower than ex-
pected when demodulation is done. However, timing detec-
tion alone (without demodulation) is much faster than real
time. Phase detection, though not as efficient as timing de-
tection by itself, is superior to timing detection as it detects
the modulation scheme as well as the channel used. Hence,
it has a lower false positive rate. Overall, it is as efficient
as timing detection with demodulation. Even when timing
and phase detection are used together, the efficiency is com-
parable to the above case where only phase detection was
used, as timing detection is very light-weight.

5.3 Real-world

To validate our implementation in the real world, we use
a real-world trace collected in the computer science building
on our campus to show how our system performs. Table 4
shows the summary for a trace with 802.11 packets. The
traces are limited to a few seconds in duration since they
were recorded to main memory to avoid dropping samples.
The results shown in the table are representative of many
such traces we recorded. There were 646 802.11b packets
with long (PLCP) header in the trace. The ideal I Mbps
only and the ideal headers only lines show the behavior of
ideal filters that only pass samples of 1 Mbps transmitted
symbols and header contents respectively. For example, the
trace contains only 106 packets sent at 1 Mbps. The phase
detector was able to find all the 1 Mbps packets and the
headers of all the other packets. The timing detector was not
able to find many of the broadcast 1 Mbps packets (Beacons,
ARPs, etc.), but was able to detect even packets (many uni-
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Table 4: Real-world results summary

# PLCP | # packets | %age of
headers trace
Full trace 646 646 100%
Ideal 1 Mbps only 646 106 3.97%
Tdeal headers only 646 0 0.35%
DBPSK detector 646 106 6.05%

cast and some broadcast) that were sent at higher rates since
they followed SIFS/DIFS timings. Due to the fact that we
do not have ground truth in this setting, we just present the
percentage of samples sent by the detectors to the demodu-
lators to roughly show our selectivity. Note that, ideally, the
DBPSK selectivity would match the ideal 1 Mbps only and
the ideal headers only filters combined. The DBPSK detec-
tor passed 6.05% of the samples while ideal filter would have
passed 4.32% of the samples. Here, our aim is not to show
that our detector is perfect but to demonstrate that such
fast and accurate detectors can be significantly reduce the
work done by the demodulators.

5.4 Discussion

The current implementation is limited by the constraints
of the USRP platform in a number of ways and it serves
only as a proof-of-concept system. For example, due to the
8 MHz limitation, Wi-Fi and Bluetooth detection could not
share most of the phase detection computations (Section 4.6)
Future, more powerful SDRs will be able to sample at higher
rates, enabling us to bypass these platform constraints, mon-
itor wider frequency bands, and detect higher rate protocols.
However, higher sampling rates, and more complex proto-
cols will put a proportionately greater load on the host CPU,
both for detection and demodulation. We believe that the
RFDump architecture will be able to support these future
scenarios, but many details of the described prototype will
need to change. For example, when we monitor wider bands,
we are likely to observe non-colliding packets that overlap
in time but not in frequency. To our current peak detector,
these may look like collisions or single coalesced packets.
In an implementation for a future SDR, we would need to
consider subdividing the monitored band, balancing the re-
sulting complexity with reduced effectiveness of detection

on wider bands. REFDump can also be implemented using a
split-functionality approach as done in [12] or on a high per-
formance SDR like Sora [16] or Warp [18] to further improve
the performance.

6. RELATED WORK

Tools like tepdump (8] and wireshark [19] make monitoring
wired links easy for the average user. While the goal of RF-
Dump is similar, even the basic task of packet acquisition is
a hard problem since a number of diverse datalink protocols
share the wireless medium.

The most common way to monitor wireless networks is
to use commercial measurement and test equipment, such
as spectrum and signal analyzers. These devices can pro-
vide different views of signals at a specific location to help
characterize signal propagation effects, e.g., attenuation and
delay-spread, and even discern modulations. Unfortunately,
these tools are very expensive, require a high level of exper-
tise, and do not provide a real-time interface to higher layer
information.

A popular alternative is to use a commodity wireless Wi-
Fi card for monitoring and obtain RSSI and noise mea-
surements for received packets. Unfortunately, while use-
ful, this approach has the critical limitation of providing
coarse-grained information for only a single technology. To
mitigate this limitation to some extent, concurrent measure-
ments taken at different points may be combined [4] to pro-
vide a more complete record of activity. This is the state-
of-the-art in monitoring wireless LAN deployments [5, 2, 3,
10].

Our design addresses these shortcomings by making use
of fast signal classification. Signal classification is rich area
of research and there are many techniques that our design
can make use of, including matched filtering, cyclic spectral
correlation [7], and artificial neural networks that reduce the
online computation [6]. In fact, recent work has explored
some of these techniques using GNU Radio [13].

7. CONCLUSION

We presented RFDump, a software tool that uses a soft-
ware radio to monitor the wireless ether. In contrast to tools
such as tepdump, which can leverage the header information
of a common datalink layer to identify higher layer proto-
cols, RFDump needs to analyze the physical layer signal to
identify specific protocols. RFDump uses a detection stage
consisting of set of fast detectors to look for typical features
(e.g. timing, phase, or frequency properties) of protocols
that share the spectrum. This information is then used to
tentatively classify signals of interest to specific protocols.
Specific blocks of samples can then be passed on to protocol
specific modules for further analysis. Since the information
collected by fast detectors can be shared across protocols,
RFDump should scale to medium numbers (5-10) of proto-
cols. Our evaluation of RFDump shows that fast detectors
for phase and timing can classify signals with high accuracy.
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