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Abstract

Pervasive computing environments offer a multitude of
information services that provide potentially complex types
of information. Therefore, when running access control for
sensitive information, these environments need to take re-
lationships between information into account. Other ap-
proaches to relationship-aware access control (e.g., based
on Semantic Web rule engines) are often expensive and
based on a centralized design. In this paper, we identify
three types of information relationships (bundling-based,
combination-based, and granularity-based) that are com-
mon and important in pervasive computing, and we inte-
grate support for them in a distributed, certificate-based
access control architecture. In our approach, access con-
trol is fully distributed while sophisticated rule enginescan
still be used to deal with more complex access control cases.
To demonstrate the feasibility of our design, we give a com-
plexity analysis of the architecture and a performance anal-
ysis of a prototype implementation.

1. Introduction

In pervasive computing environments, there are a multi-
tude of services that provide potentially sensitive informa-
tion about an individual, such as her location, her personal
files, her email, her calendar, or her activity. Some of this in-
formation might be offered by multiple services. For exam-
ple, there are multiple ways to locate a person (see Figure 1)
or to learn about her activity. In addition, a person might be
a member of multiple environments over time. In order to
be granted access to this sensitive information, a client re-
quiresaccess rights. An individual should be able to issue
access rights for her sensitive information. However, having
the individual issue access rights per client, per service,per
environment, and per type of information is not scalable. To
address this problem, pervasive computing frameworks that
support access control [1, 5, 6, 10, 16, 20] address the first
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Figure 1. Multitude of location services.
There are multiple environments, each hav-
ing its own set of location services.

three axes. They employ role-based access control, service-
independent access rights, or sharing of policies across en-
vironments. In this paper, we concentrate on the fourth axis
and examine ways to limit the number of types of informa-
tion for which access rights need to be issued.

To achieve this goal, we exploitrelationshipsbetween
information for access control. Consider the case of Alice
managing access rights to information about her context,
such as her location or her activity information. In a naı̈ve
solution, whenever she wants to grant someone access to all
her context-related information, she has to issue a separate
access right for each type of context-related information.In
a better solution, Alice can bundle these types of informa-
tion and grant access rights to information bundles. When
she wants to grant someone access, she now has to issue
only a single access right. By bundling information, Alice
establishes information relationships. The access control
mechanism exploits these relationships in order to derive
individual access rights.

Another example demonstrating the usefulness of infor-
mation relationships involves complex information. As-



sume that the current entry in Alice’s calendar says that she
is having a meeting with Bob, that is, the calendar entry
reveals the location of Alice and Bob. Therefore, only peo-
ple who are at least allowed to access Alice’s and Bob’s
location should have access to the calendar entry. To im-
plement this rule, Alice should issue an access right for this
entry to someone only if he already has access to her and
Bob’s location information. However, this is tedious and
might lead to consistency problems. Instead, access control
should be aware that there is a relationship between Alice’s
and Bob’s location information and her calendar entry and
directly take the relationship into account.

There are several frameworks for pervasive computing
that exploit knowledge representations developed for the
Semantic Web [3] and that use rule engines to reason about
this knowledge [5, 10]. Such an approach can exploit cer-
tain information relationships for access control, but it has
the disadvantage that the rule engine is centralized and
can become a performance bottleneck and an attractive tar-
get for attackers. As an alternative, there are distributed,
certificate-based access control architectures [2, 15], where
clients gather and reason about access rights and services
validate access rights received from clients. Weak clients
can offload this reasoning to a proxy. We propose making
such a distributed architecture aware of information rela-
tionships that are common and important in pervasive com-
puting. This way, we can run access control as often as
possible in a fully distributed fashion. Only more complex
information relationships need to be dealt with by the cen-
tralized rule engine.

The contributions of our work are the concept of infor-
mation relationships as a first-class citizen for access con-
trol and a distributed access control architecture that ex-
ploits information relationships (Section 2). We also present
a formalism for incorporating these relationships into ac-
cess control (Section 3) and examine how clients reason
about them (Section 4). We discuss a prototype deployment
and analyze its complexity and performance (Section 5).

2. Access Control Architecture

In this section, we discuss our distributed access control
architecture and information relationships in more detail.

