
Exploiting Hierarchical Identity-Based Encryption for Access Control to
Pervasive Computing Information

Urs Hengartner† and Peter Steenkiste†‡

†Computer Science Department
‡Department of Electrical and Computer Engineering

Carnegie Mellon University
{uhengart, prs}@cs.cmu.edu

Abstract

Access control to confidential information in pervasive
computing environments is challenging for multiple rea-
sons: First, a client requesting access might not know which
access rights are necessary in order to be granted access
to the requested information. Second, access control must
support flexible access rights that include context-sensitive
constraints. Third, pervasive computing environments con-
sist of a multitude of information services, which makes
simple management of access rights essential. We dis-
cuss the shortcomings of existing access-control schemes
that rely on either clients presenting a proof of access to
a service or services encrypting information before hand-
ing the information over to a client. We propose a proof-
based access-control architecture that employs hierarchical
identity-based encryption in order to enable services to in-
form clients of the required proof of access in a covert way,
without leaking information. Furthermore, we introduce an
encryption-based access-control architecture that exploits
hierarchical identity-based encryption in order to deal with
multiple, hierarchical constraints on access rights. We
present an example implementation of our proposed archi-
tectures and discuss the performance of this implementa-
tion.

1. Introduction

Access control to confidential information has been well
investigated in the context of traditional distributed systems,
such as a distributed file system. However, access control
faces additional challenges in the context of pervasive com-
puting environments. First, there might becovert access
requirements. In particular, a client that wants to access in-
formation might not know which of the client’s access rights
are required for gaining access. For instance, a person’s cal-

endar entry reveals the location of the people that the person
is currently meeting with. In order to be granted access to
this entry, a client should at least have access rights to each
of these people’s location information. However, since the
client does not know who the person is meeting with, the
client does not know which access rights are required. Sec-
ond, access rights need to be more flexible. For instance, it
should be possible to issue access rights that are constrained
based on a person’s context, such as her location or the cur-
rent time.

There areproof-basedand encryption-basedaccess-
control schemes. In a proof-based scheme, a client needs
to assemble some access rights in aproof of access, which
demonstrates to a service that the client is authorized to ac-
cess the requested information. This proof of access pre-
vents the service from having to locate the required access
rights, which can be an expensive task. Proof-based ac-
cess control is attractive for scenarios where flexible, client-
specific access rights are required. Since access rights are
flexible, it is easy to include support for constraints in them.
However, it is difficult to add support for covert access re-
quirements. Existing designs [2, 12] assume that a service
can inform a client of the nature of the required proof of
access. When we apply this principle to our example men-
tioned above, we could end up with an information leak. In
particular, assume that a service informs a client of the iden-
tity of the people for whose location information the client
needs to present access rights. Based on this knowledge,
the client can infer who the owner of the calendar entry is
meeting with. A näıve solution is to have the client sub-
mit all obtained access rights to the service. This solution
has privacy and bandwidth issues: the service can learn a
lot about the client, and the client might have to transmit
a lot of data. Instead, the service must let the client know
about the nature of the required proof of access such that
only clients authorized to access the information listed in
the proof description can understand this description.

In an encryption-based access-control scheme, a service
provides confidential information to any client, but only in
an encrypted form. Clients authorized to access the infor-
mation have the corresponding decryption key. This ap-
proach is attractive for scenarios where there are lots of
queries to a service since it shields the service from having
to run client-specific access control. It is straightforward
to add support for covert access requirements to existing
encryption-based architectures [1, 9, 14, 15]. In particu-
lar, a service encrypts information as usual, but it does not
tell a client which decryption key to use. Assuming that a
client has a set of decryption keys, the client now needs to
search this set for a matching key. It is less straightforward
to add support for constraints on access rights to the pro-
posed architectures, especially when considering that key
management should remain simple.

Our contributions are two novel applications of hier-
archical identity-based encryption that address the above
mentioned shortcomings of proof-based and encryption-
based access-control schemes for pervasive computing en-
vironments (Section 3). In identity-based encryption, pub-
lic keys are arbitrary strings, which simplifies key man-
agement. First, we employ hierarchical identity-based en-
cryption to add covert access requirements to a proof-
based access-control scheme. Second, we use hierarchical
identity-based encryption to develop an encryption-based
access-control scheme that supports multiple, hierarchi-
cal constraints on access rights. Moreover, our contribu-
tions include extensions to an existing hierarchical identity-
based encryption scheme to support multiple hierarchies
and novel ways for dealing with expiring keys in identity-
based encryption. Finally, we have implemented our so-
lutions in a pervasive computing environment (Section 4),
and we evaluate this implementation and discuss its relative
strengths and weaknesses (Section 5).

2. Access Control in Pervasive Computing

In this section, we discuss the challenges for access con-
trol and for access rights to information in the context of
pervasive computing. We present a list of requirements and
our threat model.

2.1. Overview

In pervasive computing environments, there are a lot of
services that provide potentially confidential information to
clients. Clients need to haveaccess rightsin order to be
granted access to confidential information. An access right
has an issuer, a recipient, an information item, and a set of
constraints. For example, Alice grants Bob access to her
location information during office hours. Multiple services

may offer the same type of information (e.g., people loca-
tion services exploiting cellphones, RFID badges, or Wi-
Fi devices). To simplify management of access rights, we
want service-independent access rights, that is, access rights
should be about information, not about information offered
by a specific service. For example, there should be access
rights for Alice’s location information, not for Alice’s loca-
tion information as offered by her cellphone service.

