HOW TO RUN IXP1200 PROJECTS

Fall 2000

Table of contents:

21.
QoS

2.
Firewall
3
3. Virtual Private Networks (VPN)
6
4. Network Address Translation (NAT)
8

1. QoS

1.1. Purpose: To implement Differentiated Services Architecture in the Intel IXP1200 packet processor. Examine the effectiveness of the implementation to see how the service is improved and what side effects are incurred.

1.2. Test bed: For this project you need to setup 2 Pentium machines and 1 IXP1200 box. In addition, Real Audio Server and Client in order to test with a real application the controlling of the packet flow. Both could be gotten free from http://www.real.com

1.3. Project to use:

c:\projects\qos\microcode\workbench_projects\pfwd8_1f_rx16_tx6\pfwd8_1f_rx16_tx6.dwp

1.4. Files that have been modified:

DATA PLANE

rec_lmatch.uc

rec_enqueue.uc

xmit_8x100.uc

(Note: Most modifications are enclosed by pre-processing keywords: #ifdef DIFFSERV… #endif)

1.5. How To run the project

1. Hook up the IXP box's serial cable to the computer to be used

2. Open up the Tornado program and launch a target terminal. Turn on

the IXP box.

3. Fix the parameters on the IXP box on boot up to match the computer

name and IP port of your computer.

4. Once it boots, type the following into the target terminal (or paste

it in).

ld < c:\ixp1200\vxworks_lib\debug\vxworks_gig.o

NetApp_GigInit

route_add("IP_ADDR_1
", "255.255.255.255", "", 0, MAC_1_32BITS
,MAC_1_16BITS)

route_add("IP_ADDR_2", "255.255.255.255", "", 1, MAC_2_32BITS,MAC_2_16BITS)

ld < c:\projects\qos\control_plane\ARMSA110gnu\diffcontrol.out

5. Then start up the IXP developer studio (debugger). Open up the

project (in C:\projects\qos\microcode\workbench_projects\pfwd8_1f_rx16_tx6)

6. Go set the setting to be hardware debugger, then click on the bug to

go into debugging mode.

7. Once the screen refreshes (i.e. the debugger is in sync with the

hardware), go back to the tornado program and type of paste in the

following into the IXP terminal:

reservation_add(0,IP_ADDR1_HEX , IP_ADDR2_HEX,0x0f,0xffff)

reservation_add(1,IP_ADDR2_HEX, IP_ADDR1_HEX,0x0f,0xffff)

The explanation of each parameter is as follows:

Entry_id: 0,1,2, …

Source IP address in HEX

Destination IP address in HEX

Rate: in number of bytes per cycle. (should be 16 bits right shifted)

(e.g. 0x0000 8000 means 0.5 byte per cycle

Burst: in number of bytes

8. This completes the setup of the project. At this point you can go back to the IXP debugger environment and hit go. You can test this project with Real Server and Real audio

9. Test with Real Server and Real audio

2. Firewall

2.1. Purpose: Design and implement a Firewall system using IXP1200 mapping the firewall functionality in management plane, control plane and data plane.

2.2. Test bed: For this project you need to setup 2 Pentium machines and 1 IXP1200 box.

2.3. Project to use:

c:\projects\firewall\microcode\workbench_projects\pfwd8_1f_rx16_tx6\pfwd8_1f_rx16_tx6.dwp

2.4. Functions that have been added/modified:

DATA PLANE

rec_ipverify.uc

rec_lmatch.uc

Added:

firewall.uc

CONTROL PLANE

test_init.cpp

2.5. How To run the project

1. Hook up the IXP box's serial cable to the computer to be used

2. Open up the Tornado program and launch a target terminal. Turn on

the IXP box.

3. Fix the parameters on the IXP box on boot up to match the computer

name and IP port of your computer.

