Exploiting Hierarchical Identity-Based Encryption for Access Control to
Pervasive Computing Information

Urs Hengartnérand Peter Steenkiste
TComputer Science Department
{Department of Electrical and Computer Engineering
Carnegie Mellon University
{uhengart, prs@cs.cmu.edu

Abstract endar entry reveals the location of the people that the perso
is currently meeting with. In order to be granted access to
Access control to confidential information in pervasive this entry, a client should at least have access rights to eac
computing environments is challenging for multiple rea- of these people’s location information. However, since the
sons: First, a client requesting access might not know which client does not know who the person is meeting with, the
access rights are necessary in order to be granted accesslient does not know which access rights are required. Sec-
to the requested information. Second, access control musond, access rights need to be more flexible. For instance, it
support flexible access rights that include context-simesit should be possible to issue access rights that are coreddrain
constraints. Third, pervasive computing environments con based on a person’s context, such as her location or the cur-
sist of a multitude of information services, which makes rent time.
simple management of access rights essential. We dis-
cuss the shortcomings of existing access-control schemes There areproof-basedand encryption-basedaccess-
that rely on either clients presenting a proof of access to control schemes. In a proof-based scheme, a client needs
a service or services encrypting information before hand- t0 assemble some access rights jpraof of accesswhich
ing the information over to a client. We propose a proof- demonstrates to a service that the client is authorized-to ac
based access-control architecture that employs hieraaihi ~ cess the requested information. This proof of access pre-
identity-based encryption in order to enable services to in vVents the service from having to locate the required access
form clients of the required proof of access in a covert way, fights, which can be an expensive task. Proof-based ac-
without leaking information. Furthermore, we introduce an C€sSS control is attractive for scenarios where flexiblentti
encryption-based access-control architecture that diplo SPecific access rights are required. Since access rights are
hierarchical identity-based encryption in order to deathwi flexible, itis easy to include support for constraints inthe
multiple, hierarchical constraints on access rights. We However, itis difficult to add support for covert access re-
present an example implementation of our proposed archi-duirements. Existing designs [2, 12] assume that a service

tectures and discuss the performance of this implementa-can inform a client of the nature of the required proof of
tion. access. When we apply this principle to our example men-

tioned above, we could end up with an information leak. In
particular, assume that a service informs a client of the-ide
tity of the people for whose location information the client
needs to present access rights. Based on this knowledge,
the client can infer who the owner of the calendar entry is

Access control to confidential information has been well meeting with. A n#ve solution is to have the client sub-
investigated in the context of traditional distributedtsyss, mit all obtained access rights to the service. This solution
such as a distributed file system. However, access controhas privacy and bandwidth issues: the service can learn a
faces additional challenges in the context of pervasive-com lot about the client, and the client might have to transmit
puting environments. First, there might bevert access a lot of data. Instead, the service must let the client know
requirementsin particular, a client that wants to access in- about the nature of the required proof of access such that
formation might not know which of the client’s access rights only clients authorized to access the information listed in
are required for gaining access. For instance, a persdn’s ca the proof description can understand this description.

1. Introduction

In an encryption-based access-control scheme, a servicenay offer the same type of information (e.g., people loca-
provides confidential information to any client, but only in tion services exploiting cellphones, RFID badges, or Wi-
an encrypted form. Clients authorized to access the infor-Fi devices). To simplify management of access rights, we
mation have the corresponding decryption key. This ap- want service-independent access rights, that is, accggs ri
proach is attractive for scenarios where there are lots ofshould be about information, not about information offered
gueries to a service since it shields the service from havingby a specific service. For example, there should be access
to run client-specific access control. It is straightforevar rights for Alice’s location information, not for Alice’s ka-
to add support for covert access requirements to existingtion information as offered by her cellphone service.
encryption-based architectures [1, 9, 14, 15]. In particu- It should be possible to constrain access rights. In this
lar, a service encrypts information as usual, but it does notpaper, we limit ourselves to constraints whose currentevalu
tell a client which decryption key to use. Assuming that a is publicly known (e.g., current time). Our architecturscal
client has a set of decryption keys, the client now needs tosupports constraints that involve confidential informatio
search this set for a matching key. It is less straightfotwar (e.g., current location of the client or of the queried indi-
to add support for constraints on access rights to the pro-vidual), but additional access control is required in otder
posed architectures, especially when considering that keyavoid leaks of this confidential information, which is out-
management should remain simple. side of the scope of this paper.

Our contributions are two novel applications of hier- Access rights should be granularity aware. Some in-
archical identity-based encryption that address the aboveformation (e.g., location information) is available atfeif
mentioned shortcomings of proof-based and encryption-ent levels of granularity (e.g., “CMU”, “CMU Wean Hall",
based access-control schemes for pervasive computing e*CMU Wean Hall 8220"). Having an access right to fine-
vironments (Section 3). In identity-based encryption,pub grained information should imply having an access right
lic keys are arbitrary strings, which simplifies key man- to coarse-grained information. Granularity-aware access
agement. First, we employ hierarchical identity-based en-rights also simplify management of access rights.
cryption to add covert access requirements to a proof- Access rights are managed pglicymakers Typically,
based access-control scheme. Second, we use hierarchicah individual is the policymaker for her own personal infor-
identity-based encryption to develop an encryption-basedmation. Depending on the access-control scheme, an access
access-control scheme that supports multiple, hierarchi-right can be represented in different forms. For proof-Hase
cal constraints on access rights. Moreover, our contribu-access control, it is a digital certificate issued by the-poli
tions include extensions to an existing hierarchical ignt ~ cymaker, whereas for encryption-based access contrel, it i
based encryption scheme to support multiple hierarchiesa decryption key. Regardless of the form, dealing with ac-
and novel ways for dealing with expiring keys in identity- cess rights should be simple for all involved entities (utise
based encryption. Finally, we have implemented our so- services, and policymakers).
lutions in a pervasive computing environment (Section 4), We now discuss how proof-based and encryption-based
and we evaluate this implementation and discuss its relativ access control meet the requirements of granularity aware-
strengths and weaknesses (Section 5). ness and constraints. We also elaborate on some additional