It should be possible to constrain access rights. In this
paper, we limit ourselves to constraints whose current value
is publicly known (e.g., current time). Our architecture also
supports constraints that involve confidential information
(e.g., current location of the client or of the queried indi-
vidual), but additional access control is required in orderto
avoid leaks of this confidential information, which is out-
side of the scope of this paper.

Access rights should be granularity aware. Some in-
formation (e.g., location information) is available at differ-
ent levels of granularity (e.g., “CMU”, “CMU Wean Hall”,
“CMU Wean Hall 8220”). Having an access right to fine-
grained information should imply having an access right
to coarse-grained information. Granularity-aware access
rights also simplify management of access rights.

Access rights are managed bypolicymakers. Typically,
an individual is the policymaker for her own personal infor-
mation. Depending on the access-control scheme, an access
right can be represented in different forms. For proof-based
access control, it is a digital certificate issued by the poli-
cymaker, whereas for encryption-based access control, it is
a decryption key. Regardless of the form, dealing with ac-
cess rights should be simple for all involved entities (clients,
services, and policymakers).

We now discuss how proof-based and encryption-based
access control meet the requirements of granularity aware-
ness and constraints. We also elaborate on some additional
requirements, namely, indistinguishability, asymmetry,and
personalization.

2.2. Proof-Based Access Control

Proof-based access control is attractive since it offloads
the assembly of a proof of access to a client. If the client
does not know the nature of the required proof of access,
a service will give it a description of this proof. The de-
scription lists the information for which the client needs to
present access rights. However, when this description leaks
confidential knowledge, the service must obscure it. Let us
summarize the requirements for this case:
Indistinguishability. The service must obscure the descrip-
tion such that a client learns nothing about the information
listed in the description, unless the client has some secret
knowledge. The client has this secret knowledge only if the
client has an access right to the information.

Constraints. Access rights can have constraints on them.
These constraints should also apply to a client’s ability toin-
terpret an obscured proof description. For example, when a
client’s access right to information expires, the client should
no longer be able to interpret an obscured proof description
asking for this information. To support this feature, each
possible value of a constraint must require separate secret
knowledge. For instance, a client’s secret knowledge al-
lowing interpretation of an obscured proof description on
January 1 must not allow interpretation on January 2. This
requirement leads to an increase in the amount of secret
knowledge to be managed by the client. The problem be-
comes worse when there are multiple constraints on an ac-
cess right. We observe that many constraints are of a hierar-
chical nature. Therefore, we want an architecture that sup-
ports hierarchical constraints. For example, if a client has
secret knowledge for January, the client can derive secret
knowledge for January 1, January 2,... This requirement
simplifies management of the secret knowledge.
Granularity awareness. Some information in pervasive
computing (e.g., location information) is available at differ-
ent granularities. If a client’s secret knowledge allowed the
client to interpret an obscured proof description asking for
fine-grained information, the same knowledge should also
allow the client to interpret an obscured proof description
asking for coarse-grained information.
Personalization. We want obscured proof descriptions to
be personalized for a client. In this way, if a client’s secret
knowledge required for understanding an obscured proof
description asking for particular information leaked, other
clients being able to understand obscured proof descriptions
asking for the same information would not be affected.
Asymmetry. Service-independent access rights grant ac-
cess to information independent of the service offering this
information. A service generating an obscured proof de-
scription listing specific information must not be able to in-
terpret an obscured proof description listing the same in-
formation generated by another service (unless the former
service has the required access right).

2.3. Encryption-Based Access Control

If there are lots of requests for the same information,
encryption-based access control is attractive since it is in-
dependent of the individual clients issuing these requests.
For example, a service can encrypt an information item
once and use the ciphertext for answering multiple requests.
However, the uniform treatment of requests makes deal-
ing with constraints on access rights and with granularity-
aware access rights difficult. Covert access requirements
and service-independent access rights present further chal-
lenges. Let us summarize the requirements:
Indistinguishability. The encrypted information must not

reveal any knowledge about the used encryption key or the
required decryption key.
Constraints. Each value of a constraint must require a sep-
arate key for decrypting encrypted information that should
be accessible only under the given constraint/value com-
bination. To make key management simple, we want a
scheme that supports hierarchical constraints.
Granularity awareness.To simplify key management, the
decryption key for coarse-grained information should be
derivable from the key for fine-grained information.
Asymmetry. Service-independent access rights imply that
if multiple services offer the same information, this infor-
mation will be decryptable with the same decryption key.
Therefore, in a symmetric cryptosystem, a service encrypt-
ing information would be able to access the same informa-
tion offered by some other service. We can avoid this prob-
lem by using an asymmetric cryptosystem.

We do not require personalization for encryption-based
access control since it is client independent by design.

2.4. Threat Model

In our threat model, an attacker can corrupt clients or ser-
vices, but not policymakers. Corrupted clients try to gain
non-authorized access to information provided by a service,
that is, information to which a client does not have any ac-
cess rights. Corrupted clients can collude. A corrupted
service tries to gain non-authorized access to information
provided by another service, where this service might of-
fer the same type of information as the corrupted service.
Corrupted services can collude. Attackers can also sniff,
modify, or inject network traffic.

