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Abstract

TCP Slow Start exponentially increases the congestion
window size to detect the proper congestion window for a
network path. This often results in significant packet loss,
while breaking off Slow Start using a limited slow start
threshold may lead to an overly conservative congestion
window size. This problem is especially severe in high speed
networks. In this paper we present a new TCP startup
algorithm, called Paced Start, that incorporates an available
bandwidth probing technique into the TCP startup algorithm.
Paced Start is based on the observation that when we view
the TCP startup sequence as a sequence of packet trains,
the difference between the data packet spacing and the ac-
knowledgement spacing can yield valuable information about
the available bandwidth. Slow Start ignores this information,
while Paced Start uses it to quickly estimate the proper
congestion window for the path. For most flows, Paced
Start transitions into congestion avoidance mode faster than
Slow Start, has a significantly lower packet loss rate, and
avoids the timeout that is often associated with Slow Start.
This paper describes the Paced Start algorithm and uses
simulation and real system experiments to characterize its
properties.

1. Introduction

At the start of a new TCP connection, the sender does
not know the proper congestion window for the path. Slow
Start exponentially increases the window size to quickly
identify the right value. It ends either when the congestion
window reaches a threshold ssthresh, at which point TCP
converts to a linear increase of the congestion window, or
when packet loss occurs. The performance of Slow Start is
unfortunately very sensitive to the initial value of ssthresh.
If ssthresh is too low, TCP may need a very long time to
reach the proper window size, while a high ssthresh can
cause significant packet losses, resulting in a timeout that can
greatly hurt the flow’s performance. Moreover, traffic during
Slow Start can be very bursty and can far exceed the available
bandwidth of the network path. That may put a heavy load
on router queues, causing packet losses for other flows.
While these problems are not new, steady increases in the
bandwidth delay products of network paths are exacerbating
these effects. Many other researchers have observed these
problems [8][16] [13][19]]28][22].

In this paper we present a new TCP startup algorithm,
called Paced Start (PaSt), that builds on recent results in the
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area of available bandwidth estimation [17][20] to automat-
ically determine a good value for the congestion window
size, without relying on a statically configured initial ssthresh
value. Several projects [17] [24][22] have observed that it is
possible to gain information about the available bandwidth
of a network path by observing how competing traffic on
the bottleneck link affects the inter-packet gap of packet
trains. Paced Start is based on the simple observation that the
TCP startup packet sequence is in fact a sequence of packet
trains. By monitoring the difference between the spacing of
the outgoing data packets and the spacing of the incoming
acknowledgements (which reflects the data packet spacing
at the destination) we can obtain valuable information about
the available bandwidth on the network path. Unfortunately,
Slow Start ignores this information and as a result it has to
rely on crude means (e.g. a static ssthresh or packet loss) to
estimate an initial congestion window.

By using the available bandwidth information, Paced Start
can quickly estimate the proper congestion window. Since it
does not depend on a statically configured ssthresh, which
tends to have the wrong value for many paths, Paced Start
avoids the problems associated with a static initial ssthresh
value. For most flows, Paced Start transitions into congestion
avoidance mode faster than Slow Start, has a significantly
lower packet loss rate, and avoids the timeout that is often
associated with Slow Start. We present an extensive set of
simulation results and real system measurements that com-
pare Paced Start with the traditional Slow Start algorithm, as
it is used in TCP Reno and Sack, on many different types of
paths (different roundtrip time, capacity, available bandwidth,
etc).

This paper is organized as follows. In the next section, we
provide some background on TCP Slow Start and available
bandwidth probing techniques. In Section 3, we present the
Paced Start algorithm and briefly describe its implementation.
Next, we describe our evaluation metrics and then present
simulation results (Section 5) and real system measurements
(Section 6) that compare the performance of Paced Start with
that of the traditional Slow Start. We end with a discussion
on related work and conclusions.

2. TCP Sow Start and Active Measurements

In this section, we briefly review the TCP Slow Start
algorithm and available bandwidth measurement techniques.

2.1. TCP Slow Start
The TCP Slow Start algorithm serves two purposes:



o Determine the initial congestion window size: TCP
congestion control is based on a congestion window that
limits how many unacknowledged packets can be out-
standing in the network. The ideal size of the congestion
window corresponds to the bandwidth-delay product,
i.e., the product of the roundtrip time and the sustainable
bandwidth of the path. For a new connection, this value
is not known, and Slow Start is used to detect it.

« Bootstrap the self-clocking behavior: TCP is a self-
clocking protocaol, i.e., it uses ACK packets as a clock
to strobe new packets into the network [18]. When there
are no segments in transit, which is the case for a new
connection or after a timeout, there are no ACKs to
serve as strobes. Slow Start is then used to gradually
increase the amount of data in transit.

To achieve these two goals, Slow Start first sends a small
number (2-4) of packets. It then rapidly increases the trans-
mission rate while trying to keep the spacing between packets
as even as possible. Principally, this is done by injecting two
packets in the network for each ACK that is received, i.e.
the congestion window is doubled every roundtrip time. This
exponential increase can end in one of two ways. First, when
the congestion window reaches a predetermined threshold
(ssthresh), TCP transfers into congestion avoidance mode
[18], i.e. the congestion window is managed using the AIMD
(additive increase, multiplicative decrease) algorithm [14].
Alternatively, TCP can experience packet loss, which often
results in a timeout. In this case, TCP sets ssthresh to half of
the congestion window used at the time of the packet loss,
executes another Slow Start to resume self-clocking, and then
transfers into congestion avoidance mode.