2.1. Distributed Access Control

We want a distributed access control architecture, where
access control can be run in a fully distributed way for many
requests, without going through a centralized rule engine.
In our architecture, we have a client assemble aproof of
accessbased on the client’s access rights and transmit this
proof to a service, which validates the proof. For valida-
tion, the service must be able to authenticate access rights.

Therefore, we represent access rights as digital certificates,
signed by their issuer. Digital certificates can be stored any-
where. To avoid bottlenecks, we do not store a client’s ac-
cess rights in a centralized knowledge base. Instead, we
store them directly with the client. An individual grant-
ing an access right to a client will hand over this right to
the client for storage, together with any information rela-
tionships bound to the access right. A client then uses its
collection of access rights and information relationshipsfor
building a proof of access. We elaborate on proof building
in Section 4.

2.2. Information Relationships

An information relationship states that a client should be
granted access to an information item if the client already
has access rights to some information item(s) related to the
requested item. We now describe a set of information rela-
tionships that are particularly relevant to pervasive comput-
ing.
Bundling-based relationships: Though there might be
many different types of information about an individual,
some of them have identical access requirements. The in-
dividual should be able to bundle information and to issue
only a single access right for the entire bundle. For exam-
ple, assume that Alice bundles her medical and her location
information in her private information and grants Bob ac-
cess to her private information. Bob’s access rights for her
medical and her location information can then be derived
from this access right.
Combination-based relationships:Complex information
combines other types of information to form some new in-
formation. For example, assume that a map shows the loca-
tion of multiple people or that a calendar entry provides the
location of people attending a meeting. Based on this rela-
tionship between the complex and the individual pieces of
information, it should be possible to derive access rights for
the complex information from access rights for the pieces.
For example, if a client had access rights to all the people’s
location shown on the map, the client should also have ac-
cess to the map.
Granularity-based relationships: Some information, such
as location information, has different levels of granular-
ity. There is an information relationship between the dif-
ferent levels, meaning that access rights to coarse-grained
information should be derivable from access rights to fine-
grained information.

With the exception of combination-based relationships,
information relationships are static and require few updates
by the individuals defining them. Combination-based rela-
tionships will mainly be defined on the fly by services pro-
viding information and not by individuals managing their
access rights, so their dynamic nature does not affect these



individuals. An obvious question is whether the three infor-
mation relationships discussed in this section are common
and important. We consider our approach of running access
control by relating information as a dual to running access
control by relating people (i.e., role-based access control).
For each type of information relationship, there exists a cor-
responding, major concept in role-based access control. In
particular, bundling corresponds to assigning roles to peo-
ple, combination to separation of duty, and granularity to
hierarchical role schemes. This observation suggests that
the three relationships are common and sufficient, and so
far this has held up in our examples.

3. Formalizing Access Control

Access control exploits access rights and information
relationships. To avoid ambiguities, we require a formal
definition of the conditions under which access should be
granted. This formalism will also provide the basis for
our implementation (Section 5.1). The formalism is based
on previous work [14, 19] (Section 3.1). Our contribution
is its extension to support information relationships (Sec-
tion 3.2). We conclude by demonstrating its application in
a more involved scenario (Section 3.3).

3.1. Basic Access Control

In our formalism, we represent information by a tu-
ple 〈owner, entity, type, description〉. In-
formation has anowner who is responsible for issuing ac-
cess rights for it. Since we use information relationships for
deriving access rights, the owner of the information is also
responsible for defining relationships for this information.
Information is of a particulartype (e.g., location) and is
about someentity (e.g., Alice). In addition, there needs
to be a formaldescription of the type (e.g., defining
the notion of “location”). For this description, we can ex-
ploit descriptions developed for the Semantic Web, based
on OWL [8]. In our formalism, the information〈Alice,
Alice, location, URLto description〉 refers to Alice’s lo-
cation information. The information〈FacilitiesManager,
WeanHall 8220, temperature, URLto description〉 refers
to the temperature in Wean Hall 8220. To keep the for-
malism concise, we shorten this tuple and also refrain from
including the description in the notation. We use(A, I).x
for denoting a piece of information about entityI of type
x controlled by ownerA. If the owner and the entity are
identical, we will use the shortcutA.x.