3. Access Control based on Hierarchical
Identity-Based Encryption

We want an access-control architecture where access
rights are simple to manage, aware of granularity, and con-
strainable. The architecture also has to be asymmetric, pro-
vide indistinguishability, and be personalizable in the case
of proof-based access control. Identity-based encryption
(IBE) is a good fit for such environments. It is asymmet-
ric and provides indistinguishability. Since public keys are
strings, access right management and personalization are
simple. In addition, a hierarchical version of identity-based
encryption lends itself to the implementation of hierarchical
constraints and granularity awareness. Therefore, with the
help of hierarchical identity-based encryption (HIBE), we
can overcome the shortcomings of existing access-control
architectures for pervasive computing environments. In this
section, we review HIBE and discuss how we extend it to
build an access-control architecture satisfying our require-
ments.

3.1. Hierarchical Identity-Based Encryption

In an IBE scheme, the public key of an individual is an
arbitrary string, typically corresponding to her ID (e.g.,her
email address). The individual gets her private key from a
third party, called a Private Key Generator (PKG). The third
party also provides additional, public parameters required
for the cryptographic operations. Boneh and Franklin [3]
present one of the first practical IBE schemes. Based on this
work, Gentry and Silverberg [7] introduce a HIBE scheme.
In this scheme, a root PKG gives out private keys to sub
PKGs, which in turn give out private keys to individuals
in their domains (or further sub PKGs). The public key
of an individual corresponds to the IDs associated with the
root PKG, any sub PKGs on the path from the root PKG to
the individual, and the individual. For encrypting messages,
public parameters are required only from the root PKG.

The limited success of PKI has lead to the development
of simpler public-key infrastructures (e.g,. SPKI [5]), that
do not require (hierarchical) certification authorities. In
SPKI, a user’s public key is her identity, and not her name
as certified by an authority. In our work, we pursue a similar
approach. Instead of requiring the existence of a single hier-
archical PKG infrastructure, we let each policymaker have
a PKG. A policymaker uses the PKG for managing access
rights to information. In addition, a policymaker can set up
a hierarchical PKG infrastructure and control both the root
PKG and any sub PKGs. In this way, a policymaker will
be able to establish granularity-aware access rights with hi-
erarchical constraints (see Section 3.4). In the rest of this
paper, we use the term “policymaker” instead of PKG.

Our architecture builds on Gentry and Silverberg’s HIBE
scheme. This scheme supports only a single hierarchy for a
root PKG, which is too limiting for our application scenar-
ios, where we might have multiple hierarchical constraints
on access rights. Therefore, we extend the scheme to sup-
port multiple hierarchies.

A HIBE scheme has the advantage that it reduces the
amount of required storage and the complexity of the access
right management. As we will see in Section 3.4, the public
key associated with some information corresponds directly
to the name of the information. We discuss the advantages
of a HIBE scheme in more detail in Section 3.6.

3.2. Basic Operations

Our architectures for proof-based and encryption-based
access control each employ four basic, randomized oper-
ations. We discuss these operations in this section and
their application in proof-based and encryption-based ac-
cess control in the next two sections. Our operations are
based on the operations introduced by Gentry and Silver-
berg, but we extend them to support multiple hierarchies.

We give a detailed discussion, showing the exact crypto-
graphic steps for each operation, in the extended version of
this paper [10]. For readability reasons, we omit some of
the parameters of the operations here.

In order to achieve indistinguishability, we assume that
all the policymakers agree on a set of public parame-
ters, params. The basic operations areRoot Setup(),
Extract(), Encrypt(), andDecrypt().

• Root Setup(params) → Q0:
A policymaker runs this operation in order to generate
a master secret. In addition, the operation returns the
policymaker’s public key,Q0.

• Extract(〈IDi,1, ..., IDi,ti
〉, Si,ti−1, params) →

Si,ti
with ti ≥ 1:

This operation returns the private key,Si,ti
, of a node

at level ti in hierarchyi. Unlessti = 1, this key is
derived from the private key of the ancestor node,
Si,ti−1. If ti = 1, this operation needs to be run by
a policymaker, since it requires the policymaker’s
master secret. 〈IDi,1, ..., IDi,ti

〉 is the sequence
of node IDs along the path from the root node of
hierarchyi to the node in question.

• Encrypt(〈ID1,1, ..., ID1,t1〉, ..., 〈IDh,1, ..., IDh,th
〉,

M,Q0, params) → C: After choosing a node in each
hierarchy, a service uses this operation to encrypt a
message,M , using the nodes’ public keys. For each
of theh hierarchies, the operation accepts a sequence
of node IDs,〈IDi,1, ..., IDi,ti

〉, from the root node to
the chosen node. The operation returns a ciphertext,
C.

• Decrypt(〈S1,t1 , ..., Sh,th
〉, C, params) → M :

A client uses this operation to decrypt a ciphertext,C.
The operation requires the private key of each node
chosen by the service in its call toEncrypt() and the
ciphertext.