Given the high cost of TCP timeouts, the first termination
option is clearly preferable. However, for a new connection
the sender does not have any good value for ssthresh, so TCP
implementations typically use a fixed value. Unfortunately,
this does not work well since this arbitrary value is wrong
for most connections. When ssthresh is too small, TCP Slow
Start will stop prematurely, and the following linear increase
may need a long time to reach the appropriate congestion
window size. This hurts user throughput. When ssthresh
is too large, the instantaneous congestion window can be
much too large for the path, which can cause significant
packet loss. This hurts the network, since routers will not
only drop packets of the new flow but also of other flows.
This problem becomes more severe as the bandwidth-delay
product increases.

In this paper, we propose a method to automatically obtain
a good initial congestion window value by leveraging recent
results in available bandwidth estimation. Note that our focus
is on replacing the initial Slow Start of a new connection; the
traditional Slow Start can continue to be used to bootstrap
the self-clocking behavior after a timeout. Before we discuss
our technique in detail, we briefly review related work on
available bandwidth estimation.

2.2. Active Bandwidth Probing

Recently, a number of tools have been developed to
estimate the available bandwidth of a network path, where
the available bandwidth is roughly defined as the bandwidth

that a new, well-behaved (i.e. congestion-controlled) flow can
achieve. These tools include PTR [17] and Pathload [20].
While these techniques are quite different, they are based
on the same observation: the available bandwidth can be
estimated by measuring how the competing traffic on the
bottleneck link changes the inter-packet gap of a sequence
of packet train probes.
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Figure 1. PTR (Packet Transmission Rate) method

Let us look at the PTR (Packet Transmission Rate) method
in more detail since it forms the basis of our TCP startup
algorithm. To provide some intuition, we use an experiment
in which we send a sequence of packet trains with different
inter-packet gaps over a 10 Mbps link in a controlled testbed.
The trains compete with an Iperf [4] competing traffic flow
of 3.6 Mbps. Figure 1 shows the difference between the
average source and destination gaps (i.e. the inter-packet gaps
measured on the sending and receiving hosts) and the average
packet train rate as a function of the source gap. For small
source gaps, we are flooding the network, and since packets
of the competing traffic are queued between the packets
of the probing train, the inter-packet gap increases. The
gap difference becomes smaller as the source gap increases,
since the lower packet train rate results in less queueing
delay. When the packet train rate drops below the residual
bandwidth (6.4Mbps), there is no congestion and packets
in the train will usually not experience any queueing delay,
so the source and destination gap become equal. The point
where the gap difference first becomes 0 is called the turning
point. Intuitively, the rate of the packet train at the turning
point is a good estimate for the available bandwidth on the
network path since the train is using the residual bandwidth
without causing congestion. For this example, the estimate is
6.8 Mbps, which is very close to the available bandwidth of
6.4 Mbps.

The idea behind the PTR method is that the source machine
sends a sequence of packet trains, starting with a very small
inter-packet gap. It then gradually increases this gap until
the inter-packet gap at the destination is the same as that
at the source. At the turning point, the rate of the packet
train is used as an estimate of the available bandwidth. An
important property of the PTR method is that it is fast and
efficient. On most network paths, it can get a good estimate
of the available bandwidth in about 6 roundtrip times using
16-packet trains [17].
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Sequence plot for Slow Start (Sack) and Paced Start. These are from an ns2 simulation of a path with a

roundtrip time of 80ms, a bottleneck link of 5Mbps, and an available bandwidth of 3Mbps. Delayed ACKs are disabled,
so there are twice times as many outgoing data packets as incoming ACKs.

3. Paced Start

This section describes how we integrate an active mea-
surement technique into the TCP startup phase to form the
Paced Start algorithm. We motivate our design, describe our
algorithm in detail, and review our implementations.

3.1. Design

The idea behind Paced Start is to apply the available
bandwidth estimation algorithm described above to the packet
sequence used by Slow Start. Similar to PTR, the goal is to
get a reasonable estimate for the available bandwidth without
flooding the path. This bandwidth estimate can be used
to select an initial congestion window. In this context, the
“available bandwidth” is defined as the throughput that can
be achieved by a new TCP flow in its stable state, since that
is the value reflected in the congestion window. The available
bandwidth is determined by many factors including hard-to-
characterize features such as the relative aggressiveness of
the flows sharing the bottleneck link. Fortunately, the TCP
startup period only needs to obtain a good approximation,
because, in order to be useful, it is sufficient that the initial
value of the congestion window is within a factor of two
of the “true” congestion window, so that TCP can start the
congestion avoidance phase efficiently.

Figure 2(a) shows an example of a sequence number plot
for Slow Start. We have disabled delayed ACKs during
Slow Start as is done by default in some common TCP
implementations, e.g. Linux; the results are similar when
delayed ACKs are enabled. The graph clearly shows that
Slow Start already sends a sequence of packet trains. This
sequence has the property that there is one packet train per
round trip time, and consecutive trains grow longer (by a
factor of two) and become slower (due to the clocking). We
decided to keep these general properties in Paced Start, since
they keep the network load within reasonable bounds. Early
trains may have a very high instantaneous rate, but they are
short; later trains are longer but they have a lower rate. Using
the same general packet sequence as Slow Start also has the

benefit that it becomes easier to engineer Paced Start so it can
coexist gracefully with Slow Start. It is not too aggressive or
too “relaxed”, which might result in dramatic unfairness.

The two main differences between Slow Start and Paced
Start are (1) how a packet train is sent and (2) how we
transition into congestion avoidance mode.