Our formalism is based on Howell and Kotz’s “restricted
speaks-for” notation [14], which exploits Lampson et al.’s
“speaks-for” notation [19]. For a client to be granted access
to some information by a service, the client needs to speak
for the owner of the requested information in terms of this

information. For example, the statement BobAlice.location
===========⇒

Alice denotes that Bob speaks for Alice in terms of Alice’s
location information. Therefore, a service will grant Bob
access to Alice’s location information.

We need to formalize the establishment of speaks-for
statements. The ”handoff axiom” [19] says that such a state-
ment holds only if it is made by the principal on the right-
hand side. Formally, (⊃ denotes implication.)

` (A says (B
C.x

====⇒ A)) ⊃ (B
C.x

====⇒ A).(1)

In the above example, the statement holds only if Alice
makes it, but not if Bob (or someone else) makes it.1 There-

fore,A says (B
C.x

====⇒ A) corresponds to our notion of an
access right for informationC.x granted toB by A.

3.2. Relationship-aware Access Control

We extend the formalism to support information rela-
tionships. An information relationship implies that if an
entity B has access to information itemsEi.xi, B should
also have access to a (related) itemD.x. Formally, we use
E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x for expressing this relation-
ship, and we want the axiom

` (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x(2)

∧ B
E1.x1======⇒ A1 ∧ B

E2.x2======⇒ A2 ∧ . . .)

⊃ (B
D.x

====⇒ C)

to hold for certain conditions on the entitiesEi, their in-
formation Ei.xi, and the entitiesAi and C. In Sec-
tions 3.2.1, 3.2.2, and 3.2.3, we show that instantiating
Axiom (2) in different ways straightforwardly leads to
the concepts of bundling-based, combination-based, and
granularity-based information relationships, respectively.
For each type of relationship, we also discuss plausible con-
ditions on the various entities in the axiom and pick the most
useful one.

In addition to formalizing the application of information
relationships in access control, we also need to formalize
their establishment. Since access to the information items
on the left-hand side of a relationship also grants access to
the item on the right-hand side, only the principal owning
the information on the right-hand side should be able to es-
tablish a relationship2, or

` (D says (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x))(3)

⊃ (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x).

We are now going to look at useful instances of Axiom 2.

1Lampson et al. show that principals speaking for Alice can also estab-
lish such a statement.

2Similar to the speaks-for case, it is possible to show that theinfor-
mation relationship can also be established by principals speaking for the
principal owning the information.



3.2.1 Bundling-based Relationships

Limiting the number of information items on the left-hand
side of Axiom (2) to one item corresponds to the concept of
bundling-based relationships. For example, the statement
Alice.private −→ Alice.location denotes that information
Alice.location is bundled in information Alice.private, that
is, if someone has access to Alice’s private information, he
should also have access to her location information.

There are two plausible conditions on the various entities
in Axiom (2). The first one requiresA1 = C, or

` (E1.x1 −→ D.x ∧ B
E1.x1======⇒ A1) ⊃ (B

D.x
====⇒ A1).(4)

The second one isA1 = E1 andD = C, or

` (E1.x1 −→ D.x ∧ B
E1.x1======⇒ E1) ⊃ (B

D.x
====⇒ D).

We choose the first condition since the second one is too
limiting. For example, givenE1.x1 −→ D.x, B

E1.x1======⇒

C, and C
D.x

====⇒ D, it should be possible to conclude

B
D.x

====⇒ D, which the second condition does not permit.
Our formalism allows individuals to bundle some of their

information in someone else’s information. For example,
some people collaborating on a project can bundle infor-
mation that is relevant to the project in some information
owned by the project manager. The project manager can
then grant access to the information bundle.

Our discussion assumes that an individual establishes all
her bundling-based relationships. However, many individu-
als might establish the same types of relationships. There-
fore, it should be possible for a standardization organiza-
tion to establish “global” bundling-based relationships (e.g.,
OWL-based), to which individuals can subscribe. We have
extended our formalism accordingly. However, due to space
reasons, we refrain from discussing this extension in detail.

3.2.2 Combination-based Relationships

Not limiting the number of information items on the left-
hand side of Axiom (2) corresponds to the concept of
combination-based relationships. For example, the state-
ment Alice.location⊗ Bob.location−→ Map Service.map
denotes that the map offered by a map service can be ac-
cessed by anyone who has access to both Alice’s and Bob’s
location information. (The assumption is that only Alice’s
and Bob’s location is shown on the map.)

