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One third of the workstation businessis driven by industrial or scientific applications that heavily depend on the
ability to interactively render 3D models whose complexity is increasing far more rapidly than the performance of

the graphics subsystems. Simple scenes in 3D video-games may only need a few hundred textured polygons, but

models used for mechanical CAD, scientific, geo-science, and medical applications involve scenes with millions

of faces, sometimes grouped to form the boundaries of polyhedra solids of widely varying complexity. The
successful exploitation of such large volumes of scientific and engineering three-dimensional data hinges on

users' ability to access the data through phone lines or network connections and to manipulate significant portions

of these 3D models interactively on the screen for scientific discovery, teaching, collaborative design, or

engineering analysis. Currently available high-end graphics hardware is often insufficient to render the models at

sufficient frame rates to support direct manipulation and interactive camera control.

The abundance and importance of complex 3D data bases in magor industry segments, the affordability of
interactive 3D rendering for office and consumer use, and the exploitation of the internet to distribute and share
3D data have exacerbated the need for aneffective 3D geometric compression technique that would significantly
reduce the time required to transmit 3D models over digital communication channels and the amount of memory
or disk space required to store the models. Because the prevalent representation for 3Dshapes for graphics
purposes is polyhedral and because polyhedra arein general triangulated for rendering, it is important to focus an
the compression and decompression of complex triangulated models.

Although we anticipate further development of hardware acceleration graphics engines and new commercial
explorations of hardware compression/decompression chips, we discuss software advances on both fronts, hoping
that with maturity they will fuel hardware advances and impact data exchange standards.

Software techniques, which eliminate unnecessary or unessential rendering steps, may lead to dramatic
performance improvements and hence reduce hardware costs for graphics. Many of these techniques require
complex algorithmic pre-processing and a compromise on the quality and accuracy of the images. The relative
impact of software techniques for accelerating the rendering of 3D scenes depends on the complexity and
characteristics of the model, on the lighting model, on the image resolution, and on the hardware configuration.
Acceleration techniques include hierarchical culling, memory management, visibility computation, reduced
resolution or accuracy, model simplification, use of images, textures, or perturbation maps, and the optimization
of the rendering library.

We first discuss a simple model of the rendering cost and review the impact of various acceleration techniques
on the different cost factors and stress the need to combine the various techniques. We then focus on 3D model
simplification, a preprocessing step that generates a series of 3D models (sometimes called "impostors' or
"impersonators"), which trade resemblance to the origina model for fidelity. Such decreasing levels-of-detail
(LOD) involve less faces and vertices, and hence require less memory and less geometry processing at rendering
time. Using a lower level of detail when displaying small, distant, or background objects improves graphic
performance without a significant loss of perceptua information, and thus enables real-time inspection of highly
complex scenes. Origina models are used for rendering objects close to the viewpoint and during navigation
pauses for full precision static images.

Simplification is an automatic process that takes a polyhedral surface model S and produces a model S that
resembles S, but has significantly less vertices and faces. We discuss both geometric and visual measures of the
discrepancy between S and S and review the general principles for computing and evaluating such
simplifications. We briefly review several simplification techniques based on curved-surface tessellation, space
or surface sampling, and bounding hierarchies. We investigate in more details the variants of vertex clustering
and face merging techniques, which include edge collapsing and triangle or vertex decimation. We illustrate
these techniques through several approaches. Kalvin and Taylor aggregate nearly co-linear facets into connected
regions, simplify their boundaries, and triangulate the regions; Ronfard and Rossignac expand on the edge-
collapsing work of Hoppe et al. by maintai ning an efficient point-plane distance criteria for estimating the errors
associated with each candidate edge; Gueziec preserves the volume of the model and uses spheres as error
bounds; Rossignac and Borrel use vertex quantization (integer rounding on vertex coordinates) to efficiently
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compute the clusters. The latter simplification process is more efficient, more robust, and ssimpler to implement
than alternative approaches, because it does not require building and maintaining a topological face-vertex
incidence graph and thus does not impose any topological integrity restrictions on the original model. Although it
is not adaptive and does not produce optimal simplifications for agiven complexity reduction, it appears
particularly well suited for mechanical and architectural CAD models, because it automatically groups and
simplifies features that are geometrically close, but need not be topologically close nor even be part of a single
connected component.