4. Once it boots, type the following into the target terminal (or paste

it in).

ld < c:\ixp1200\vxworks_lib\debug\vxworks_gig.o

NetApp_GigInit

route_add("IP_ADDR_1", "255.255.255.255", "", 0, MAC_1_32BITS,MAC_1_16BITS)

route_add("IP_ADDR_2", "255.255.255.255", "", 1, MAC_2_32BITS,MAC_2_16BITS)

ld < c:\projects\firewall\control_plane\ARMSA110gnu\test_init.o

5. Then start up the IXP developer studio (debugger). Open up the

project (in C:\projects\firewall\microcode\workbench_projects\pfwd8_1f_rx16_tx6)

6. Go set the setting to be hardware debugger, then click on the bug to

go into debugging mode.

7. Once the screen refreshes (i.e. the debugger is in sync with the

hardware), go back to the tornado program and type of paste in the

following into the IXP terminal:

 init

 policy_add(0,1,0) //1st number is the policy id (any integer), 2nd number is filter number (any integer number) and the 3rd number is 0=deny pkts 1=accept packets

Type = #define SRC_PORT 1 // (16 bits)

#define DST_PORT 2

#define SRC_ADDR 3 32 bits

#define DST_ADDR 4

#define PROTOCOL 5

 Policy ID: 0

 Filter Number: 1

 Allow?: 0

Filter type?

2

Filter Value?

17

Filter Mask?

0

Adding Policy

Number of filters 1

value = 939524096 = 0x38000000

 polling(1000)

Then go to the host machines and send traffic to the IXP1200 box.

8. This completes the setup of the project. At this point you can go

back to the IXP debugger environment and hit go.
3. Virtual Private Networks (VPN)

3.1. Purpose: Design, implement and evaluate Virtual Private Network system with IP sec techniques using Intel IXP1200 Network Processors.

3.2. Test bed: For this project you need to setup 2 Pentium machines and 2 IXP1200 box. One cross over cable is needed for interconnecting both IXP1200 boxes.

3.3. Project to use:

c:\projects\vpn\microcode\workbench_projects\pfwd8_1f_rx16_tx6\pfwd8_1f_rx16_tx6.dwp

3.4. Functions that have been added/modified:

DATA PLANE

1. Classification of packets:
lookup_policy – looks up policy table sequentially, returns first match

lookup_sa – looks up security association depending on destination IP address at ingress router sequentially, returns first match

lookup_sa_by_spi – looks up security association depending on destination IP address and SPI at egress router sequentially, returns first match

A pkt_label is created to indicate the type of packet after classification. pkt_label has 3 possible values indicating normal packet, outbound packet, or inbound packet. Three macros are copied and modified from existing macros to carry the value of the pkt_label in the duration after classification and before the packet is transmitted:

Rx_SaveSlowState_w_pkt_label – modified from Rx_SaveSlowState, saves pkt_label during receive rest of packet

Rx_RestoreSlowState_w_pkt_label – modified from Rx_RestoreSlowState, retores pkt_label saved
Rx_WriteDescriptor_w_pkt_label – modified from Rx_WriteDescriptor, write packet descriptor along with pkt_label after packet enqueue, transmit thread can get back the pkt_label from the packet descriptor. 2 bits inside the packet descriptor is used to store pkt_label.

32 bytes need to be reserved for outer IP header and ESP header for outbound packets.
Rx_SetPktBufAddr_w_base -- modified from Rx_SetPktBufAddr returns the starting location of a packet.
A piece of code is added to the transmit thread to change status_byte and ele_remaining according to pkt_label to reflect the correct number of bytes to transmit.

A piece of code is added to create new header for outbound packets. It includes a macro ip_checksum_create_be to calculate the new checksum of header, the macro is modified from ip_checksum_verify_be.
A location in SRAM is used to store the IP address of the router, and a macro get_router_ip is used to read from the memory location and return the IP address of the router. The router IP address is put into the source IP address field of the outer IP header. The destination IP address field is the egress router IP address returned by the security association table lookup.

esp_spi_extract is used to extract the SPI field from the ESP header for an inbound packet.