3.3. Proof-Based Access Control

If Alice grants Bob an access right to information, she
will also give him a personalized secret. When Bob re-
ceives an obscured proof description asking for this infor-
mation from a service, this secret will allow him to interpret
the description. In the rest of this paper, we use the term
challengefor such an obscured proof description. We keep
management of the challenges simple by using the name of
the information for generating a challenge for it. In our ar-
chitecture, a challenge corresponds to a ciphertext/plaintext
pair and a secret corresponds to a tuple of private keys en-
abling the decryption of ciphertexts. To support granularity-
aware, constrainable challenges and secrets, Alice definesa

5. Private keys of
nodes, sequences

 of node IDs, and
sub hierarchies

Alice

ServiceBob

2. Define hierarchies.
4. Extract()

1. Root_Setup()

 11. Proof

13. Information
12. Proof validation

7. Query

9. Challenge

3. Alice’s public key
and hierachies

8. Encrypt()6. Extract()
10. Decrypt()

Figure 1. Architecture for proof-based access
control. The service sends a challenge to
Bob. Upon resolving this challenge, Bob
sends a proof of access to the service.

set of hierarchies. We give an overview of our extended
proof-based access-control architecture in Figure 1. It con-
sists of three entities: a policymaker managing access rights
to personal information (“Alice”), a service offering infor-
mation with covert access requirements, and a client trying
to access the information provided by the service (“Bob”).
We now discuss the individual steps shown in Figure 1.

Setup. Alice runs Root Setup() to set up her IBE
scheme (1) and to retrieve her public key. She also estab-
lishes multiple hierarchies (2): She first defines a hierarchy
resembling the granularity properties of information about
her (information hierarchy). Figure 2 (a) gives an example
hierarchy for location information. The rule for a hierarchy
is that anyone who has access to information covered by
a node should also have access to information covered by
a child node. Alice then establishes another hierarchy for
each of the constraints that she wants to include in her ac-
cess rights to location information (constraint hierarchies).
Figure 2 (b) shows a hierarchy that restricts the lifetime of
access rights, and Figure 2 (c) presents a hierarchy for lim-
iting access based on time of the day. (Non-hierarchical
constraints are dealt with similarly; there, the hierarchyhas
only one level and lists all possible values.) The root node
of each hierarchy includes the name of the information to
ensure that, for example, a constraint granting unlimited ac-
cess to location information cannot be used for getting un-
limited access to medical information.

Alice then informs the service of her public key and her
hierarchies (3). Since none of this knowledge is confiden-
tial, an authenticated communication channel suffices. In-
stead of defining her own hierarchies, Alice can exploit pre-
defined hierarchies that the service is already aware of. For
example, we expect that there will be a widely accepted and
shared hierarchy for location information.

To allow Alice to issue personalized secrets to clients, we
have her personalize the information hierarchy by adding
the identity of a client to its root node. For example, for

office_hours spare_time

(c)

location_always

(a)

location_fine

medium

coarse

January February

...

1 ...

(b)

location_2005

Figure 2. Hierarchies. Alice establishes hier-
archies for her location information (a) and
for each constraint (b, c).

the hierarchy given in Figure 2 (a), the root node becomes
“location fine Bob”.1 Since this personalization is done in
the same way for each client, there is no need for Alice
to submit each personalized information hierarchy to the
service. To avoid collusion attacks between clients, Alice
should also personalize each of her constraint hierarchies.

When issuing an access right to Bob (e.g., in the form
of a digital certificate), Alice also gives Bob a personal-
ized secret, corresponding to the information in the ac-
cess right and limited to the same constraints (5). In
her information hierarchy, she chooses the node corre-
sponding to the information to which she wants Bob to
have access (e.g., “medium”). She then walks the path
from the root node to this node. In particular, she
keeps a sequence of node IDs and, for each node on the
path, she callsExtract() with the current sequence (e.g.,
Extract(〈locationfine Bob〉, null, params) → S1,1 and
Extract(〈locationfine Bob, medium〉, S1,1, params) →
S1,2) (4). Ultimately, this process will return the private
key of the chosen node. Similarly, for each type of con-
straint, she picks the appropriate node in the corresponding
constraint hierarchy and derives the private key by repeated
calls toExtract(). For each hierarchy, Alice will end up
with a private key. The tuple of private keys returned by
these calls serve as the secret.

Alice then gives the secret to Bob, together with the cor-
responding sequences of node IDs and the sub-hierarchies
rooted in the chosen nodes (5). Transfer of the secret re-
quires a secret communication channel.

Given the tuple of private keys and the sub-hierarchies
from Alice, Bob can derive additional tuples of pri-
vate keys for nodes in the sub-hierarchies by (repeat-
edly) callingExtract() (6). For example, given the pri-
vate key for 〈locationfine Bob, medium〉 and the sub-
hierarchy “coarse”, Bob can extract the private key for
〈locationfine Bob, medium, coarse〉. It is possible for Bob
to delay this step until he receives a ciphertext.
Access Control.Bob issues a query to the service and fails
to submit a proof of access (7). Since the requested informa-

1In the actual implementation, Bob is identified by his public key.

tion (e.g., calendar information) has covert access require-
ments, the service needs to computes a challenge (8). In
particular, the service callsEncrypt() to encrypt a random
plaintext,M . The public keys required for this operation
come from the information and constraint hierarchies of the
policymaker responsible for the information for which the
client needs to present an access right. The service locates
the corresponding node in Alice’s information hierarchy.
The service then gathers the IDs of all the nodes along the
path from the root node to this node. For example, if an
access right to fine-grained information is required, the ID
sequence is〈locationfine Bob〉. Similarly, for each of the
constraint hierarchies, the service chooses the leaf node that
contains the current value of the constraint and gathers the
IDs along the path from the root node. The service then
calls Encrypt() with the gathered sequences of node IDs
(e.g.,Encrypt(〈locationfine Bob〉, 〈location2005Bob,
February, 2〉, 〈locationalwaysBob, officehours〉,M,Q0,

params)). Note that the public keys used for encryption
correspond directly to the node IDs.