These techniques produce discrete simplifications, i.e. models that are uniformly simplified to different
resolutions. They work well for scenes with many small objects uniformly distributed through space. Large objects
may require an adaptive simplification model, where the resolution of the approximation is automatically adapted
to the location of the view point (and decreases with the distance to the viewer). We illustrate this approach with
Hoppe's Progressive Meshes and with the adaptive terrain  models developed at the Georgia Tech's GVU center.

Simplification reduces the triangle counts, but does not address the problem of data compression. In fact, one
needs to store the original model plus its simplified versions. 3D compression techniques may be applied to the
origina and the simplified models independently. They do not reduce the triangle count, but reduce the number of
bits required to code the vertex coordinates (geometry), the triangles' references to their supporting vertices
(incidence), and the normals and color attributes (photometry). We discuss Deering's extensions of the triangle
strips encoding to more general triangular meshes, and Taubin and Rossignac’s “topological surgery” approach,
which captures the incidence data in less than 2 bits per triangle (instead of the naive 126) and uses vertex
quantization, geometric prediction, and entropy coding to compress geometry and photometry with controllable
loss. Finally, we expand on Hoppe's Progressive Meshes to lay the ground for further research towards the
unification of simplification and compression and towards the use of such scaleable models for internet-based 3D
data access and 3D collaborative applications.

CR Categories and Subject Descriptors: 1.3.3 Computer Graphics: Picture/lmage Generation -- display algorithms;

1.3.5 Computer Graphics: Computational Geometry and Object Modeling -- curve, surface, solid, and object representations;
1.3.7 Computer Graphics: Three Dimensional Graphics and Realism.

General Terms. 3D Polyhedron Simplification, Levels-of-detail, 3D compression, Algorithms, Graphics, Performance
acceleration.

I ntroduction

Computer graphics is an effective means for communicating three-dimensional concepts, for inspecting CAD
models, and for interacting with education and entertainment software. Although photo-realistic images and video
sequences, typically computed off-line, have their own merits, interactive graphics is required when direct
manipulation is important. Direct manipulation increases ease-of-use and enhances productivity by exploiting our
natural ability to use visual cues when controlling our gestures. The closed loop involving the hand, the modeling
or animation software, the graphics, and the human vision is only effective if graphic feedback is instantaneous.
Delays between the gestures and the resulting image, lead to overshooting, reduce the feeling of control, and thus
make the user less productive.

Interactive manipulation of 3D models and interactive inspection of 3D scenes cannot be effective when the
graphics feedback requires more than a fraction of a second. Although graphics performance, has significantly
increased in the recent years (benefiting from faster CPUs, leaner APIs, and dedicated graphics subsystems), it is
lagging behind the galloping complexity of CAD models found in industrial and consumer applications and of
scientific datasets [Rossignac94], 3D models of typical mechanical assemblies (appliances, engines, cars,
aircrafts...) contain thousands of curved surfaces. Accurate polyhedral approximations of these exact models,
typicaly constructed to interface with popular graphics APIs, involve millions of polygona faces. Such
complexity exceeds by one or two orders of magnitude the rendering performance of commercially available
graphics adapters. The solution is not likely to come from hardware development aone. Algorithmic solutions
must be employed to reduce the amount of redundant or unessential computation.

We define redundant computation as the processing steps that could be omitted without affecting the resulting
images. Unessential computation is defined as the steps which, when omitted, affect the resulting image only to a
moderate degree, so that the visual discrepancies between the correct image and the one produced do not hinder
the user's perception and understanding of the scene. The elimination of al redundant and unessential
computations remains an open research issue, because the computational cost associated with the identification
of what is redundant and what is not may often offset the benefits of eliminating redundancy. Severa techniques
are reviewed below.