Again, there are two plausible conditions on the various
entities in Axiom (2). We can requireA1 = E1, A2 =
E2,..., andC = D, or

` (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x

∧ B
E1.x1======⇒ E1 ∧ B

E2.x2======⇒ E2 ∧ . . .)

⊃ (B
D.x

====⇒ D).

The second option isA1 = A2 = . . . = C, which is
an extension of the condition for bundling-based relation-
ships. This condition requires a single entity that has access
to all of E1.x1, E2.x2,..., andD.x, through whichB would
then acquire its access rights. However, this requirement is
unrealistic in practice and does not fit the intuitive model
of combination-based relationships. Therefore, we pick the
first condition.

3.2.3 Granularity-based Relationships

Granularity-based information relationships are a special
case of bundling-based relationships. For example, Alice
could define two types of location information, such as
Alice.locationfine and Alice.locationcoarse, and establish
Alice.locationfine−→ Alice.locationcoarse.

However, requiring individuals to introduce separate
types of information for different granularities is tedious
and not intuitive. Instead, we observe that granularity-
based access rights to information can be represented as
a constraint on the returned information. For example, if
Bob had access to Alice’s coarse-grained location informa-
tion and asked for her location, the result would have to
be coarse grained. This result (e.g., (FacilitiesManager,
WeanHall 8220)) is itself an entity about which there is
some information (such as its granularity). Therefore, it
should be possible to associate information relationships
with constraints. (Constraints are not a new concept in
access control. For example, an access right can be con-
strained to be valid only during office hours.) Expressing
granularity as a constraint, we can now reformulate the in-
formation relationship above as follows: (?result serves as
a placeholder for the returned information.)

Alice.location [?result.granularity = fine]

−→ Alice.location [?result.granularity = coarse]

This approach still requires Alice to establish a rela-
tionship. Realizing that the information items on the left-
hand side and on the right-hand side are identical (i.e.,
E1.x1 = D.x for Axiom (4)), we do not need an explicit
relationship. Instead, we incorporate it directly into an ac-
cess right. For example, the following statement says that
Bob has access to Alice’s location at fine or coarse granu-
larity: (For readability reasons, we put constraints underthe
arrow, the statement remains a speaks-for operator.)

Bob Alice.location
======================⇒
?result.granularity≥fine

Alice.

3.3. Example

In this section, we demonstrate the application of our
formalism in an example scenario. The scenario involves
a location service that provides the identity of the people



in a room, two users Alice and Bob managing their access
rights, and two users Dave and Carol trying to access Al-
ice’s or Bob’s sensitive information.

Alice bundles fine-grained location information (and
potentially other) information in her private information
(Statement (1) in Table 1). She grants Carol access to
her private information (2) and Dave access to her coarse-
grained location information (3). Bob grants Carol access to
his fine-grained location information (4). The information
provided by the location service should be accessible only
if a client had access rights to the location information of
all individuals in a room, that is, we require a combination-
based relationship. Assuming that only Alice and Bob are
in Wean Hall 8220, the service defines a corresponding re-
lationship (5).

Carol queries for the people in Wean Hall 8220. She
is granted access based on the information relationship
of the location service (5), Alice’s information relation-
ship (1), Alice’s access right (2), and Bob’s access right (4).
Dave also issues a query and is denied access, since the
intersection of ?result.granularity= coarse (3) and ?re-
sult.granularity= fine (5) is empty.

As demonstrated in this section, our scheme makes it
straightforward to run access control based on information
relationships. Moreover, there is no need for the different
types of information to be owned by the same entity.

4. Proof Building

In our distributed access control architecture, we have a
client ship a proof of access to a service. This approach has
been investigated in previous work [2, 15]. Our implemen-
tation is based on Howell and Kotz’s framework [15], to
which we added support for proofs of access involving in-
formation relationships. Proofs of access are structured,the
structure corresponds to the types of axioms required for
validating the proof. Figure 2 illustrates a structured proof.

As shown in Section 3.2, for each type of information
relationship, Axiom (2) is instantiated in a different way.
Another characteristics that differentiates the relationships
from each other is how they are used in proof building. We
now discuss proof building for each relationship.