The self-clocking nature of Slow Start means that packet
transmission is triggered by the arrival of ACK packets.
Specifically, during Slow Start, for every ACK it receives,
the sender increases the congestion window by one and
sends out two packets (three packets if delayed ACKs are
enabled). The resulting packet train is quite bursty and
the inter-packet gaps are not regular because the incoming
ACKs may not be evenly spaced. This makes it difficult
to obtain accurate available bandwidth estimates. To address
this problem, Paced Start does not use self-clocking during
startup, but instead directly controls the gap between the
packets in a train so that it can set the gap to a specific value
and make the gaps even across the train. As we discuss in
more detail below, the gap value for a train is adjusted based
on the average gap between the ACKs for the previous train
(we use it as an approximation for the inter-packet gaps at
the destination). To do that, we do not transmit the next train
until all the ACKSs for the previous train have been received.

Note that this means that Paced Start is less aggressive than
Slow Start. First, in Slow Start, the length of a packet train
(in seconds) is roughly equal to the length of the previous
ACK train. In contrast, the length of the packet train in
Paced Start is based on the sender’s estimate on how the
available bandwidth of the path compares with the rate of
the previous packet train. As a result, Paced Start trains are
usually more stretched out than the corresponding Slow Start
trains. Moreover, the spacing between the Paced Start trains is
larger than that between the Slow Start trains. In Figure 2(b),
this corresponds to a reduced slope for the trains and an
increased delay between trains, respectively. Since Slow Start
is widely considered to be very aggressive, making it less
aggressive is probably a good thing.

Another important design issue for Paced Start is how to



transition into congestion avoidance mode. Slow Start waits
for packet loss or until it reaches the statically configured
ssthresh. In contrast, Paced Start iteratively calculates an
estimate for the congestion window of the path and then uses
that estimate to transition into congestion avoidance mode.
This typically takes three or four probing phases (RTTs), as
is discussed in Section 3.2.3. If packet loss occurs during
that period, Paced Start transitions into congestion avoidance
mode in exactly the same way as Slow Start does.

3.2. Algorithm

src_gap=0
cwnd = 2

send cwnd pkts with src_gap
measure ack_gap

| src_gap = 2ack_gap |
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Figure 3. The Paced Start (PaSt) algorithm

The Paced Start algorithm is shown in the diagram in
Figure 3. It starts with an initial probing using a packet pair
to get an estimate of the path capacity B; this provides an
upper bound for the available bandwidth. It then enters the
main loop, which is highlighted using bold arrows: the sender
sends a packet train, waits for all the ACKs, and compares
the average ACK gap with the average source gap. If the
ACK gap is larger than the source gap, it means the sending
rate is larger than the available bandwidth and we increase
the source gap to reduce the rate; otherwise, we decrease the
source gap to speed up. In the remainder of this section, we
describe in detail how we adjust the gap value and how we
terminate Paced Start. Table 1 lists the notations we use.

Table 1. Notations
B | network path capacity
9B | 9B = packetlen/B
«a - B | available bandwidth, 0 < a <1
gs | source packet gap
gq | destination packet gap
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Figure 4. Behavior of different startup scenarios.

3.2.1. Gap Adjustment

Figure 4 provides some intuition for how we adjust the
Paced Start gap value. The bold line shows, for a path with
a specific RTT (roundtrip time), the relationship between the
congestion window (x-axis) and the packet train sending rate
(1/source_gap). The goal of the TCP startup algorithm is to
find the point (cwnd, sending_rate) on this line that cor-
responds to the correct congestion window and sending rate
of an ideal, stable, well-paced TCP flow. Since the “target”
window and rate are related (cwnd = RT'T x sending _rate),
we need to find only one coordinate.

The traditional Slow Start algorithm searches for the con-
gestion window by moving along the X-axis (cwnd) without
explicitly considering the Y-axis (sending_rate). In contrast,
Paced Start samples the 2-D space in a more systematic
fashion, allowing it in many cases to identify the target more
quickly. In Figure 4, the area below the B line includes the
possible values of the available bandwidth. The solid arrows
show how Paced Start explores this 2-D space; each arrow
represents a probing cycle. Similar to Slow Start, Paced Start
explores along the X-axis by doubling the packet train length
every roundtrip time. Simultaneously, it does a binary search
of the Y-axis, using information about the change in gap
value to decide whether it should increase or decrease the
rate. Paced Start can often find a good approximation for the
available bandwidth after a small number of cycles (3 or 4
in our simulations), at which point it “jumps” to the target
point, as shown in case 1 and case 2.

The binary search proceeds as follows. We first send two
back-to-back packets; the gap at the destination will be the
value gg. In the next cycle, we set the source gap to 2 x gp,
starting the binary search by testing the rate of B/2. Further
adjustments of the gap are made as follows:

1) If g5 < g4, we are exploring a point where the Packet
Transmission Rate (PTR) is higher than the available
bandwidth, so we need to reduce the PTR. In a typical
binary search algorithm, this would be done by taking
the middle point between the previous PTR and the
current lower bound on PTR. In Paced Start, we can
speed up the convergence by using 2 x g4 instead of
2 x g,. That allows us to use the most recent probing
results, which are obtained from longer packet train
and generally have lower measurement error.
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2) If g, > g4, the PTR is lower than the available rate
and we have to reduce the packet gap. The new gap
is selected so the PTR of the next train is equal to the
middle point between the previous PTR and the current
upper bound on PTR.

3.2.2. Algorithm Termination

The purpose of the startup algorithm is to identify the
“target” point, as discussed above. This can be done by either
identifying the target congestion window or the target rate,
depending on whether we reach the target along the x or y
axis in Figure 4. This translates into two termination cases
for Paced Start:

o ldentifying the target rate: This happens when the
difference between source and destination gap values
shows that the PTR is a good estimate of the available
bandwidth. As we discuss below, this typically takes
3 or 4 iterations. In this case, we set the congestion
window size as cwnd = RTT/g, where g is the gap
value determined by Paced Start. Then we send a packet
train using cwnd packets with packet gap g. That fills
the transmission pipe, after which we can switch to
congestion avoidance mode.