The plaintext,M , and the obtained ciphertext,C, serve
as the challenge, and the service sends them to Bob (9). If
the requested information covers multiple individuals, there
will be multiple challenges. Sending a challenge to Bob re-
quires only an authenticated communication channel, since
a challenge is personalized to a client and useless to other
clients.

To resolve challenge(M,C), Bob needs to find a tuple
of private keys that makes ciphertextC decrypt to plain-
text M . In particular, Bob callsDecrypt() for each of his
(potentially derived) tuples of private keys given to him by
Alice (and other policymakers) (10). He stops when the re-
turned plaintext is identical toM . We discuss ways to limit
the search space in Section 3.5. If Bob successfully resolves
the challenge(s), he will resubmit the query, together with
the required proof of access (11). The service will validate
the proof (12) and return the requested information (13).
Steps (11) and (13) need a secret communication channel.
Discussion.The benefits of our architecture are secrets that
support constraints and that are personalized and granular-
ity aware. Because a challenge for information is based on
the name of the information, challenges are simple to man-
age. Since all the policymakers use the same set of public
parameters, the challenges generated by a service are indis-
tinguishable. As opposed to a previous approach for dealing
with expiration [3], which makes the current date part of an
ID, our approach does not require handing out separate pri-
vate keys for each possible date.

A client resolves a challenge before submitting the re-
quired proof of access to a service. However, for some sce-
narios, this second step can be omitted since resolving the
challenge(s) already gives the client all the information that
the client is asking for. For example, if the client asks for

sub hierarchies

nodes, sequences
5. Private keys of

 of node IDs, and
Alice

ServiceBob

 Information

2. Define hierarchies.
4. Extract()

1. Root_Setup()

10. Decrypt()
6. Extract()

7. Query

8. Encrypt()
9. Encrypted

and hierarchies
3. Alice’s public key

Figure 3. Architecture for encryption-based
access control. Alice sets up her IBE scheme
and hierarchies, informs the service, and
grants access to Bob. Bob issues a query.

the people in a room, the client will require access to all
these people’s location information. The service thus sends
a challenge for each person’s location information to the
client. After resolving these challenges, the client knows
about all the people in the room and thus all the originally
requested information and can skip submission of a proof
of access. An obvious question is why not skip this sec-
ond step all the time and stop using proofs of access? In
this model, the service would encrypt the requested infor-
mation instead of a random plaintext (as suggested by Holt
et al. [11]). We refrain from adapting this model because,
as we will see in Section 5, the decryption operation is ex-
pensive. We view covert access requirements as a special
case. For most queries, we expect clients to know what they
need to deliver a proof of access for. Therefore, we do not
place the burden of decrypting ciphertexts on them for every
request to confidential information.
Security Analysis. The security of the scheme is based
on the hardness of the Bilinear Diffie-Hellman problem.
(Please refer to the extended version [10] for details.) Given
this assumption, Gentry and Silverberg [7] show that their
HIBE scheme has adaptive chosen ciphertext security in the
random oracle model. It is straightforward to adapt their
proof for multiple hierarchies. Therefore, corrupted clients
and services and traffic sniffers cannot decrypt ciphertexts
without having the required decryption key or modify ci-
phertexts. We need to ensure that a client cannot learn from
the ciphertext which public key was used to produce this
ciphertext (indistinguishability). Holt et al. [11] provethis
property for the scenario where all the policymakers share
the same set of public parameters, as assumed in our model.
Our scheme is secure against collusion of clients or ser-
vices, since keys are personalized.

3.4. Encryption-Based Access Control

Figure 3 gives an overview of our encryption-based
access-control architecture; the architecture is similarto the
architecture for proof-based access control with challenges

given in Figure 1. We now review the changes. We assume
that the service provides location information.
Setup. There is no need for Alice to personalize her infor-
mation and constraint hierarchies, since encryption-based
access control is not client-specific.
Access Control. When queried by Bob for information
about Alice (7), the service encrypts the information (8)
and returns the encrypted information to Bob (9). Namely,
the service splits up the information based on its granular-
ity properties and encrypts each piece separately. For ex-
ample, the information “CMU Wean Hall 8220” is split
up into “CMU”, “Wean Hall”, and “8220”. Then, for
each piece, the service locates the node in Alice’s in-
formation hierarchy that describes the piece and gathers
the IDs of all the nodes along the path from the root
node to this node. In our example, the ID sequences are
〈locationfine, medium, coarse〉, 〈locationfine, medium〉,
and〈locationfine〉, respectively. Similarly, for each of the
constraint hierarchies, the service chooses the leaf node that
contains the current value of the constraint and gathers the
IDs along the path from the root node. The service then calls
Encrypt() with the gathered sequences of node IDs (e.g.,
Encrypt(〈locationfine, medium, coarse〉, 〈location2005,
February, 2〉, 〈locationalways, officehours〉, “CMU” ,

Q0, params)). Bob decrypts the received ciphertexts
by calling Decrypt() with the required tuple of private
keys (10) for each ciphertext. He can decrypt a ciphertext
only if the encrypted information is of a granularity that he
has access to.
Discussion.Our solution fulfills the requirements of being
asymmetric and hierarchical and supporting multiple, hier-
archical constraints. Using the name of information or of
a constraint directly as its public key drastically simplifies
key management.
Security Analysis. The scheme is not secure against col-
lusion. For example, for the hierarchies given in Fig-
ure 2, assume that Bob has the tuple of private keys
for (〈locationfine〉, 〈location2005〉, 〈locationalways, of-
fice hours〉) and that Carol has the tuple for (〈locationfine〉,
〈location2005, January〉, 〈locationalways〉). If Bob
and Carol colluded, they could determine the tuple for
(〈locationfine〉, 〈location2005〉, 〈locationalways〉). Yao
et al. [16] propose a collusion-resistant HIBE scheme,
which we could also adopt. However, the complexity of
the Encrypt() andDecrypt() operations in their scheme
is O(nm), wheren is the depth of a hierarchy andm is
the number of hierarchies. As we will see in Section 5, the
complexity of the operations in our scheme isO(mn).