2. Encryption/Decryption
A macro endecrypt is used to perform XOR operations for both inbound and outbound packets.
CONTROL PLANE

C++ functions:

policy_init()

- initialize policy table in SRAM

policy_add(entry_no, src_ip)
- add an entry with src_ip
The security association management functions we implemented are:

sad_init()

- initialize security association table in SRAM

sad_add(entry_no, dest_ip, spi, tunnel_ip, seq_no, sa_key)
- add an entry into the table

3.5. How To run the project

1. Hook up the IXP box's serial cable to the computer to be used

2. Open up the Tornado program and launch a target terminal. Turn on

the IXP box.

3. Fix the parameters on the IXP box on boot up to match the computer

name and IP port of your computer.

4. Once it boots, type the following into the target terminal (or paste

it in).

ld < c:\ixp1200\vxworks_lib\debug\vxworks_gig.o

NetApp_GigInit

IXP1200 box 1

route_add("IP_ADDR_1
", "255.255.255.255", "", 0, MAC_1_32BITS
,MAC_1_16BITS)

route_add("IP_ADDR_3", "255.255.255.255", "", 1, MAC_3_32BITS,MAC_3_16BITS)

IXP1200 box 2

route_add("IP_ADDR_2", "255.255.255.255", "", 0, MAC_2_32BITS,MAC_2_16BITS)

route_add("IP_ADDR_4", "255.255.255.255", "", 1, MAC_4_32BITS,MAC_4_16BITS)

ld < c:\projects\vpn\control_plane\ARMSA110gnu\vpn.out

Interconnect ports 0 of both IXP1200 boxes. Connect Ports 1 to external machines.

5. Then start up the IXP developer studio (debugger). Open up the

project (in C:\projects\vpn\microcode\workbench_projects\pfwd8_1f_rx16_tx6)

6. Go set the setting to be hardware debugger, then click on the bug to

go into debugging mode.

7. Once the screen refreshes (i.e. the debugger is in sync with the

hardware), go back to the tornado program and type of paste in the

following into the IXP terminal:

In IXP1200 box 1 (IP_ADDR_1) :

policy_add(IP_ADDR_1)

// for packets going into tunnel destined to HOST 2

sad_add(next_entry, IP_ADDR_2, spi, IP_ADDR_4, 0, key)

// for packets coming from tunnel destined to IXP1200 box 1

sad_add(next_entry, IP_ADDR_3, spi, IP_ADDR_4, 0, key)

Similarly, IXP1200 box 2 (IP_ADDR_2) :

policy_add(IP_ADDR_2)

// for packets going into tunnel destined to HOST 1

sad_add(next_entry, IP_ADDR_1, spi, IP_ADDR_3, 0, key)

// for packets coming from tunnel destined to IXP1200 box 2

sad_add(next_entry, IP_ADDR_4, spi, IP_ADDR_3, 0, key)

Meaning:

Next_entry: integer number starting from 0

IP_ADDR_1 Host 1 IP address

IP_ADDR_3: IXP1200 box 1 IP

IP_ADDR_2: Host 2 IP address

IP_ADDR_4: IXP1200 box 2 IP

spi: Security Parameter Index

key: Security Communication key

8. This completes the setup of the project. At this point you can go back to the IXP debugger environment and hit go. You can test this project with Real Server and Real audio

4. Network Address Translation (NAT)

4.1. Purpose: To build a Network Address translator in the IXP1200 architecture, dividing the functionality in management plane, control plane and data plane.