« ldentifying the target congestion window: When we
observe packet loss in the train, either through a timeout
or duplicate ACKs, we assume we have exceeded the
transmission capacity of the path, as in traditional TCP
Slow Start. In this case, we transition into congestion
avoidance mode. If there was a timeout, we use Slow
Start to refill the transmission pipe, after setting ssthresh
to half of the last train length. Otherwise we rely on fast
recovery.

How Paced Start terminates depends on many factors,
including available bandwidth, RTT, router queue buffer size,
and cross traffic properties. From our experience, Paced Start
terminates by successfully detecting the available bandwidth
about 80% of the time, and in the remaining 20% cases, it
exits either with a timeout or fast retransmit after packet loss.

3.2.3. Gap Estimation Accuracy

An important question is how many iterations it takes to
obtain an available bandwidth estimate that is “close enough”
for TCP, i.e. within a factor of two. This means that we

need to characterize the accuracy of the available bandwidth
estimate obtained by Paced Start.

Figure 5 shows the gap values that are used during
the binary search assuming perfect conditions; we use the
notation of Table 1. The conditions under which a branch is
taken are shown below the arrows while the values above the
arrows are the destination gaps; the values at the end of the
arrows indicate the source gap for the next step. We rely on
a result from [17] to estimate the destination gap: if g5 < gq4,
then the relationship between the source and destination gap
is given by

ga=9p+ (1—0a)gs

We use F(g9) = gp + (1 — a)g to denote this relationship.
We also use another function, G(g) = F(2g).

This model allows us to calculate how we narrow down the
range of possible values for a as we traverse the tree. For
example, when during the second iteration we probe with
a source gap of 2gp, we are testing the point a = 0.5. If
9s < g4, We need to test a smaller a by increasing the gap
value to 2G(gg) (based on g4 = G(gg)); otherwise, we want
to test a larger value (o = 0.75, following a binary search)
by reducing the gap value to (4/3)gs.

Table 2. Paced Start exiting gap values
case o gPaSt g;/a";i
il (0.75,1) 895/7 0.9, 1.2)
2 | 050.75) | F((4/3)95) = (7/3 — 4a/3)gm (1.0, 1.2)
3 (0.19,05) | G(gs) = (3 2a)gm (1.0, 2.0)
4 [ (0.08,0.19) | G*(g) = (1+2(1—a)(3—2a))gp | (1.0, 2.0)
5 (0,0.08) 2G3(gp) = 2(1+2(1—a)(1+(1— | (0.5, cc)
@)2(3 — 20a)))gB

Table 2 shows the ranges of « for the 5 exiting cases shown
in Figure 5. It also lists the ratio between 1/a and gpgs:.
This corresponds to the ratio between the real sending rate
and the available bandwidth, i.e. it tells us how much we are
overshooting the path available bandwidth when we switch
to congestion avoidance mode. Intuitively, Figure 6 plots the
difference between 1/a and gp,s: for a network path with
a bottleneck link capacity of 100 Mbps.

From Table 2 and Figure 6, we can see that if « is high
(e.g. cases 1, 2, and 3), we can quickly zoom in on an
estimate that is within a factor of two. We still require at
least 3 iterations because we want to make sure we have long
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enough trains so the available bandwidth estimate is accurate
enough. This is the case where Paced Start is likely to
perform best relative to Slow Start: Paced Start can converge
quickly while Slow Start will need many iterations before it
observes packet loss.

For smaller «, more iterations are typically needed, and
it becomes more likely that the search process will first
“bump” into the target congestion window instead of the
target rate. This means that Paced Start does not offer much
of a benefit since its behavior is similar to that of Slow Start
— upon packet loss it transitions into congestion avoidance
mode in exactly the same way. In other words, Paced Start’s
performance is not any worse than that of Slow Start.

3.3. Implementation

We have implemented Paced Start in ns2[5], as a user-level
library, and in the Linux kernel. For the implementation in
ns2, we replaced the the Slow Start algorithm with the Paced
Start algorithm in TCP SACK. This implementation allows
us to evaluate both end-to-end performance and the impact
on network internals, e.g. router queues, which is very hard,
if not impossible, to analyze using real world experiments.

The user-level library implementation of Paced Start is
for the purpose of experimenting over the Internet without
kernel modifications and root privileges. This implementation
is based on the ns2 TCP code. We keep the packet nature
of ns2 TCP and omit the byte level implementation details.
The user-level library embeds TCP packets (using ns2 format
for simplicity) in UDP packets. The porting consisted of
extracting the TCP code from ns2 and organizing it as send
and receive threads. For timeouts and packet pacing we use
the regular system clock.

The Linux kernel implementation allows us to study the
issues associated with packet pacing inside the kernel, e.g.
timer granularity and overhead. We can also use popular
applications such as Apache [1] to understand PaSt’s im-
provement on TCP performance. The main challenge in the

kernel implementation is the need for fine-grained timer
to pace out the packets. This problem has been studied
by Aron etal. [10], whose work shows that the soft timer
technique allows the system timer to achieve 10us granularity
in BSD without significant system overhead. With this timer
granularity PaSt should be effective on network paths with
capacities as high as 1Gbps. Our in-kernel implementation
runs on Linux 2.4.18, which implements the TCP SACK
option. We use the Linux high resolution timer patch [3] to
pace the packets. We refer to the original and the modified
Linux 2.4.18 kernel as the Sack kernel and PaSt kernel
respectively.