3.5. Limiting the Search Space

Both for proof-based and encryption-based access con-
trol, if there are covert access requirements, Bob will not

know which of his (potentially derived) tuples of private
keys to use for theDecrypt() operation, and he will have
to search through his tuples. We discuss some optimization
strategies in this section.

We first concentrate on the scenario where the challenge
or the encrypted information returned by a service covers
only a single individual, that is, Bob needs to find only one
tuple of private keys. As described in Section 3.4, when
a policymaker gives a tuple of private keys to Bob grant-
ing him access to information under some constraints, Bob
can potentially derive additional tuples from this tuple. We
argue that among the original tuple and the derived tuples,
at most one tuple is of relevance for the search. For each
constraint hierarchy, Bob knows the current value of the
constraint and can throw out all the tuples that do not in-
clude the corresponding private key. In practice, Bob can
also limit the search space for the information hierarchy. In
many cases, it is safe for the service to inform Bob of the
nature and the granularity of the information for which he
needs to resolve a challenge. For example, it is well known
that calendar information is composed of fine-grained loca-
tion information, but not of medical information. Therefore,
the service can safely inform Bob that a challenge involves
fine-grained location information. In summary, for all tu-
ples of private keys given to Bob by a single policymaker
and all tuples derivable from these tuples, we expect at most
one tuple to be relevant for a search. Overall, the number
of tuples that Bob needs to search is at most one per policy-
maker.

If the information returned by a service covers multiple
individuals (i.e., a service returns multiple challenges or en-
crypts information multiple times), Bob will have to locate
multiple tuples of private keys. Therefore, Bob’s search
cost is proportional to the number of policymakers multi-
plied by the number of individuals covered by the informa-
tion returned by the service. While this sounds expensive,
Bradshaw et al. [4] present an optimization that requires the
client to perform the most expensive cryptographic opera-
tion in this search only once for each policymaker and not
for each combination of a policymaker and a covered indi-
vidual.

3.6. Discussion

IBE simplifies key management. For example, in an
email system, IBE allows Bob to encrypt email to Alice
simply by using her email address as public key. Bob does
not need to contact Alice beforehand to acquire a separate
public key. We seem to lose this advantage: Alice needs
to inform a service of her hierarchies and her public key.
However, as mentioned in Section 3.4, we do not expect
each policymaker to define her own hierarchies. Instead,
there can be a shared set of hierarchies, which a service is

Personal hierarchy Shared hierarchy
Public values Private keys Public values Private keys

Conventional cryptosystem 2n 1 n 1

HIBE scheme n 1 0 1

Table 1. Key management demand. For a hierarchy of n nodes, we show the number of public values
(including public keys) and private keys that a policymaker needs to define and give to a service and
to a client, respectively.

aware of. In addition, we observe that a setup step is also
necessary for IBE in an email system: First, IBE schemes
require a set of public parameters for encryption. Bob must
acquire these parameters before he can encrypt email for
Alice. Second, Bob should ensure that the email address he
is going to use to encrypt information destined for Alice re-
ally belongs to Alice. He should use this address only if he
was given it directly by Alice (or a trusted third entity) in a
setup step.

Instead of using a HIBE scheme, it is possible to make a
conventional asymmetric cryptosystem, such as ElGamal or
RSA, hierarchy aware [14]. The drawback of this approach
is increased demand in key management and transfer. We
summarize this demand in Table 1. (Both conventional and
HIBE schemes typically also require storage and transfer of
a constant amount of additional information, which is not
shown in the table.) If a policymaker defines a personal
set of hierarchies, the policymaker will have to transfer at
least the ID of each node to a service in order to inform the
service of the node’s meaning, regardless of the employed
hierarchical cryptosystem. For a HIBE scheme, only this
ID is required. For a conventional cryptosystem, a separate
public key needs to be generated and transferred for each
node. If a policymaker uses a shared information or con-
straint hierarchy and employs a conventional cryptosystem,
the policymaker will still have to generate a set of public
keys for all the nodes in the shared hierarchy and submit
these values to individual services. This is not necessary for
a HIBE scheme.

As we will see in Section 5, our proposed HIBE scheme
can be expensive in terms of performance. This could be-
come a problem when a client employs a computationally
weak device for accessing information (e.g., a cellphone).
A common architecture for pervasive computing is to have
agents perform tasks on behalf of clients. We could have
this agent decrypt information for its client. For perfor-
mance and availability reasons, it makes sense to run this
agent on a more powerful processing platform and to run
only a lightweight proxy on a client’s personal device.

4. Prototype Implementation

The Aura pervasive computing environment [6] serves
as a testbed for the implementation and deployment of our
proposed access-control architectures. Because the environ-

ment is mostly Java, we implemented our HIBE scheme in
Java. We ported a C implementation of IBE [8] to Java
and added support for hierarchies. We employ a hybrid en-
cryption scheme, that is, we symmetrically encrypt infor-
mation with a session key and encrypt only this key with
Encrypt().