4.2. Test bed: For this project you need to setup 2 Pentium machines and 1 IXP1200 box.

4.3. Project to use:

c:\projects\nat\microcode\workbench_projects\pfwd8_1f_rx16_tx6\pfwd8_1f_rx16_tx6.dwp

4.4. Files that have been modified:

DATA PLANE

 (located in the Include directory)

 ip.uc

 ip12_8.uc

 endian.uc

 (located in the Refdes directory)

 rec_lmatch.uc

CONTROL PLANE

nat_admin_ixp.cpp

4.5. How To run the project

1. Hook up the IXP box's serial cable to the computer to be used

2. Hook up port 0 of the IXP box to a computer on subnet 1

3. Hook up port 1 of the IXP box to a computer on subnet 2

4. Open up the Tornado program and launch a target terminal. Turn on

the IXP box.

5. Fix the parameters on the IXP box on boot up to match the computer

name and IP port of your computer.

6. Once it boots, type the following into the target terminal (or paste it in).

ld < c:\ixp1200\vxworks_lib\debug\vxworks_gig.o

NetApp_GigInit

route_add("IP_ADDR_1", "255.255.255.255", "", 0, MAC_1_32BITS,MAC_1_16BITS)

route_add("IP_ADDR_2", "255.255.255.255", "", 1, MAC_2_32BITS,MAC_2_16BITS)

ld < c:\projects\nat\control_plane\ARMSA110gnu\nat_admin_ixp.o

7. Then start up the IXP developer studio (debugger). Open up the

project (in C:\projects\nat\microcode\workbench_projects\pfwd8_1f_rx16_tx6)

8. Go set the setting to be hardware debugger, then click on the bug to

go into debugging mode.

9. Once the screen refreshes (i.e. the debugger is in sync with the

hardware), go back to the tornado program and type of paste in the

following into the IXP terminal:

nat_admin

7

1

192.168.1.169

192.168.2.169

2

23

23

192.168.1.169

192.168.2.169

0

8. This completes the setup of the project. At this point you can go

back to the IXP debugger environment and hit go. Now the IP headers of

matching the listed entries should be mangled and correctly checksumed.

HOST 2

HOST 1

IP_ADDR_2

MAC_2_32BITS

MAC_2_16BITS

NT/Linux box

Real audio

IP_ADDR_1

MAC_1_32BITS

MAC_1_16BITS

NT/Linux box

Real Server

IXP1200

Port 1

Port 0

IXP1200

HOST 2

HOST 1

IP_ADDR_2

MAC_2_32BITS

MAC_2_16BITS

Linux box

Test with ping

IP_ADDR_1

MAC_1_32BITS

MAC_1_16BITS

Linux box

Test with ping

IXP1200

Port 1

HOST 2

HOST 1

IP_ADDR_2

MAC_2_32BITS

MAC_2_16BITS

Linux box

Test firewall with telnet

IP_ADDR_1

MAC_1_32BITS

MAC_1_16BITS

Linux box

Test firewall with telnet

IXP1200

Port 1

Port 0

Port 0

Port 1

Port 0

IP_ADDR_4

MAC_4_32BITS

MAC_4_16BITS

IP_ADDR_3

MAC_3_32BITS

MAC_3_16BITS

HOST 2

HOST 1

IP_ADDR_2

MAC_2_32BITS

MAC_2_16BITS

Linux box

Test NAT with ping

IP_ADDR_1

MAC_1_32BITS

MAC_1_16BITS

Linux box

Test NAT with ping

IXP1200

Port 1

Port 0

� IP_ADDR_1 or IP_ADDR_2 is the IP address of the machine that send/receive packets through the IXP1200 box.

� MAC address is a 48 bit number that is divided in a 32 most significant bit and 16 less significant bits

� IP_ADDR_HEX is the IP address of the machines connected to the IXP1200, but given in hexadecimal, For example 192.168.1.4 corresponds to 0xc0a801a4

� IP_ADDR_1 or IP_ADDR_2 or IP_ADDR_3 or IP_ADDR_4 is the IP address of the machine that send/receive packets through the IXP1200 box (HOST1 or HOST2)

� MAC address is a 48 bit number that is divided in a 32 most significant bit and 16 less significant bits

1