4.1. Bundling-based Relationships

We first illustrate how proof building exploits bundling-
based relationships. A client collects access rights and in-
formation relationships received from individuals. It stores
speaks-for statements derived from access rights or from
other speaks-for statements in a graph where nodes repre-
sent principals and edges represent some information. For a
request, the algorithm traverses the graph in a breadth-first

Axiom (4)

Bob Alice.location
===========⇒ Alice

»
»

»
»

»
»

Axiom (1)
X

X
X

X
X

X

Axiom (3)

Bob
Alice.private

==========⇒ Alice Alice.private−→ Alice.location

Access right

Alice says

Bob
Alice.private

==========⇒ Alice

Information relationship

Alice says

Alice.private−→ Alice.location

Figure 2. Structured proof. The proof shows
that Bob can speak for Alice in terms of her lo-
cation information, based on an access right
for Alice’s private information and an informa-
tion relationship between Alice’s private and
her location information.

way to find a proof of access, starting at the owner of the re-
quested information and ending at the channel (e.g., an SSL
connection) that issues a request to a service on behalf of
the client. During this graph traversal, when the information
in a candidate edge does not match the requested informa-
tion, the algorithm looks at all bundling-based relationships
that have the requested information on their right-hand side
and checks whether the left-hand side of the relationship
matches the information in the candidate edge. (If there is a
hierarchy of bundling-based relationships, this step requires
exploration of multiple relationships.) If so, the algorithm
accepts the candidate edge and the edges connected to this
edge become new candidate edges. Figure 3 illustrates this
algorithm.

The algorithm looks at each edge at most once. There-
fore, if there aren speaks-for statements and no information
relationships, its worst-case complexity isO(n). If there are
alsom information relationships, the algorithm will look at
an information relationship at most once for each candidate
edge. The worst-case complexity becomesO(nm). Al-
though complexity is multiplicative, we expect proof build-
ing to be practical. First, the absolute value ofn will be
larger for the case without information relationships, since
this case requires separate access rights for information with
identical access requirements. Second, we expect principals
to define information relationships in a way such that infor-
mation is bundled only in a small number of information
bundles and to keep the hierarchies of bundling low. We
measure proof building time in Section 5.3.



Table 1. Example statements.
(1) Alice says Alice.private−→ Alice.location [?result.granularity≥ fine]

(2) Alice says Carol
Alice.private

=============⇒ Alice

(3) Alice says Dave Alice.location
==========================⇒
?result.granularity= coarse

Alice

(4) Bobsays Carol Bob.location
========================⇒
?result.granularity≥ fine

Bob

(5) LocationServicesays Alice.location [?result.granularity= fine]⊗ Bob.location [?result,granularity= fine]

−→ (LocationService, WeanHall 8220).people

A.xA.y

A.x
A

A.x

C B
A.y

Figure 3. Proof building. The goal is to prove
“ C

A.x
====⇒ A”. The search starts at A. It locates

“ B
A.x

====⇒ A” and tries to prove “ C
A.x

====⇒ B”.

The search locates “ C
A.y

====⇒ B” and uses
“ A.y −→ A.x” to get the required information.

4.2. Combination-based Relationships

We do not expect clients to exploit combination-based
relationships in proof building. Instead, these relationships
are used by services. A combination-based relationship is
tightly coupled to the information that a service provides
(e.g., for a map service, the relationship consists of all the
people shown on the map). Therefore, it is straightforward
for a service to establish the corresponding relationship and
to exploit it for access control. In particular, for each in-
formation item on the left-hand side of the relationship, the
service has the client build a proof of access. The service
then aggregates these individual proofs of access and its
combination-based relationship into a summary proof.

Proof building by a client can be difficult in this sce-
nario since the client might not know how the individual
proofs of access should look like and the service cannot in-
form the client of their nature without leaking information.
For example, if a map service had the information relation-
ship Alice.location⊗ Bob.location−→ Map Service.map,
a client would have to build proofs of access for Al-
ice.location and Bob.location. However, the client might
not know who is on the map, and the service cannot tell it
without leaking location information about Alice and Bob.
We present a solution for this problem in related work [13].