We also implemented a few sample information services
that require access control. There is a service that provides
calendar information. This service runs proof-based ac-
cess control and has covert access requirements. There are
also several location services, each exploiting a different ap-
proach for locating people. They run either proof-based or
encryption-based access control. These services do not have
covert access requirements, so the proof-based versions do
not employ HIBE. The encryption-based versions always
use HIBE. While it is possible to switch to a different asym-
metric cryptosystem if, for example, no constraints are used
or information is not granularity aware, key management
would become difficult. In proof-based access control, we
express access rights in SPKI/SDSI certificates [5]. An in-
dividual provides the public parameters of her IBE scheme,
her hierarchies, and her tuples of private keys in self-signed
certificates. There is a command line tool for issuing certifi-
cates, setting up IBE schemes, and extracting private keys.

We use SSL for communication between entities, which
gives us authentication of peers and confidentiality and in-
tegrity of the transmitted data. We employ client authenti-
cation only for proof-based access control.

5. Evaluation

In our evaluation, we concentrate on encryption-based
access control. We run our experiments on a Pentium IV/2.5
GHz with 1.5 GB of memory, Linux 2.4.20, and Java 1.4.2.
An experiment consists of ten runs. We report both the
mean and the standard deviation (in parentheses).

We have a client contact a service that provides en-
crypted people location information, which is split into
three levels of granularity and encrypted using a three-level
information hierarchy. There are no constraints. We look
only at the case where information about a single individual
is provided. In addition, we assume that the client knows
which decryption key to use. It takes 1091ms (42ms) for the
client to retrieve and decrypt the information. Let us exam-
ine this cost in more detail. For the service, there is a cost of

25ms (2ms) for anEncrypt() operation that exploits only
the root level of a hierarchy. Our service has to perform
threeEncrypt() operations. In addition, there is a cost of
14ms (1ms) per additional level used in anEncrypt() op-
eration (i.e.,3 ∗ 14ms in our experiment). Therefore, the
overall cost of encryption is about 117ms. The overall pro-
cessing time of the service is 253ms (31ms); 46% of the
cost is due to encryption. The rest of the cost is caused by
fingering a person’s desktop computer in order to locate her
and by (de)marshalling of the request and the response. For
the client, there is a cost of 136ms (2ms) per level used in a
Decrypt() operation. Our client runs three such operations,
operating at 1, 2, or 3 levels. Therefore, overall decryption
cost is about 816ms or 75% of the overall processing time.

In our second experiment, we investigate the influence
of the number of hierarchies on encryption and decryption
time. We encrypt and decrypt a random message using a
variable number of hierarchies, whereas we exploit all the
levels in each hierarchy. Similar to the first experiment, the
first hierarchy has three levels. All the additional hierarchies
have two levels. As shown in Figure 4, the cost increases
linearly with the number of hierarchies.

The performance numbers heavily depend on the un-
derlying implementation. Our implementation uses Java’s
standard mathematical package for its cryptographic rou-
tines. While we currently do not have a C-based implemen-
tation of HIBE, there is a more optimized, publicly avail-
able C-based implementation of standard IBE [13]. Since
hierarchical IBE exploits the same basic mathematical rou-
tines as standard IBE, we can predict the performance of a
C-based implementation of hierarchical IBE based on this
implementation. Figure 4 also shows our predictions. In
summary, the performance of a C-based, more optimized
implementation would be at least 3.5 (encryption) or 4.5
(decryption) times better.

The presented results allow us to judge the relative bene-
fit, performance-wise, of proof-based and encryption-based
access control. In our implementation of proof-based ac-
cess control, it takes a service about 3ms to validate the
1024 bit RSA signature of a SPKI/SDSI certificate. Assum-
ing a single-level information hierarchy and no constraint
hierarchies, it takes the service 25ms to encrypt a piece
of information. However, this operation does not need to
be executed for every client, the service can reuse an en-
crypted piece of information to answer requests from mul-
tiple clients. Therefore, it pays off for the service to use
encryption-based access control if there are more than 8 re-
quests for information during the lifetime of the informa-
tion. If there are constraints on access rights, this number
will become correspondingly larger.

For covert access requirements, the overall cost for
proof-based access control is larger than for encryption-
based access control. The performance of the HIBE opera-

1 2 3
0

20

40

60

80

100

Number of hierarchies

E
nc

ry
pt

io
n

tim
e

[m
s]

Java (measured)
C (predicted)

1 2 3
0

200

400

600

800

1000

Number of hierarchies
D

ec
ry

pt
io

n
tim

e
[m

s]

Java (measured)
C (predicted)

Figure 4. Performance of encryp-
tion/decryption. We encrypt/decrypt a
message using a variable number of two-
level hierarchies, whereas the first hierarchy
has three levels. (The two graphs are
differently scaled.)

tions is similar for both cases. However, proof-based access
control requires two round trips, client authentication, and
validation of the proof of access.