requirements, namely, indistinguishability, asymmediryd

2. Access Control in Pervasive Computing personalization.

. . . 2.2. Proof-Based Access Control
In this section, we discuss the challenges for access con-

trol and for access rights to information in the context of
pervasive computing. We present a list of requirements and
our threat model.

Proof-based access control is attractive since it offloads
the assembly of a proof of access to a client. If the client
does not know the nature of the required proof of access,
) a service will give it a description of this proof. The de-
2.1. Overview scription lists the information for which the client needs t

present access rights. However, when this descriptiorsleak

In pervasive computing environments, there are a lot of confidential knowledge, the service must obscure it. Let us
services that provide potentially confidential informatto summarize the requirements for this case:
clients. Clients need to haweccess rightsn order to be Indistinguishability. The service must obscure the descrip-
granted access to confidential information. An access righttion such that a client learns nothing about the information
has an issuer, a recipient, an information item, and a set oflisted in the description, unless the client has some secret
constraints. For example, Alice grants Bob access to herknowledge. The client has this secret knowledge only if the
location information during office hours. Multiple service client has an access right to the information.

Constraints. Access rights can have constraints on them. reveal any knowledge about the used encryption key or the
These constraints should also apply to a client’s abiliipto required decryption key.

terpret an obscured proof description. For example, when aConstraints. Each value of a constraint must require a sep-
client’s access right to information expires, the clieradd arate key for decrypting encrypted information that should
no longer be able to interpret an obscured proof descriptionbe accessible only under the given constraint/value com-
asking for this information. To support this feature, each bination. To make key management simple, we want a
possible value of a constraint must require separate secrescheme that supports hierarchical constraints.

knowledge. For instance, a client’s secret knowledge al- Granularity awareness. To simplify key management, the
lowing interpretation of an obscured proof description on decryption key for coarse-grained information should be
January 1 must not allow interpretation on January 2. This derivable from the key for fine-grained information.
requirement leads to an increase in the amount of secreAsymmetry. Service-independent access rights imply that
knowledge to be managed by the client. The problem be-if multiple services offer the same information, this irfor
comes worse when there are multiple constraints on an acimation will be decryptable with the same decryption key.
cess right. We observe that many constraints are of a hierarTherefore, in a symmetric cryptosystem, a service encrypt-
chical nature. Therefore, we want an architecture that sup-ing information would be able to access the same informa-
ports hierarchical constraints. For example, if a clierg ha tion offered by some other service. We can avoid this prob-
secret knowledge for January, the client can derive secreem by using an asymmetric cryptosystem.

knowledge for January 1, January 2,... This requirement We do not require personalization for encryption-based
simplifies management of the secret knowledge. access control since it is client independent by design.
Granularity awareness. Some information in pervasive

computing (e.g., location information) is available afeiif 2.4. Threat Model

ent granularities. If a client’s secret knowledge allowee t

client to interpret an obscured proof description asking fo In our threat model, an attacker can corrupt clients or ser-
fine-grained information, the same knowledge should alsovices, but not policymakers. Corrupted clients try to gain
allow the client to interpret an obscured proof description non-authorized access to information provided by a service
asking for coarse-grained information. that is, information to which a client does not have any ac-
Personalization. We want obscured proof descriptions to cess rights. Corrupted clients can collude. A corrupted
be personalized for a client. In this way, if a client’s sécre service tries to gain non-authorized access to information
knowledge required for understanding an obscured proofprovided by another service, where this service might of-
description asking for particular information leaked,ath fer the same type of information as the corrupted service.
clients being able to understand obscured proof descniptio Corrupted services can collude. Attackers can also sniff,
asking for the same information would not be affected. modify, or inject network traffic.

Asymmetry. Service-independent access rights grant ac-

cess to information independent of the service offering thi 3, Access Control based on Hierarchical
infqrmatio_n._ A servi_c_e _generati_ng an obscured proof _de- Identity-Based Encryption

scription listing specific information must not be able te in
terpret an obscured proof description listing the same in-

formation generated by another service (unless the former We want an access-control architecture where access
. 9 Dy . rights are simple to manage, aware of granularity, and con-
service has the required access right).

strainable. The architecture also has to be asymmetrie, pro
) vide indistinguishability, and be personalizable in theeca
2.3. Encryption-Based Access Control of proof-based access control. Identity-based encryption
(IBE) is a good fit for such environments. It is asymmet-
If there are lots of requests for the same information, ric and provides indistinguishability. Since public keys a
encryption-based access control is attractive since it-is i strings, access right management and personalization are
dependent of the individual clients issuing these requests simple. In addition, a hierarchical version of identityskd
For example, a service can encrypt an information item encryption lends itself to the implementation of hieracehi
once and use the ciphertext for answering multiple requests constraints and granularity awareness. Therefore, wih th
However, the uniform treatment of requests makes deal-help of hierarchical identity-based encryption (HIBE), we
ing with constraints on access rights and with granularity- can overcome the shortcomings of existing access-control
aware access rights difficult. Covert access requirementsarchitectures for pervasive computing environments. ik th
and service-independent access rights present furthér chasection, we review HIBE and discuss how we extend it to
lenges. Let us summarize the requirements: build an access-control architecture satisfying our negui
Indistinguishability. The encrypted information must not ments.