4.3. Granularity-based Relationships

For granularity-aware access control, the algorithm in-
troduced in Section 4.1 must be extended to take con-
straints on access rights and information relationships into

account. For example, Carol Alice.location
===================⇒

?result.granularity≥ fine
Bob

and Bob Alice.location
=====================⇒

?result.granularity= coarse
Alice can be concate-

nated to Carol Alice.location
=====================⇒

?result.granularity= coarse
Alice. Since

granularity-based relationships can be directly encoded in
access rights instead of requiring separate information rela-
tionships, there will be no extra information relationships,
which reduces the complexity of proof building.

In summary, our proof building algorithm is simple, but
it has proved sufficient for our application scenarios. We
can also trade off computation vs. storage. Instead of com-
puting a proof upon a request, a client can store the closure
of its access rights and update this closure whenever it re-
ceives an access right or information relationship. Instead
of employing a brute-force prover, we can use more sophis-
ticated theorem provers. For example, Bauer et al. [2] em-
ploy the Twelf logical framework [22].

5. Performance Analysis

We analyze our proposed information relationships
along three axes: their effect on the number of issued ac-
cess rights and their influence on proof building time and
on request processing time. We run our measurements on
an unloaded Pentium IV/2.5 GHz with 1.5 GB of memory,
Linux 2.4.20, and Java 1.4.2.

5.1. Deployment Environment

We use the Contextual Service Interface [17] developed
for the Aura pervasive computing project [11] as a testbed
for the implementation and deployment of our proposed ac-
cess control mechanism. The framework is implemented in



(cert
(version ‘‘1’’)
(issuer (pub key:alice))
(subject (pub key:bob))
(permission

(information (pub key:alice) alice location))
(tag *))

(bundling-relationship
(version ‘‘1’’)
(issuer

(information (pub key:alice) alice location))
(subject

(information (pub key:alice) alice private)))

Figure 4. Extended SPKI/SDSI certificates.
Shown are an access right and an informa-
tion relationship. pub key:foo stands for
foo’s public key. The tag section can list con-
straints. (Digital signatures are omitted.)

Java. It stores access rights and information relationships
as extended SPKI/SDSI digital certificates [9]. We give two
examples in Figure 4. Proofs of access are implemented as
Java classes. Each axiom in Section 3 has its corresponding
class. A class is able to serialize and deserialize its con-
tents. A service accepts only types of proofs it knows how
to validate, that is, the methods of such proof classes are
not transmitted. SSL [23] provides peer authentication and
confidentiality and integrity of transmitted messages.

5.2. Number of Access Rights

We examine how bundling-based relationships affect the
number of access rights that an individual has to issue. In
particular, we compare the number of statements to be made
in a world with information relationships to the correspond-
ing number in a world without information relationships.

Let us first consider the case with information relation-
ships. Assume that there is a full, tree-based hierarchy con-
sisting of l levels of bundling-based relationships, where
l = 1 corresponds to the base case consisting of a root node
and some leaf nodes. Each parent node hasm children (i.e.,
m types of information are bundled in each parent node).
There arek clients. Each of them is assigned to a single
node in the hierarchy, meaning that the client is given an
access right to the information covered by the node. There
are different ways to distribute the clients in the hierarchy.
In this scenario, regardless of the clients’ distribution,the
number of access rights to be issued is alwaysk and the
number of relationships is always

∑l
i=1

mi. The first curve
in Figure 5 shows the overall number of access rights and
relationships for different values ofl (k = 50 andm = 3).
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Figure 5. Number of issued statements. We
compare the number of issued access rights
and relationships in a world with relation-
ships to the number of issued access rights
in a world without relationships, for different
levels of bundling-based relationships and
distributions of clients in this hierarchy.

We want to know the number of access rights that would
have to be issued if there were no relationships, but thek

clients should have access to the same information as in the
case with relationships. This number depends on the distri-
bution of these clients in the tree. We examine three differ-
ent distributions. The first one is artificial and presents the
best case in possible savings of issued access rights: allk

clients are assigned to the root node. Without relationships,
this scenario would requirekml access rights (since there
areml leaf nodes), as shown by the second curve in Fig-
ure 5. The second distribution is also artificial and presents
the worst case in possible savings: allk clients are dis-
tributed randomly among theml leaf nodes. This scenario
would requirek access rights, as shown by the third curve.
The third distribution is a more realistic one: we distribute
thek clients evenly among thel + 1 layers of nodes in the
hierarchy. This would requirek

l+1

∑l

i=0
mi access rights,

as shown by the fourth curve. As we can see in Figure 5,
with the exception of the worst case, where relationships
become unnecessary, relationships can lead to a significant
decrease in the number of issued access rights and informa-
tion relationships.