In all three implementations, we measure the destination
gap not at the destination, but on the sender based on the
incoming stream of ACK packets. This approach has the
advantage that Paced Start only requires changes to the
sender. This simplifies deployment significantly, and also
frees us from having to extend the TCP protocol with a
mechanism to send gap information from the destination to
the sender. One drawback of using ACKs to measure the
destination gap is that the average gap value for the ACK
train may not be identical to the average destination gap.
This could reduce the accuracy of PTR.

Finally, delayed ACKs also adds some complexity since
the delayed timer can affect the flow of ACKs. Our solution
is to use the ACK sequence number to determine whether
an ACK packet acknowledges two packets or one packet.
If it acknowledges two packets, it can be used because it
is sent out immediately after receiving the second packet.
Otherwise, it is generally triggered by the delayed ACK
timer!. In this case, the inter-ACK gap bears no relationship
to the destination inter-packet gap, so we ignore this gap
when estimating the destination gap. By doing this simple
check, we can easily identify the ACK packets that can be
used by PaSt.

4. Evaluation Methodology and Metrics

We use both simulation and system measurements to
evaluate Paced Start. The focus of the simulation-based
evaluation is on comparing two variants of TCP Sack, one
with traditional Slow Start (called Sack) and the other with
Paced Start (called PaSt). It includes two parts:

o Perspective of a single user: we look in detail at the
behavior of a single PaSt flow. We show how PaSt avoids
packet loss and timeouts during startup, thus improving
performance.

o Perspective of a large network: we study PaSt’s
performance in a network where flows with different
lengths arrive and leave randomly. We show that, by
reducing the amount of packet loss, PaSt can make the
network more effective in carrying data traffic.

Our real system evaluation also includes two sets of
measurements. First, we present results for our user-level
PaSt implementation running over the Internet. Second, we
use in-kernel PaSt implementation to collect performance
results for web traffic using an Apache server; these results
were collected on Emulab [2].

1The real implementation is more complicated than described here due to
the QUICKACK option in Linux 2.4.18 TCP implementation.



Table 3. Evaluation Metrics

throughput | throughput for the whole connection
loss | Toss rate for the whole connection
su-throughput | throughput for the startup period
su-foss | Toss rate for the startup period
su-time | time Tength of the startup period

Table 3 includes the metrics that we use in our evaluation.
Our two primary performance metrics are the throughput and
the loss rate (fraction of packets lost) of a TCP session.
They capture user performance and the stress placed on the
network, respectively. Since our focus is the TCP startup
algorithm, we will report these two metrics not just for the
entire TCP session, but also for the startup time, which is
defined as the time between when the first packet is sent and
when TCP transitions into congestion avoidance mode, i.e.
starts the linear increase of the AIMD algorithm. Our final
metric is the duration of the startup time (su-time).

A tricky configuration for the analysis in this paper is the
choice of the initial ssthresh value. TCP implementations
either use a fixed initial ssthresh, or cache the ssthresh used
by the previous flow to the same destination. We choose
to use the first method, because the cached value does not
necessarily reflect the actual network conditions [6], and
we cannot always expect to have cached value when a
transmission starts. For the first method, no single fixed value
serves all the network paths that we are going to study, since
they have different bandwidth-delay products. For this reason,
unless stated explicitly (e.g. in Figure 13), we set the initial
ssthresh to a very high value (e.g. 20000 packets) such that
Slow Start always ramps up until it saturates the path.

5. Simulation Results
5.1. Perspective of a Single User

500Mbps

0.5ms bw Mbps
.7 /CE)V‘V Mb\pg h . 5ms

Figure 7. Network topology for simulation

The network topology used in this set of simulations
is shown in Figure 7. Simulations differ in the com-
peting traffic throughput (cbw), bottleneck link capacity
(bw), round trip time (rtt), and router queue buffer size
(queue, not shown). The default configuration is cbw =
40Mbps, bw = 100Mbps, rtt = 80ms, and queue =
1000pkt (1000Byte/pkt). This queue size corresponds to the
bandwidth-delay product of the Ps-Pd path. Unless otherwise
stated, simulations use these default values. The results in
this section use CBR traffic as the background traffic, but we
see similar result for TCP background traffic. We use TCP
background traffic in Section 5.2 and 5.3.

500Mbps
0.5ms

5.1.1. Effect of Competing Traffic Load

Figure 8 shows how the throughput and the loss rate
change as a function of the competing traffic load (cbw).
The first graph shows the throughput for Sack and PaSt,
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Figure 8. Impact of competing traffic load

both during startup (su-time) and for the entire run (50
seconds). During startup, PaSt has lower throughput than
Sack, because PaSt is less aggressive, as we described in the
previous section. The second graph confirms this: PaSt avoids
placing a heavy load on the router and rarely causes packet
loss during startup. Across the entire run, the throughput
of Sack and PaSt are very similar?. The reason is that
the sustained throughput is determined by the congestion
avoidance algorithm, which is the same for both algorithms.

The third graph plots the su-time. We see that PaSt needs
much less time to enter the congestion avoidance stage, and
the startup time is not sensitive to the available bandwidth.
The high su-time values for Sack are mainly due to the fast
recovery or timeout caused by packet loss, and the value
decreases as the competing traffic load increases, because the
lower available bandwidth forces Sack to lose packet earlier.

We also studied how the performance of PaSt is affected
by the bottleneck link capacity and the roundtrip time. The
conclusions are similar to those of Figure 8 and we do not
include the results here due to space limitation.

5.1.2. Comparing with NewReno and Vegas

TCP NewReno [16] [15] and TCP Vegas [13] are two
well known TCP variants that may improve TCP startup
performance. In this section, we use simple simulations
to highlight how TCP NewReno, Vegas, and PaSt differ.
The simulations are done using the default configuration of
Figure 7. We again focus on the performance for different
background traffic loads.