3.1. Hierarchical Identity-Based Encryption

We give a detailed discussion, showing the exact crypto-

graphic steps for each operation, in the extended version of
In an IBE scheme, the public key of an individual is an this paper [10]. For readability reasons, we omit some of

arbitrary string, typically corresponding to her ID (elger
email address). The individual gets her private key from a

the parameters of the operations here.

In order to achieve indistinguishability, we assume that

third party, called a Private Key Generator (PKG). The third all the policymakers agree on a set of public parame-
party also provides additional, public parameters require ters, params. The basic operations arBoot _Setup(),
for the cryptographic operations. Boneh and Franklin [3] Exztract(), Encrypt(), andDecrypt ().

present one of the first practical IBE schemes. Based on this
work, Gentry and Silverberg [7] introduce a HIBE scheme.
In this scheme, a root PKG gives out private keys to sub
PKGs, which in turn give out private keys to individuals
in their domains (or further sub PKGs). The public key
of an individual corresponds to the IDs associated with the
root PKG, any sub PKGs on the path from the root PKG to
the individual, and the individual. For encrypting message
public parameters are required only from the root PKG.

The limited success of PKI has lead to the development
of simpler public-key infrastructures (e.g,. SPKI [5])ath
do not require (hierarchical) certification authoritiesn |
SPKI, a user’s public key is her identity, and not her name
as certified by an authority. In our work, we pursue a similar
approach. Instead of requiring the existence of a single hie
archical PKG infrastructure, we let each policymaker have
a PKG. A policymaker uses the PKG for managing access
rights to information. In addition, a policymaker can set up
a hierarchical PKG infrastructure and control both the root
PKG and any sub PKGs. In this way, a policymaker will
be able to establish granularity-aware access rights vith h
erarchical constraints (see Section 3.4). In the rest ef thi
paper, we use the term “policymaker” instead of PKG.

Our architecture builds on Gentry and Silverberg’s HIBE
scheme. This scheme supports only a single hierarchy for a
root PKG, which is too limiting for our application scenar-
ios, where we might have multiple hierarchical constraints
on access rights. Therefore, we extend the scheme to sup-
port multiple hierarchies.

A HIBE scheme has the advantage that it reduces the
amount of required storage and the complexity of the access

e Root_Setup(params) — Qq:
A policymaker runs this operation in order to generate
a master secret. In addition, the operation returns the
policymaker’s public key@)g.

o Extract({(ID;1,...,1D;4,), Sit,—1,params)
Si,ti with ¢; > 1:
This operation returns the private ke$,.,, of a node
at levelt; in hierarchyi. Unlesst; = 1, this key is
derived from the private key of the ancestor node,
Sit,—1. If t; = 1, this operation needs to be run by
a policymaker, since it requires the policymaker’s
master secret. (ID;,...,ID,,,) is the sequence
of node IDs along the path from the root node of
hierarchy; to the node in question.

o Encrypt({(ID11,...,JD14,),....{IDp1,....IDnpy,),
M, Qq, params) — C: After choosing a node in each
hierarchy, a service uses this operation to encrypt a
message), using the nodes’ public keys. For each
of the h hierarchies, the operation accepts a sequence
of node IDs,(ID; 1, ...,ID;,), from the root node to
the chosen node. The operation returns a ciphertext,
C.

o Decrypt((S1,t,, s Shty,), C, params) — M:
A client uses this operation to decrypt a ciphertéxt,
The operation requires the private key of each node
chosen by the service in its call #ncrypt() and the
ciphertext.

right management. As we will see in Section 3.4, the public 3 3 proof-Based Access Control

key associated with some information corresponds directly
to the name of the information. We discuss the advantages
of a HIBE scheme in more detail in Section 3.6.

If Alice grants Bob an access right to information, she

will also give him a personalized secret. When Bob re-
ceives an obscured proof description asking for this infor-
mation from a service, this secret will allow him to interpre
the description. In the rest of this paper, we use the term
Our architectures for proof-based and encryption-basedchallengefor such an obscured proof description. We keep
access control each employ four basic, randomized operimanagement of the challenges simple by using the name of
ations. We discuss these operations in this section andhe information for generating a challenge for it. In our ar-
their application in proof-based and encryption-based ac-chitecture, a challenge corresponds to a ciphertexthetein
cess control in the next two sections. Our operations arepair and a secret corresponds to a tuple of private keys en-
based on the operations introduced by Gentry and Silver-abling the decryption of ciphertexts. To support grantyari
berg, but we extend them to support multiple hierarchies. aware, constrainable challenges and secrets, Alice defines

3.2. Basic Operations

1. Root_Setup() location_fine location_2005 location_always

2. Define hierarchies. /\

4. Extract()

5.nPOr(|jv§18t’eSI;eqyusech1fceS medium January Februaryoffice_hours spare_tim
of node IDs, and 3. Alice’s public key
sub hierarchie and hierachies /\
coarse 1.
ey ©
9. Challenge @ (b)
6. Extract() 11. Proof 8. Encrypt()

12. Proof validatio F|gu're 2. Hlerarch|es.. Al!ce establlshes hier-
13. Information archies for her location information (a) and
for each constraint (b, c).