We believe that it is intuitive for individuals to define
relationships since the underlying paradigm is well known
and already used for organizing files in a filesystem or digi-
tal pictures in a photo album. If the individual did not want
to define her own relationships, she could always exploit
relationships defined by third entities.



Similar to bundling-based relationships, granularity-
based relationships require individuals to issue fewer ac-
cess rights, where the decrease is proportional to the avail-
able levels of granularities. Combination-based relation-
ships also reduce the number of access rights since they
prevent a service from having to issue separate access rights
for complex information.

5.3. Proof Building Time

We examine the cost of proof building, as explained in
Section 4. Our experiment consists of locating a set of
speaks-for statements in a pool of statements and to assem-
ble them in a proof of access. We consider up to five sequen-
tially connected, bundling-based relationships. Becauseof
manageability reasons, we do not expect individuals to cre-
ate more than five levels of bundling-based relationships in
their information hierarchies.

Our experimental setup covers a worst-case scenario: We
pick five among 50 possible clients and create a sequential
path of access rights between them (i.e., a client delegates
its access right to the next client in the path). All experi-
ments will locate this path, since there is considerable vari-
ation for different paths. The results that we present are con-
sistent with results for other paths. We then put the access
rights into a pool, which we expand by adding random ac-
cess rights. The random access rights form a directed graph
where each recipient of an access right is (indirectly) reach-
able from the issuer of the first access right in the prede-
termined path and where none of the recipients is on this
path (i.e., we do not allow shortcuts). We randomly set the
information in each access right to one of the possible infor-
mation items covered by the bundling-based relationships.
An experiment is characterized by a number of random ac-
cess rights and a number of relationships and run ten times.
Figure 6 reports the mean proof building time. According
to Section 4, the worst-case complexity is multiplicative in
the number of speaks-for statements and information rela-
tionships. Our results confirm that the increase is linear for
a particular number of relationships.

In practice, information relationships do not necessar-
ily lead to increased proof building cost. In particular, if
there are relationships, there typically will be fewer ac-
cess rights in a client’s pool, which makes proof building
cheaper. Therefore, for a given value on the x-axis in Fig-
ure 6, the various proof building times are not directly com-
parable. The actual cost strongly depends on the number
and types of information relationships. Overall, as we will
show in Section 5.4, the cost of building a proof is compa-
rable to the cost of processing a request. We also observe
that the numbers presented in Figure 6 cover a worst-case
scenario. First, we require four access rights for the proof
of access; we expect this number to be smaller in practice
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Figure 6. Proof building time. The graph
shows the mean proof building time for differ-
ent numbers of bundling-based relationships.
For a fixed number, there is a linear increase
in the number of searched access rights.

(e.g., an access right and a statement declaring that a chan-
nel speaks for a client). Second, our experimental setup
ensures that all access rights in a user’s collection might be
explored for proof building. In real collections, many of
the access rights in a collection will not be explored. For
example, a search for access rights to Alice’s location in-
formation typically will not explore access rights to Bob’s
location information.

5.4. Client Response Time

We study the influence of bundling-based relationships
on client response time in our prototype implementation.
As mentioned in Section 4, the other types of relationships
do not have a negative influence on complexity. Our asym-
metric crypto operations required for setting up SSL con-
nections and validating the signatures of certificates em-
ploy 1024 bit RSA keys. An experiment is run 100 times.
We report the mean and standard deviation (in parentheses).
Since we are not interested in proof building time for these
experiments, we assume that clients have pre-built proofs.