The simulation results are shown in Figure 9. NewReno’s
estimation for ssthresh eliminates packet loss when the com-
peting traffic load is less than 60Mbps, but for higher loads
we start to see significant packet loss during startup. This is
because NewReno’s estimation is based on a pair of SYN
packets. A packet pair actually estimates the bottleneck link
capacity, not the available bandwidth. When the competing
traffic load is low, this might work, but as the competing

2The dip of Sack throughput when chw is 45Mbps is because Sack
experiences more than one timeout during the 50s simulation.
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Figure 9. Comparison between PaSt and NewReno/Vegas

traffic increases, NewReno tends to overestimate the available
bandwidth and thus the initial congestion window. This can
easily result in significant packet loss.

Vegas can sometimes eliminate packet loss during Slow
Start by monitoring changes in RTT. As shown in Figure
9, both Vegas and PaSt have 0 packet loss for this set of
simulations. However, Vegas has the longer startup time
than PaSt and NewReno. The reason is that Vegas only
allows exponential growth every other RTT; in between, the
congestion window stays fixed so a valid comparison of the
expected and actual rates can be made. [13] points out that
the benefits of Vegas” improvements to Slow Start are very
inconsistent across different configurations. For example,
Vegas sometimes overestimate the available bandwidth.

5.2. Perspective of A Large Network

We now simulate a set of scenarios in which a large
number of flows coexist and interfere with each other. We
chose two network topologies: a dumbbell topology and a
parking-lot topology (Figure 10). In the dumbbell topology
many flows interfere with each other, while the parking-
lot topology provides us with a scenario where flows have
different roundtrip times.

5.2.1. Dumbbell Topology

In the dumbbell network, we use 204 nodes (102 source
nodes and 102 destination nodes) on each side. The edge

(b) parking—-lot

destination nodes (66)

source nodes (66)

Dumbbell topology and parking-lot topology

link capacity is 50Mbps, and the bottleneck link capacity is
20Mbps, with a 20ms latency. The router queue buffer is
configured as the bandwidth delay product, i.e., 100 packets
(1000 bytes/pkt). The source and destination node for each
flow are randomly (uniformly) chosen out of the 408 nodes,
except that we make sure that the source and destination
are on different sides of the bottleneck link. The inter-arrival
time of the flows is exponentially distributed with a mean
of 0.05 seconds (corresponds to mean flow arrival rate of 20
flows/second). The flow size is randomly selected according
to an exponential distribution with a mean of 50 packets.
After starting the simulation, we wait for the network to
become stable, that is, the number of flows changes in a
fixed limited range. Then we monitor the performance of the
next 2000 flows. In the stable state, about 7 flows are active
at any time.
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Figure 11. Dumbbell simulation with a mean flow size of
50 packets.

Figure 11 shows the cumulative throughput distribution for
three simulations: Sack only, PaSt only, and a mixed scenario
in which the flow type (Sack/PaSt) is randomly chosen with
equal probability (0.5). This figure shows that PaSt flows
achieve somewhat higher throughput than Sack flows. It is
interesting to note that the performance of Sack (mixed) and
that of Sack (only) are very similar; this suggests that in
this scenario, PaSt has little impact on the performance of
Sack. Also, PaSt (mixed) and PaSt (only) achieve similar
performance, although PaSt (mixed) has a small advantage.
Because of the short flow size, there is almost no packet loss
in this case.®

We repeated the same set of simulations with a mean
flow size of 200 packets and a mean flow arrival rate of
10 flows/second. The results are shown in Figure 12. The
throughput results (top graph) are very similar to those for

3When we increase the flow arrival rate, e.g. to 100 flows/second, the
system no longer reaches a stable state before the size of the ns2 trace file
exceeds the system limit (2GBytes).
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ordered according to their loss rate. In the bottom graph,
“loss in startup” denotes the ratio between the number of
packet lost during startup and the number of total packets
sent; “total loss” denotes the ratio between the number of
packet lost and the number of total packets sent.

the shorter flows (Figure 11). PaSt (only) systematically
outperforms Sack (only). The “mixed” and “only” results are
fairly similar, although we see that the presence of PaSt flows
has a good influence on Sack flows, while the presence of
Sack flows has a negative influence on PaSt flows.

The second figure plots the loss rate for all the flows that
lose packets. The Paced Start algorithm clearly improves the
loss rate significantly. In both the “mixed” and the “only”
scenario, significantly fewer PaSt flows than Sack flows
experience packet loss (note that for the “mixed” cases, there
are only half as many flows). Also, for the mixed scenario,
the presence of PaSt flows significantly reduces packet loss
by reducing the number of lossy flows (PaSt(mixed) +
Sack(mixed) < Sack(only)).

To better understand the details of PaSt’s impact on packet
loss, we traced packet loss during startup. The bottom graph
in Figure 12 shows the loss rate for the different simulations,
separating losses during startup from the total loss. The
graph confirms that PaSt has a lower loss rate than Sack
— the difference is especially large for losses during startup.
Comparing PaSt (mixed) and PaSt (only) also shows that
the presence of Sack flows increases packet loss both during
startup and during congestion avoidance, suggesting that the
aggressiveness of Slow Start has a negative influence on
network performance.

Finally, in our results so far, Sack flows have used an initial
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Figure 13. Dumbbell simulation with a mean flow size of
200 packets and an initial ssthresh of 20 packets.

ssthresh that is very large, so it would not cut off Slow Start.
Figure 13 shows the results for the same configuration as used
in Figure 12, but with the initial ssthresh set to 20, which
is the default value in ns2. We see that the Sack throughput
pretty much levels off around 4Mbps. This is not surprising.
With a roundtrip time of 40ms, a congestion window of 20
packets results in a throughput 4Mbps (500 packets/second).
In other words, with this particular ssthresh setting, only very
long flows are able to really benefit from congestion windows
larger than the initial ssthresh.