10. Decrypt()

Figure 1. Architecture for proof-based access

control. The service sends a challenge to the hierarchy given in Figure 2 (a), the root node becomes
Bob. Upon resolving this challenge, Bob “location_fine.Bob”.! Since this personalization is done in
sends a proof of access to the service. the same way for each client, there is no need for Alice
to submit each personalized information hierarchy to the
service. To avoid collusion attacks between clients, Alice
should also personalize each of her constraint hierarchies
When issuing an access right to Bob (e.g., in the form
of a digital certificate), Alice also gives Bob a personal-
ized secret, corresponding to the information in the ac-
cess right and limited to the same constraints (5). In
. her information hierarchy, she chooses the node corre-
Setup. Alice runs Root_Setup() to set up her IBE gponding to the information to which she wants Bob to
scheme (1) and to retrieve her public key. She also estab13ye access (e.g., “medium”). She then walks the path
lishes multiple hierarchies (2): She first defines a hienarch fom the root node to this node. In particular, she
resembling the granularity properties of information abou keeps a sequence of node IDs and, for each node on the
her (nformation hierarchy. Figure 2 (a) gives an example path, she call€ztract() with the current sequence (e.g.,
hierarchy for location information. The rule for a hieraych Extract((locationfine_Bob), null, params) — S;; and
is that anyone who has access to information covered byEaztract((Iocationfine_Bob, mediun, S 1’pamm;) R
a node should also have access to information covered byS1 ») (4). Ultimately, this process will return the private
a child node. Alice then establishes another hierarchy for keS/ of the chosen node. Similarly, for each type of con-
each of the constraints that she wants to include in her aC-gtraint, she picks the appropriate node in the correspgndin
cess rights to location informatioegnstraint hierarchies constraint hierarchy and derives the private key by repeate
Figure 2 (b) shows a hierarchy that restricts the lifetime of 55 to Extract(). For each hierarchy, Alice will end up

access rights, and Figure 2 (c) presents a hierarchy for lim-yith a private key. The tuple of private keys returned by
iting access based on time of the day. (Non-hierarchical iyese calls serve as the secret.

constraints are dealt with similarly; there, the hierarbhg
only one level and lists all possible values.) The root node
of each hierarchy includes the name of the information to
ensure that, for example, a constraint granting unlimited a
cess to location information cannot be used for getting un-
limited access to medical information.

set of hierarchies. We give an overview of our extended
proof-based access-control architecture in Figure 1.1t co
sists of three entities: a policymaker managing accestsrigh
to personal information (“Alice”), a service offering info
mation with covert access requirements, and a client trying
to access the information provided by the service (“Bob”).
We now discuss the individual steps shown in Figure 1.

Alice then gives the secret to Bob, together with the cor-
responding sequences of node IDs and the sub-hierarchies
rooted in the chosen nodes (5). Transfer of the secret re-
quires a secret communication channel.

Given the tuple of private keys and the sub-hierarchies
i _)) from Alice, Bob can derive additional tuples of pri-

Alice then informs the service of her public key and her y4te keys for nodes in the sub-hierarchies by (repeat-
hierarchies (3). Since none of this knowledge is confiden- aqy) calling Exztract() (6). For example, given the pri-
tial, an authenticated communication channel suffices. In-yate key for (locationfineBob, mediun and the sub-
stead of defining her own hierarchies, Alice can exploit pre- hierarchy “coarse”, Bob can extract the private key for

defined hierarchies that the service is already aware of. For(locationfine,Bob medium, coarselt is possible for Bob
example, we expect that there will be a widely accepted andy delay this step until he receives a ciphertext.

shared hierarchy for location information. Access Control.Bob issues a query to the service and fails

To allow Alice to issue personalized secrets to clients, we to submita proof of access (7) Since the requested informa-
have her personalize the information hierarchy by adding

the identity of a client to its root node. For example, for 1n the actual implementation, Bob is identified by his publig.ke

tion (e.g., calendar information) has covert access reguir 1. Root_Setup()

ments, the service needs to computes a challenge (8). In i' Esfiggtg'eramh'es'

particular, the service callBncrypt() to encrypt a random 5. Private keys of _

plaintext, M. The public keys required for this operation nodes, sequences 3. Alice's public ke
come from the information and constraint hierarchies ofthe ~ of node IDs, and ' P

. : . . ; sub hierarchie and hierarchies
policymaker responsible for the information for which the
client needs to present an access right. The service locates Bob 7.Query
the corresponding node in Alice’s information hierarchy. 0. Encrypted

6. Extract()

i 8. Encrypt()
10. Decrypt() Information

The service then gathers the IDs of all the nodes along the
path from the root node to this node. For example, if an
access right to fine-grained information is required, the ID Figure 3. Architecture for encryption-based
sequence iglocationfine_Bob). Similarly, for each of the access control. Alice sets up her IBE scheme
constraint hierarchies, the service chooses the leaf tadet ~ and hierarchies, informs the service, and
contains the current value of the constraint and gathers the grants access to Bob. Bob issues a query.
IDs along the path from the root node. The service then
calls Encrypt() with the gathered sequences of node IDs
(e.g.,Encrypt({locationfine_.Boby), ({location2005Bob,
February, 2, (locationalwaysBob, officehourg, M, Qo,
params)). Note that the public keys used for encryption
correspond directly to the node IDs.