To better identify redundant and unessential steps for rendering polyhedral scenes, we use an over-simplified

model of the rendering cost. The scene is described by its geometry (the location of the polygons and the location
and characteristics of the view) and by the associated photometric properties (light sources, surface colors,
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surface properties, textures). Rendering techniques compute, for each pixel, the amount of light reflected towards
the ey e by the objects in the scene. This computation may be arranged in various ways to cater to the desired
degrees of photo-realism and to take advantage of the available graphics hardware or libraries. We focus here on
rasterization techniques, which visit each polygon in the scene and combine the results in a frame buffer using a
z-buffer for hidden surface elimination. This choice is dictated by the prevalence and performance of affordable
3D graphics hardware accelerators and rasterizers, and by the success of associated APIs.

Assume that the geometry of our scene is composed of T triangles. We use triangle counts in these arguments,
instead of polygons, for simplicity and because polygons are typically converted into triangles, either during
preprocessing [Rofard94] or during rendering, and are an accepted unit of graphics performance. Procedures for
triangulating models bounded by curved parametric surfaces also exist.

The cost of rendering a scene comprising T triangles depends on a number of factors, such as the window size,
the lighting model, the amount of memory paging involved, or how the triangles project onto the screen.

Rendering T triangles involves severa costs:

F: the cost of fetching the necessary triangles into cache memory

X: the cost of transforming their vertices and lighting them using associated normals
C: the cost of clipping the triangles and computing slopes

R: the cost of rasterizing them

The overall rendering cost (i.e. performance) depends on the particular architecture of the 3D graphics subsystem.
Three families of uniprocessor architectures are popular for graphics:

« all software rendering

*  hardware rasterization with software geometric processing

e al hardware rendering

For purely software rendering architecture, the total cost is the sum ofal the costs: F+X+C+R. For an
architecture based on a hardware rasterizer, the total cost is the maximum of max(F+X+C,hR), where h provides
the boost factor of the graphics rasterizer hardware. Because the hardware or the software may be bottlenecks, we
use max instead of a sum whencombining the individual costs. Similarly, because an al hardware rendering
subsystem is pipelined, its cost is the maximum of the costs at each stage, i.e..: max(F,kX+kC,hR), where k
provides the boost factor of the hardware-supported transformation, lighting, and clipping. Note that this simplified
formula does not take into account the statistics effects of data buffers and load balancing in paralel
architectures.

Review of graphics acceleration techniques

The performance enhancing techniques reviewed in this section help reduce the different aspects of the overall
rendering cost. None of these techniques is usually sufficient to address the graphics performance problem and
most systems exploit combinations of several techniques simultaneously.

Meshing or storing transformed vertices

In a polyhedral scene, the number T of triangles is roughly twice the number V of vertices. For example, for a
triangulated manifold polyhedron with no holes or handles, the Euler-Poincarre formula becomes: T-E+V=2,
where E is the number of edges. Notice that 2E=3T, because there are three edges for each triangle, but each
edge of amanifold is shared by two adjacent triangles. Combining these two equalities yields: T-3T/2+V=2, and
finally: T=2V-4.

Therefore, independently processing the vertices of each triangle may unnecessarily increase X, and maybe even
F, by a factor of 6, since on average a vertex is processed six times (3 times per triangle and there are twice
more triangles than vertices).

To reduce this computational redundancy, 3D graphics adapters and associated APIs support triangle meshes,
where each vertex is used in conjunction with two of the recently processed vertices to define the next triangle. If
very long meshes were used, the majority of vertices, and associated normals would only be processed twice,
reducing by three the geometric cost of transforming and lighting the vertices. Note however that half of this cost
is still redundant. Furthermore, constructing long meshes is algorithmically expensive.

In graphics architectures where the geometric transformation and lighting is performed in software, al the
vertices could be transformed only once and the resulting coordinates stored for clipping and rasterization, as
needed for the triangles. Similarly, normals may be transformed and theassociated colors computed and stored
(depending on the lighting model, colors may be defined by normals only or by combinations of normals and
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vertices). For compatibility reasons with hardware graphics adapters, this possibility is not systematically
exploited by popular APIs.