5.2.2. Parking-Lot Topology

The parking-lot topology (Figure 10) has 10 “backbone”
links connected by 11 routers. Each router supports 6 source
nodes and 6 destination nodes through a 50Mbps link. Each
backbone link has 20Mbps capacity, 20ms latency, and is
equipped with 1000 packets router queue buffer (correspond-
ing to the longest path). The traffic load and methodology for
collecting results is similar to that used for the dumbbell
topology. Flows randomly pick a source and destination,
making sure each flow traverses at least one “backbone” link.
The mean flow size is 200 packets, and the mean flow rate
arrival rate is 10 flows/second. In the stable state, about 15
flows are active at any time. We again collected data for 2000
flows.

The simulation results are shown in Figure 14. The re-
sults are very similar to those for the dumbbell topology
(Figure 12). PaSt improves network performance in both the
“mixed” and “only” scenario. It has both higher throughput
and lower packet loss rate, thus alleviating the stress on
the network caused by the TCP startup algorithm. Since the
flows in this scenario have different roundtrip times, these
results confirm the benefits of Paced Start demonstrated in
the previous section.

5.3. Throughput Analysis

In the previous section, we presented aggregate throughput
and loss rate results. We now analyze more carefully how
PaSt compares with Sack for different types of flows. First,
we study how flow length affects the relative performance of
Paced Start and Slow Start.

5.3.1. Sensitivity of PaSt to Flow Length

The impact that TCP startup has on flow throughput is
influenced strongly by the flow length. Very short flows
never get out of the startup phase, so their throughput is
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completely determined by the startup algorithm. For long
flows, the startup algorithm has negligible impact on the total
throughput since most of the data is transmitted in conges-
tion avoidance mode. For the intermediate-length flows, the
impact of the startup algorithm depends on how long the flow
spends in congestion avoidance mode.
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Figure 15. Comparison of instantaneous Sack and PaSt
flow throughput. The data is a moving average over a 0.1
second interval.

To better understand the relationship between flow size
and flow throughput, Figure 15 compares the instantaneous
throughput of a Sack and PaSt flow. This is for a fairly
typical run using the default configuration of Figure 7. We
observe that there are three periods. The first period (up to
T1) corresponds to the exponential increase of Slow Start.
In this period, Sack achieves higher throughput because it

is more aggressive. In the second period (T1-T2), packet
loss often causes Sack to have a timeout or to go through
fast recovery, while PaSt can maintain its rate. In this phase,
PaSt has better performance. Finally, during the congestion
avoidance phase period (after T2), the two flows behave the
same way.

While this analysis is somewhat of an oversimplification
(e.g. PaSt cannot always avoid packet loss, Sack does not
always experience it, ...), it does help to clarify the difference
in throughput between Slow Start and Paced Start. For short-
lived flows, Sack is likely to get better throughput than
PaSt. For very long-lived flows, both algorithms should have
similar throughput, although the lower loss rate associated
with PaSt might translate into slightly higher throughput
for PaSt. For intermediate flows, PaSt can achieve higher
throughput than Sack, once it has overcome its handicap.

In this context, flow size is not defined in absolute terms
(e.g. MBytes) but it is based on when (if ever) the flow
enters congestion avoidance mode. This is determined by
parameters such as path capacity and RTT. For a low capacity
path, the bandwidth-delay product is often small, and a flow
can finish the startup phase and enter congestion avoidance
mode after sending relatively few packets. For high capacity
paths, however, a flow will have to send many more packets
before it qualifies as an intermediate or long flow.

5.3.2. Flow Length Analysis
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Figure 16. Average throughput for Sack and PaSt as a

function of flow size.

We grouped the flows in Figure 11 based on their flow
length, and plot the median flow throughput and the [5%,
95%] interval in Figure 16(a). When flow size is less than
50 packets, there is little difference in terms of throughput.
But when the flow size increases to 100, 150, 200, and 200+
packets, there are significant improvement from PaSt, both
in the “mixed” and “only” scenario. Note that the higher
bins contain relatively few flows. Still, the fact that PaSt
outperforms Sack even for long flows (200+) suggests that



Table 4. Comparison between Sack and PaSt for an Internet path

Sack PaSt
Min Median Max Min Median Max
su-time(s) 0.2824 0.4062 2.3155 | 0.1037 0.1607 1.1578
su-throughput(Mbps) 3.05 21.63 35.80 1.38 6.77 15.28
su-loss 0.0081 0.0575 0.3392 | 0.0040 0.0055 0.0192
throughput(Mbps) 15.64 22.68 40.19 | 14.22 22.07 27.39
loss 0.0016 0.0090 0.1593 | 0.0001 0.0011 0.0071

the lower packet loss has a fairly substantial impact, and we
need longer flows to recover from it.

Figure 16(b) studies this issue from another aspect. We
repeat the dumbbell simulation with different mean flow
sizes, ranging from 50 to 250 packet. The arrival rate is
again 10 flows/second. For each simulation, we only report
results for the flows in the [25%, 75%] interval of the flow
length distribution; this means that in each case, the flows
have very similar lengths. The results in Figure 16(b) confirm
our analysis of the previous section: PaSt achieves the best
throughput improvement for intermediate flows, i.e. flows
with 100-150 packets in this case, and has a smaller impact
on long flows.

6. System M easurements

We report real system measurement results obtained with
our user-level and in-kernel Paced Start implementation.