The plaintext,M, and the obtained ciphertext, serve
as the challenge, and the service sends them to Bob (9).
the requested information covers multiple individualgréh

the people in a room, the client will require access to all
these people’s location information. The service thus send
a challenge for each person’s location information to the
client. After resolving these challenges, the client knows
about all the people in the room and thus all the originally
requested information and can skip submission of a proof
of access. An obvious question is why not skip this sec-
fond step all the time and stop using proofs of access? In
this model, the service would encrypt the requested infor-

will be multiple challenges. Sending a challenge to Bob re- 410 instead of a random plaintext (as suggested by Holt
quires only an authenticated communication channel, sinceg; g [11]). We refrain from adapting this model because

a challenge is personalized to a client and useless to otheLq \ve will see in Section 5, the decryption operation is ex-

clients. pensive. We view covert access requirements as a special

To resolve challengéM, C'), Bob needs to find a tuple case. For most queries, we expect clients to know what they
of private keys that makes ciphertekt decrypt to plain- need to deliver a proof of access for. Therefore, we do not
text M. In particular, Bob callDecrypt() for each of his place the burden of decrypting ciphertexts on them for every
(potentially derived) tuples of private keys given to him by request to confidential information.
Alice (and other policymakers) (10). He stops when the re- Security Analysis. The security of the scheme is based
turned plaintext is identical td/. We discuss ways to limit on the hardness of the Bilinear Diffie-Hellman problem.
the search space in Section 3.5. If Bob successfully resolve (please refer to the extended version [10] for details. pGiv
the challenge(s), he will resubmit the query, together with this assumption, Gentry and Silverberg [7] show that their
the required proof of access (11). The service will validate HIBE scheme has adaptive chosen ciphertext security in the
the proof (12) and return the requested information (13). random oracle model. It is straightforward to adapt their
Steps (11) and (13) need a secret communication channel. proof for multiple hierarchies. Therefore, corrupted watie
Discussion.The benefits of our architecture are secrets that and services and traffic sniffers cannot decrypt ciphestext
support constraints and that are personalized and granularwithout having the required decryption key or modify ci-
ity aware. Because a challenge for information is based onphertexts. We need to ensure that a client cannot learn from
the name of the information, challenges are simple to man-the ciphertext which public key was used to produce this
age. Since all the policymakers use the same set of publicciphertext (indistinguishability). Holt et al. [11] prowhis
parameters, the challenges generated by a service are indiproperty for the scenario where all the policymakers share
tinguishable. As opposed to a previous approach for dealingthe same set of public parameters, as assumed in our model.
with expiration [3], which makes the current date part of an Our scheme is secure against collusion of clients or ser-
ID, our approach does not require handing out separate privices, since keys are personalized.
vate keys for each possible date.

A client resolves a challenge before submitting the re- 3.4. Encryption-Based Access Control
quired proof of access to a service. However, for some sce-
narios, this second step can be omitted since resolving the Figure 3 gives an overview of our encryption-based
challenge(s) already gives the client all the informatimsit access-control architecture; the architecture is sirtléne
the client is asking for. For example, if the client asks for architecture for proof-based access control with chakeng

given in Figure 1. We now review the changes. We assumeknow which of his (potentially derived) tuples of private
that the service provides location information. keys to use for theecrypt() operation, and he will have
Setup. There is no need for Alice to personalize her infor- to search through his tuples. We discuss some optimization
mation and constraint hierarchies, since encryptiondase strategies in this section.

access control is not client-specific. We first concentrate on the scenario where the challenge
Access Control. When queried by Bob for information or the encrypted information returned by a service covers
about Alice (7), the service encrypts the information (8) only a single individual, that is, Bob needs to find only one
and returns the encrypted information to Bob (9). Namely, tuple of private keys. As described in Section 3.4, when
the service splits up the information based on its granular-a policymaker gives a tuple of private keys to Bob grant-
ity properties and encrypts each piece separately. For exing him access to information under some constraints, Bob
ample, the information “CMU Wean Hall 8220” is split can potentially derive additional tuples from this tuplee W
up into “CMU”, “Wean Hall”, and “8220". Then, for argue that among the original tuple and the derived tuples,
each piece, the service locates the node in Alice’s in- at most one tuple is of relevance for the search. For each
formation hierarchy that describes the piece and gathersconstraint hierarchy, Bob knows the current value of the
the IDs of all the nodes along the path from the root constraint and can throw out all the tuples that do not in-
node to this node. In our example, the ID sequences areclude the corresponding private key. In practice, Bob can
(locationfine, medium, coarse (locationfine, mediun), also limit the search space for the information hierarchy. |
and (locationfine), respectively. Similarly, for each of the many cases, it is safe for the service to inform Bob of the
constraint hierarchies, the service chooses the leaf t@det nature and the granularity of the information for which he
contains the current value of the constraint and gathers theneeds to resolve a challenge. For example, it is well known
IDs along the path from the root node. The service then callsthat calendar information is composed of fine-grained loca-
Encrypt() with the gathered sequences of node IDs (e.g., tion information, but not of medical information. Theredor
Encrypt({locationfine, medium, coarse(location2005, the service can safely inform Bob that a challenge involves
February, 2, (locationalways, officehours, “CMU" , fine-grained location information. In summary, for all tu-
Qo,params)). Bob decrypts the received ciphertexts ples of private keys given to Bob by a single policymaker
by calling Decrypt() with the required tuple of private and all tuples derivable from these tuples, we expect at most
keys (10) for each ciphertext. He can decrypt a ciphertextone tuple to be relevant for a search. Overall, the number
only if the encrypted information is of a granularity that he of tuples that Bob needs to search is at most one per policy-
has access to. maker.