In the first experiment, Alice grants Bob access to her
location information in an access right. Bob submits the
corresponding proof to a location service, which validates
it and locates Alice. The service then fingers Alice’s Linux
desktop computer and determines her location from her ac-
tivity. We run the client and the location service on the same
host. The mean response time is 129 ms (13 ms). More de-
tailed results are in Table 2. Access control takes only a
few milliseconds, the main cost is validating the signature



Table 2. Client response time. Mean and stan-
dard deviation of elapsed time for security
operations (in bold) and for gathering infor-
mation [ms].

Entity Step µ (σ)

Both SSL Socket creation 53 (6)

Service Access control 3 (2)

Service Gather location information 56 (7)

Total 129 (13)
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Figure 7. Client response time. The elapsed
time increases linearly with the number of
bundling-based relationships.

of the certificate. Gathering the location information is the
most expensive step. Setting up an SSL connection requires
two costly RSA decryption/signing operations for client and
server authentication. Access control and setting up SSL are
CPU bound and will benefit from faster hardware.

In the second experiment, Alice grants Bob access to her
location information via a variable number of sequentially
connected, bundling-based relationships. The results arein
Figure 7. Note that the scaling of the y-axis is different
from the scaling in Figure 6. The figure shows that client
response time increases linearly by about 7 ms for each ad-
ditional relationship. The main reasons for the increase are
increased transmission cost and the validation of an addi-
tional signature.

6. Related Work

There are several frameworks for pervasive computing
environments that support access control to sensitive infor-
mation [1, 5, 6, 10, 16, 20]. Al-Muhtadi et al. [1], Chen
et al. [5], Covington et al. [6], and Gandon and Sadeh [10]
employ centralized rule engines with differing degrees of
flexibility for running access control. It is possible to in-
corporate our proposed information relationships into these
rule engines. However, the rule engine can become a bottle-
neck and needs to be fully trusted by all entities. In addition,
these solutions store access rights in a centralized knowl-
edge base, which is an attractive target for attackers. This
approach is also troublesome in terms of privacy; the knowl-
edge base should not learn about all the access rights of an
individual, it should know only about access rights that will
be required for answering requests. A centralized approach
seems to have the advantage of supporting negative access
rights. However, it is unclear how big the benefit of neg-
ative access rights is; they might be too complex for indi-
viduals, not administrators, managing access rights. Also,
since there can be multiple environments and thus multiple
knowledge bases, consistency problems are still possible.
Jiang and Landay [16] and Minami and Kotz [20] tag infor-
mation with its access rights. The tag of derived information
is derived from the tags of the source information. However,
for many cases, automatic derivation is not possible and the
tag needs to be manually specified, which is not scalable.

Multiple specification languages have been used for ex-
pressing access rights to information in pervasive comput-
ing. For example, Myles et al. [21] use an extended version
of P3P [7], which allows Web servers to express their pri-
vacy practices. Chen et al. [5] exploit REI [18], which is tar-
geted at pervasive computing environments. XACML [12]
is an access control language for distributed systems. It is
possible to add support for the expression of information
relationships to these languages. However, these languages
are targeted at environments where access control is run
by a single entity. As opposed to SPKI/SDSI, they have
no builtin mechanisms for verifying the authenticity of a
statement, which is essential when delegating access rights
across multiple environments. (For languages developed
in the context of the Semantic Web, such as REI, Named
Graphs [4] are a possible solution.)

Similar to Howell and Kotz, Bauer et al. [2] present an
access control framework in which clients submit proofs of
access to services. We exploit Howell and Kotz’s frame-
work because SPKI/SDSI is standardized [9].

7. Conclusions and Future Work

Access control in pervasive computing environments
needs to take relationships between information into ac-



count. We proposed to make such relationships first-class
citizens in access control. This way, it becomes straightfor-
ward to control access to complex information. We identi-
fied three types of information relationships that are impor-
tant in pervasive computing environments, and we formal-
ized their establishment and application in access control.

To avoid centralized access control, we integrated sup-
port for information relationships into a fully distributed ac-
cess control architecture, where clients assemble proofs of
access.

Our sample implementation and its deployment demon-
strate the feasibility of our approach. Its performance is
competitive. Based on the complexity analysis of proof
building and its measurement-based validation, we antici-
pate small cost for building proofs in future pervasive com-
puting environments.

We are deploying our access control infrastructure in ad-
ditional Aura services. We will offer a bigger community
of users access to these services in order to investigate what
kind of access rights and relationships users define.
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