6. Related Work

Automated trust negotiation explores issues related
to covert access requirements. For example, Yu and
Winslett [17] study the scenario where (parts of) a service’s
access policy is confidential. (An access policy lists the re-
quired access rights.) The authors suggest two strategies,
neither of them applicable to our scenario. The first strategy
transmits all the access rights of a client to a service, even
if they are not required. The second one transmits only ac-
cess rights that the service asks for by revealing (parts of)
its access policy. However, this strategy fails if access rights
whose corresponding access policy cannot be revealed are
required. In Holt et al.’s architecture [11], a service encrypts
information in a client-specific way, and the client needs to
find the corresponding decryption key(s) in its set of keys.
Similar to our architecture, Holt et al.’s work is based on the

Boneh and Franklin IBE scheme. However, due to reasons
outlined in Section 3.3, we do not have a service encrypt
information for proof-based access control. Holt et al. do
not investigate constraints on access rights and expiration of
access rights.

There has been previous work about access control in a
hierarchy [1, 9, 14, 15], where information items are clas-
sified into partially ordered security classes depending on
their sensitivity and users are assigned to classes depending
on their clearance. Each class has a key, which is used for
encrypting (decrypting) information in the class. Given the
key for a class, it is possible to derive the key for a class of a
lower security level. None of the proposed hierarchical ar-
chitectures fulfills our requirements of asymmetry and easy
access rights management. Our architecture supports only
tree-based hierarchies. However, tree-based hierarchiesare
sufficient for expressing granularity-aware access rightsand
hierarchical constraints on them.

7. Conclusions and Future Work

When running access control to confidential information
in a pervasive computing environment, we need to deal with
constraints on access rights and avert information leaks. We
showed how hierarchical identity-based encryption can be
employed to address these challenge in both proof-based
and encryption-based access-control architectures.

We implemented our proposed architectures in the con-
text of a pervasive computing environment. Our evaluation
shows that identity-based encryption is expensive. How-
ever, the overhead can be significantly lowered using a more
optimized implementation. Furthermore, our design gives
us the convenience of being able to use the name of the in-
formation or of a constraint as public key.

A weakness of our architecture is that all the policy-
makers need to share the same parameters for their HIBE
schemes, which could be difficult to achieve. A topic for
further investigation is whether we can weaken this assump-
tion without significantly compromising on security.

Acknowledgments

We are grateful to Nick Hopper for pointing out the ap-
plication of IBE to proof-based access control. We thank
the anonymous reviewers for their comments. This research
was supported by the Army Research Office through grant
number DAAD19-02-1-0389 and by the NSF under award
number CNS-0411116.

References

[1] S. G. Akl and P. D. Taylor. Cryptographic Solution to a Prob-
lem of Access Control in a Hierarchy.ACM Transactions on
Computer Systems, 1(3):293–248, 1983.

[2] L. Bauer, M. A. Schneider, and E. W. Felten. A General and
Flexible Access-Control System for the Web. InProceedings
of 11th Usenix Security Symposium, pages 93–108, August
2002.

[3] D. Boneh and M. Franklin. Identity-Based Encryption from
the Weil Pairing. SIAM J. of Computing, 32(3):586–615,
2003. Extended Abstract in Proceedings of Crypto 2001, pp.
213-229, 2001.

[4] R. Bradshaw, J. Holt, and K. E. Seamons. Concealing Com-
plex Policies with Hidden Credentials. InProceedings of 11th
ACM conference on Computer and Communications Security
(CCS 2004), pages 146–157, October 2004.

[5] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen. SPKI Certificate Theory. RFC 2693, September
1999.

[6] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Towards Distraction-Free Pervasive Comput-
ing. IEEE Pervasive Computing, 1(2):22–31, April-June
2002.

[7] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryp-
tography. InProceedings of Asiacrypt 2002, pages 548–566,
December 2002.

[8] S. A. C. Group. IBE Secure E-mail.http://crypto.
stanford.edu/ibe .

[9] L. Harn and H. Y. Lin. A Cryptographic Key Generation
Scheme for Multi-level Data Security.Computer & Security,
9(6):539–546, 1990.

[10] U. Hengartner and P. Steenkiste. Exploiting Hierarchical
Identity-Based Encryption for Access Control to Pervasive
Computing Information. Technical Report CMU-CS-04-172,
Computer Science Department, Carnegie Mellon University,
October 2004.

[11] J. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman. Hid-
den Credentials. InProceedings of 2nd ACM Workshop on
Privacy in the Electronic Society, October 2003.

[12] J. Howell and D. Kotz. End-to-end authorization. InPro-
ceedings of 4th Symposium on Operating System Design &
Implementation (OSDI 2000), pages 151–164, October 2000.

[13] S. S. Ltd. Multiprecision Integer and Rational Arith-
metic C/C++ Library (MIRACL). http://indigo.ie/
˜mscott/ .

[14] I. Ray, I. Ray, and N. Narasimhamurthi. A Cryptographic So-
lution to Implement Access Control in a Hierarchy and More.
In Proceedings of 7th ACM Symposium on Access Control
Models and Technologies (SACMAT’02), pages 65–73, June
2002.

[15] R. S. Sandhu. Cryptographic Implementation of a Tree Hi-
erarchy for Access Control.Information Processing Letters,
27(2):95–98, 1988.

[16] D. Yao, Y. Dodis, N. Fazio, and A. Lysyanskaya. ID-Based
Encryption for Complex Hierarchies with Applications to
Forward Security and Broadcast Encryption. InProceedings
of 11th ACM Conference on Computer and Communications
Security (CCS 2004), pages 354–363, October 2004.

[17] T. Yu and M. Winslett. A Unified Scheme for Resource Pro-
tection in Automated Trust Negotiation. InProceedings of
IEEE Symposium on Security and Privacy, pages 110–122,
May 2003.