Discussion.Our solution fulfills the requirements of being If the information returned by a service covers multiple
asymmetric and hierarchical and supporting multiple,-hier individuals (i.e., a service returns multiple challengesmo
archical constraints. Using the name of information or of crypts information multiple times), Bob will have to locate

a constraint directly as its public key drastically simglfi ~ multiple tuples of private keys. Therefore, Bob’s search
key management. cost is proportional to the number of policymakers multi-
Security Analysis. The scheme is not secure against col- plied by the number of individuals covered by the informa-
lusion. For example, for the hierarchies given in Fig- tion returned by the service. While this sounds expensive,
ure 2, assume that Bob has the tuple of private keysBradshaw et al.[4] present an optimization that requires th
for ((locationfine), (location2005), (locationalways, of- client to perform the most expensive cryptographic opera-
fice_hourg) and that Carol has the tuple fdtd¢cationfine), tion in this search only once for each policymaker and not
(location2005, Januaty (locationalways). If Bob for each combination of a policymaker and a covered indi-
and Carol colluded, they could determine the tuple for vidual.

({locationfine), (location2005, (locationalways). Yao

et al. [16] propose a collusion-resistant HIBE scheme, 3.6. Discussion

which we could also adopt. However, the complexity of
the Encrypt() and Decrypt() operations in their scheme
is O(n™), wheren is the depth of a hierarchy and is
the number of hierarchies. As we will see in Section 5, the
complexity of the operations in our schem&lémn).

IBE simplifies key management. For example, in an
email system, IBE allows Bob to encrypt email to Alice
simply by using her email address as public key. Bob does
not need to contact Alice beforehand to acquire a separate
o public key. We seem to lose this advantage: Alice needs
3.5. Limiting the Search Space to inform a service of her hierarchies and her public key.

However, as mentioned in Section 3.4, we do not expect

Both for proof-based and encryption-based access con-each policymaker to define her own hierarchies. Instead,

trol, if there are covert access requirements, Bob will not there can be a shared set of hierarchies, which a service is

Personal hierarchy Shared hierarchy
Public values Private keys Public values Private keys
Conventional cryptosystem 2n 1 n 1
HIBE scheme n 1 0 1

Table 1. Key management demand. For a hierarchy of n nodes, we show the number of public values
(including public keys) and private keys that a policymaker needs to define and give to a service and
to a client, respectively.

aware of. In addition, we observe that a setup step is alsoment is mostly Java, we implemented our HIBE scheme in
necessary for IBE in an email system: First, IBE schemesJava. We ported a C implementation of IBE [8] to Java
require a set of public parameters for encryption. Bob mustand added support for hierarchies. We employ a hybrid en-
acquire these parameters before he can encrypt email focryption scheme, that is, we symmetrically encrypt infor-
Alice. Second, Bob should ensure that the email address hanation with a session key and encrypt only this key with
is going to use to encrypt information destined for Alice re- Encrypt().
ally belongs to Alice. He should use this address only if he ~ We also implemented a few sample information services
was given it directly by Alice (or a trusted third entity) in a that require access control. There is a service that previde
setup step. calendar information. This service runs proof-based ac-

Instead of using a HIBE scheme, it is possible to make a cess control and has covert access requirements. There are
conventional asymmetric cryptosystem, such as EIGamal oralso several location services, each exploiting a diffeapn
RSA, hierarchy aware [14]. The drawback of this approach proach for locating people. They run either proof-based or
is increased demand in key management and transfer. Wencryption-based access control. These services do net hav
summarize this demand in Table 1. (Both conventional and covert access requirements, so the proof-based versions do
HIBE schemes typically also require storage and transfer ofnot employ HIBE. The encryption-based versions always
a constant amount of additional information, which is not use HIBE. While itis possible to switch to a different asym-
shown in the table.) If a policymaker defines a personal metric cryptosystem if, for example, no constraints areluse
set of hierarchies, the policymaker will have to transfer at or information is not granularity aware, key management
least the ID of each node to a service in order to inform the would become difficult. In proof-based access control, we
service of the node’s meaning, regardless of the employedexpress access rights in SPKI/SDSI certificates [5]. An in-
hierarchical cryptosystem. For a HIBE scheme, only this dividual provides the public parameters of her IBE scheme,
ID is required. For a conventional cryptosystem, a separateher hierarchies, and her tuples of private keys in selfesign
public key needs to be generated and transferred for eaclcertificates. There is a command line tool for issuing certifi
node. If a policymaker uses a shared information or con- cates, setting up IBE schemes, and extracting private keys.
straint hierarchy and employs a conventional cryptosystem We use SSL for communication between entities, which
the policymaker will still have to generate a set of public gives us authentication of peers and confidentiality and in-
keys for all the nodes in the shared hierarchy and submittegrity of the transmitted data. We employ client authenti-
these values to individual services. This is not necessarry f cation only for proof-based access control.
a HIBE scheme.