6.1. Internet Experiment

The Internet experiments use our user-level PaSt imple-
mentation. We transmit data using Sack and PaSt from CMU
to MIT. This Internet path has a bottleneck link capacity of
100Mbps, an RTT of 23 msec, and an available bandwidth of
about 50Mbps (measured using PTR [17]). We sent Sack and
PaSt flows in an interleaved fashion, separated by 5 seconds
of idle time. Each flow transmits 10000 packets (1000
bytes/packet). The same measurement is repeated 20 times.
Since the Internet traffic keeps changing, the measurement
environments for Sack and PaSt are not exactly the same,
so we cannot compare them side by side as we did in
the simulations. Instead, we list the maximum, median and
minimum value for each metric, which provides at least a
coarse grain comparison.

The results are listed in Table 4. The conclusions from
Internet measurements are very similar to those from the
simulation results. During the startup period, PaSt converges
faster than Sack, has a smaller packet loss rate, and a lower
throughput. The median throughputs over the entire data
transfer are very similar for both algorithms. Note that the
loss rate of PaSt for the entire session is still less than Sack,
suggesting that 10000 packets is not enough to hide the effect
of the startup algorithm for this path.

6.2. In-Kernel Experiment

We ran a number of experiments using our in-kernel PaSt
implementation on Emulab [2]. We report an experiment that
uses two Apache servers and two web requests generators
— Surge [12] — to evaluate what impact Paced Start has
on web traffic. The testbed is a dumbbell network, with one

Apache server and one Surge client host on each side of the
bottleneck link. The bottleneck link has a 20Mbps capacity,
20ms latency, and its router buffers are 66 packets (1500
bytes/packet). The two Surge clients are started at the same
time, so there is web traffic flowing in both directions over
the bottleneck link. The web pages are generated following
a zipf distribution, with a minimum size of 2K bytes. The
web requests generation uses Surge’s default configuration.
We ran each experiment for 500 seconds, generating around
2100 requests. We focus on the performance of one Apache
server, for which we use both the Sack and PaSt kernel. The
other three hosts, i.e., the two Surge clients and the other
Apache server, always use the Sack kernel.
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Figure 17. Emulab experiment comparing the Sack and
PaSt kernels using the Apache and Surge applications

We use the log files of Surge to calculate the throughput
distribution for downloading web pages. Figure 17 compares
the throughput distributions for the Apache server using the
Sack and PaSt kernels. The throughput improvement from
PaSt is very clear. The two kernels also suffered very different
packet loss rates: 94186 packets were dropped with Sack, but
only 1168 packet were dropped using PaSt. These results are
similar to our simulation results.

7. Related Work

Using active measurements to improve TCP startup is not
a new idea. Hoe [16] first proposed to use the packet pair al-
gorithm to get an estimate for the available bandwidth, which
is then used to set the initial ssthresh value. Aron et.al. [9]
improved on Hoe’s algorithm by using multiple packet pairs
(of 4 packets) to iteratively improve the estimate of ssthresh
as Slow Start progresses. The Swift-start [24] algorithm uses
a similar idea. However, there is ample evidence [17][20]
that simply using packet pairs cannot accurately estimate
available bandwidth. For this reason, Paced Start uses packet
trains with carefully controlled inter-packet gaps to estimate
the available bandwidth and ssthresh.

A number of groups have proposed to use packet pacing to
reduce the burstiness of TCP flows. For example, Paced TCP



[21] uses a leaky-bucket to pace the TCP packets; rate-based
pacing [26] uses packet pacing to improve TCP performance
for sessions involving multiple short transfers (e.g. many
HTTP sessions).

TCP Vegas [13] also proposed a modified Slow Start
algorithm. It compares the “expected rate” with the “actual
rate” and when the actual rate falls below the expected rate
by the equivalent of one router buffer, it transitions into
congestion avoidance mode. The evaluation shows however
that this algorithm offers little benefit over Slow Start.

There have been many other proposals to improve the TCP
startup performance. Some proposals can also be used by
PaSt, e.g. increasing the initial ssthresh value [7][8], while
others will only be effective under some circumstances, e.g.
sharing the connection history information between different
flows [25][11]. Smooth-Start [27] proposes to split the slow
start algorithm into a “slow” and “fast” phase that adjust the
congestion window in different ways. While Smooth-Start
can reduce packet loss, it does not address the question of
how the ssthresh and the threshold that separates the phases
should be selected. Finally, some researchers have proposed
to use explicit network feedback to set the congestion win-
dow, e.g. Quick-Start [19], but this requires router support.

Researchers have also studied how to quickly restart trans-
mission on a TCP connection that has gone idle, which is a
common problem in web servers. Both TCP fast start [23]
and rate-based pacing [26] belong in this category. The idea
is to make use of history information of the TCP connection.
In contrast, we focus on the initial Slow Start sequence of a
new TCP connection.

8. Conclusion

In this paper we present a new TCP startup algorithm,
called Paced Start (PaSt). It builds on recent results in the area
of available bandwidth estimation to automatically determine
a good value for ssthresh. Paced Start is based on the simple
observation that the TCP startup packet sequence is in fact
a sequence of packet trains. By monitoring the difference
between the spacing of the outgoing data packets and the
spacing of the incoming acknowledgements, Paced Start can
quickly estimate the proper congestion window for the path.
In this paper, we describe the analytical properties of Paced
Start, and present an extensive set of simulation results and
real system measurements that compare Paced Start with
the traditional Slow Start algorithm. We show that, for most
flows, Paced Start transitions into congestion avoidance mode
faster than Slow Start, has a significantly lower packet loss
rate, and avoids the timeout that is often associated with Slow
Start. In terms of deployment, Paced Start can coexist with
the current TCP implementations that use Slow Start.
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