As we will see in Section 5, our proposed HII?)E scheme 5. Evaluation
can be expensive in terms of performance. This could be-
come a problem when a client employs a computationally
weak device for accessing information (e.g., a cellphone).
A common architecture for pervasive computing is to have
agents perform tasks on behalf of clients. We could have
this agent decrypt information for its client. For perfor-
mance and availability reasons, it makes sense to run thi
agent on a more powerful processing platform and to run
only a lightweight proxy on a client’s personal device.

In our evaluation, we concentrate on encryption-based
access control. We run our experiments on a Pentium IV/2.5
GHz with 1.5 GB of memory, Linux 2.4.20, and Java 1.4.2.
An experiment consists of ten runs. We report both the
Jnean and the standard deviation (in parentheses).

We have a client contact a service that provides en-
crypted people location information, which is split into
three levels of granularity and encrypted using a threetlev
. information hierarchy. There are no constraints. We look
4. Prototype Implementation only at the case where information about a single individual

is provided. In addition, we assume that the client knows

The Aura pervasive computing environment [6] serves which decryption key to use. It takes 1091ms (42ms) for the
as a testbed for the implementation and deployment of ourclient to retrieve and decrypt the information. Let us exam-
proposed access-control architectures. Because th@envir ine this cost in more detail. For the service, there is a dost o

25ms (2ms) for arEncrypt() operation that exploits only

the root level of a hierarchy. Our service has to perform 109 ,

three Encrypt() operations. In addition, there is a cost of g predicted) }

14ms (1ms) per additional level used in Bncrypt() op-

eration (i.e.,3 * 14ms in our experiment). Therefore, the

overall cost of encryption is about 117ms. The overall pro-

cessing time of the service is 253ms (31ms); 46% of the

cost is due to encryption. The rest of the cost is caused by

fingering a person’s desktop computer in order to locate her 20 .

and by (de)marshalling of the request and the response. For

the client, there is a cost of 136ms (2ms) per level used in a 1 2 3
. . . Number of hierarchies

Decrypt() operation. Our client runs three such operations,

operating at 1, 2, or 3 levels. Therefore, overall decryptio

cost is about 816ms or 75% of the overall processing time. 1000))

In our second experiment, we investigate the influence + C (predicted)

of the number of hierarchies on encryption and decryption 800

time. We encrypt and decrypt a random message using a

variable number of hierarchies, whereas we exploit all the

levels in each hierarchy. Similar to the first experimeng, th

first hierarchy has three levels. All the additional hiehées

have two levels. As shown in Figure 4, the cost increases 200 .

linearly with the number of hierarchies. .

The performance numbers heavily depend on the un- 0 1 > 3

derlying implementation. Our implementation uses Java's Number of hierarchies

standard mathematical package for its cryptographic rou-

tines. While we currently do not have a C-based implemen- Figure 4. Performance of encryp-

tation of HIBE, there is a more optimized, publicly avail- tion/decryption. We encrypt/decrypt a

able C-based implementation of standard IBE [13]. Since message using a variable number of two-

hierarchical IBE exploits the same basic mathematical rou- level hierarchies, whereas the first hierarchy

tines as standard IBE, we can predict the performance of a has three levels. (The two graphs are

C-based implementation of hierarchical IBE based on this differently scaled.)

implementation. Figure 4 also shows our predictions. In | L

summary, the performance of a C-based, more optimizedt'ons is similar for both cases. However, proof-based acces

implementation would be at least 3.5 (encryption) or 4.5 control requires two round trips, client authenticationd a
(decryption) times better. validation of the proof of access.

60

40

Encryption time [ms]
ot

600

400 e

Decryption time [ms]

The presented results allow us to judge the relative bene-
fit, performance-wise, of proof-based and encryption-base 6. Related Work
access control. In our implementation of proof-based ac-
cess control, it takes a service about 3ms to validate the Automated trust negotiation explores issues related
1024 bit RSA signature of a SPKI/SDSI certificate. ASsum- tg covert access requirements. For example, Yu and
ing a single-level information hierarchy and no constraint winslett [17] study the scenario where (parts of) a sersice’
hierarchies, it takes the service 25ms to encrypt a pieceaccess policy is confidential. (An access policy lists the re
of information. However, this operation does not need to quired access rights.) The authors suggest two strategies,
be executed for every client, the service can reuse an enneither of them applicable to our scenario. The first styateg
crypted piece of information to answer requests from mul- transmits all the access rights of a client to a service, even
tiple clients. Therefore, it pays off for the service to use if they are not required. The second one transmits only ac-
encryption-based access control if there are more than 8 recess rights that the service asks for by revealing (parts of)
quests for information during the lifetime of the informa- its access policy. However, this strategy fails if accegists
tion. If there are constraints on access rights, this numbenyhose corresponding access policy cannot be revealed are
will become correspondingly larger. required. In Holt et al.’s architecture [11], a service gpis

For covert access requirements, the overall cost forinformation in a client-specific way, and the client needs to
proof-based access control is larger than for encryption-find the corresponding decryption key(s) in its set of keys.
based access control. The performance of the HIBE opera-Similar to our architecture, Holt et al.'s work is based om th

Boneh and Franklin IBE scheme. However, due to reasons [2] L. Bauer, M. A. Schneider, and E. W. Felten. A General and
outlined in Section 3.3, we do not have a service encrypt Flexible Access-Control System for the Web Aroceedings
information for proof-based access control. Holt et al. do of 11th Usenix Security Symposiupages 93-108, August
not investigate constraints on access rights and expirafio 2002.

access rig?]ts g Hr [3] D. Boneh and M. Franklin. ldentity-Based Encryption from

Th has b . K about trol i the Weil Pairing. SIAM J. of Computing32(3):586-615,
ere has been previous work about access control In a 2003. Extended Abstract in Proceedings of Crypto 2001, pp.

hierarchy [1, 9, 14, 15], where information items are clas- 213-229, 2001.

sified into partially ordered security classes depending on [4] R. Bradshaw, J. Holt, and K. E. Seamons. Concealing Com-
their sensitivity and users are assigned to classes dependi plex Policies with Hidden Credentials. Rroceedings of 11th

on their clearance. Each class has a key, which is used for ACM conference on Computer and Communications Security
encrypting (decrypting) information in the class. Givea th (CCS 2004)pages 146-157, October 2004.

e . . 5] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
key for a class, it is possible to derive the key for a class of a [o
Y P y T. Ylonen. SPKI Certificate Theory. RFC 2693, September

lower security level. None of the proposed hierarchical ar- 1999
chitectures fulfills our requirements of asymmetry and easy [¢] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
access rights management. Our architecture supports only project Aura: Towards Distraction-Free Pervasive Comput-

tree-based hierarchies. However, tree-based hieraratees ing. |EEE Pervasive Computingl(2):22-31, April-June
sufficient for expressing granularity-aware access rights 2002.
hierarchical constraints on them. [7] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryp-
tography. InProceedings of Asiacrypt 20ppages 548-566,
. December 2002.
7. Conclusions and Future Work [8] S. A. C. Group. IBE Secure E-mailhttp://crypto.

stanford.edu/ibe
When running access control to confidential information [9] L. Harn and H. Y. Lin. A Cryptographic Key Generation
in a pervasive computing environment, we need to deal with ~ Scheme for Multi-level Data Securitfzomputer & Security
constraints on access rights and avert information leaks. W 9(6):539-546, 1990. . o .
showed how hierarchical identity-based encryption can be[10] u. H_engartner and P. _Steenklste. Exploiting Hlerarchl_cal
. Identity-Based Encryption for Access Control to Pervasive
employed to address these challenge in both proof-based Computing Information. Technical Report CMU-CS-04-172,

and encryption-based access-control architectures. Computer Science Department, Carnegie Mellon University,
We implemented our proposed architectures in the con- October 2004.

text of a pervasive computing environment. Our evaluation [11] J. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman. Hid-

shows that identity-based encryption is expensive. How- den Credentials. IfProceedings of 2nd ACM Workshop on

ever, the overhead can be significantly lowered using a more 1 Efi\ll_lacy iﬂ thedE$ec£otnic Eogi?tSDCtgbertﬁoc’_& tion. P
optimized implementation. Furthermore, our design gives[] J. Howell and D. Kotz. End-to-end authorization. Rro-

. . . ceedings of 4th Symposium on Operating System Design &
us the convenience of being able to use the name of the in- Implementation (OSDI 2000pages 151-164, October 2000.

formation or of a constraint as public key. [13] S. S. Ltd. Multiprecision Integer and Rational Arith-
A weakness of our architecture is that all the policy- metic C/C++ Library (MIRACL). http://indigo.ie/

makers need to share the same parameters for their HIBE ~ “mscott/ .

schemes, which could be difficult to achieve. A topic for [14] I.Ray, I. Ray, and N. Narasimhamurthi. A Cryptographic So-

further investigation is whether we can weaken this assump- lution to Implement Access Control in a Hierarchy and More.

. . P - - In Proceedings of 7th ACM Symposium on Access Control
tion without significantly compromising on security. Models and '?echnologies (SA(ySMpAT‘Oa)ages 6573 June

2002.
Acknowledgments [15] R. S. Sandhu. Cryptographic Implementation of a Tree Hi-
erarchy for Access Controlnformation Processing Letters
We are grateful to Nick Hopper for pointing out the ap- 27(2):95-98, 1988.

plication of IBE to proof-based access control. We thank [16] D- Yao, Y. Dodis, N. Fazio, and A. Lysyanskaya. ID-Based
the anonymous reviewers for their comments. This research ~ Eneryption for Complex Hierarchies with Applications to
was supported by the Army Research Office through grant Forward Security and Broadcast Encryption Pimceedings

of 11th ACM Conference on Computer and Communications
number DAAD19-02-1-0389 and by the NSF under award Security (CCS 2004pages 354363, October 2004.

number CNS-0411116. [17] T.Yu and M. Winslett. A Unified Scheme for Resource Pro-
tection in Automated Trust Negotiation. FProceedings of

References IEEE Symposium on Security and Privapages 110-122,
May 2003.

[1] S. G. Akland P. D. Taylor. Cryptographic Solution to a Prob-
lem of Access Control in a HierarchpACM Transactions on
Computer System#$(3):293-248, 1983.