Recent progress attempting to generalize the notion of a triangle strip to cover triangular meshes of arbitrary
topology with minimal vertex duplication may be found in the context of geometric compression [Taubin96,
Deering95, Hoppe96].

Frustum culling

Graphics performance may in general be significantly improved by avoiding to process the geometry of objects
that do not project on the screen. Such objects may lie behind the viewpoint or outside of the viewing frustum.
Simple bounds, such as min-max boxes or tight spheres around the objects may be easily pre-computed, updated
during model editing or animation, and used for efficient culling. For scenes involving a large number of objects
or for scenes where individual objects are relatively large and involve large numbers of triangles, pre-computed
hierarchical spatial directories (see [Airey90, Clark76, Teller9l, Naylor95]) are used to quickly prune portions of
the scene outside the viewing frustum. These early culling techniques may have no effect when the entire models
is examined and fits in the viewing frustum. In average however, they may significantly affect F, because one
needs not fetch models whose bounds is outside the frustum, and of course also X and C. They do not affect R,
because these triangles would have been rejected through clipping anyway. For example, culling may reduce X
and C by afactor of if the viewpoaint is in the center of the scene and if the viewing frustum spans a 90 degrees
angle.

Smart caching and pre-fetching

Arranging the data so that contiguous memory locations are accessed by the graphics subsystem and using
secondary processors for pre-fetching data may eliminate the delays caused by page faults and reduce F. This is
particularly effective if the size of the model that is not culled out exceeds the available memory [Funkhouser93].

Pre-computed visibility

Culling objects or individual triangles that intersect the frustum but are invisible in the current view, because

hidden by other objects, would directly impact the overall cost for all three types of architectures. Visibility
information may be pre-computed for agiven granularity of the space and of the models. For example, [Teller92]

uses the model's geometry to subdivide space into cells, associating with each cell ¢ thelist of other cells visible
from at least one point in c. Cells may correspond to a natural, semantic, partition of the scene (floors, rooms,

corridors) or to more general partitions induced by planes that contain the faces of the model. The preprocessing
is slow and requires storing vast amounts of visibility information, unless the number of cells and the number of

objects in the scene is small. To improve performance, portals (i.e, holes, such as doors and windows, in the
boundary of cells) may be approximated by an enclosing axis aligned 2D box inimage space, which provides
only a necessary condition for visibility, but reduces visibility tests to clipping against the intersection of such
rectangles [Luebke9d5], A different approach was used in [Greene93], where a hierarchical quadtree representation
of the z-buffer generated after displaying the front most objects is used to quickly cull hidden objects. Front most

objects candidates are computed from the previous frame. Culling compares a hierarchical bound system of the
3D scene against the z-buffer quadtree. Both techniques are effective under the appropriate conditions, but are of
little help in scenes, such as factories or exterior views, where very few objects are completely hidden.

Use of images

A distant or small group of objects may be replaced with a "3D sprite" or with a few textured polygons
[Beigbeder91] showing the approximate image of the object(s) from the current viewpoint. A hierarchical
clustering approach where groups of objects were displayed using such images was proposed in [Maciel95].
Previously rendered images with the associated z-buffer information provide an approximation of the model as
seen from a specific location. They may be warped and reused to produce views from nearby locations on an
inexpensive graphics system. Because the new view may reveal details hidden in the previous view, a more
powerful graphic server may identify the discrepancies and send the missing information to the low-end client
[Mann97].

Levelsof detail

Using simplified models with a lower triangle count instead of the original models may in certain cases reduce
paging F, and will in genera reduce X and C significantly [Funkhouser93]. Lower levels of detail are usually
appropriate for rendering distant features that appear small on the screen during camera motions or scene
animations [Crow82]. During navigation pauses, the system will start computing the best quality image and, if not
interrupted by the user, will automatically display it [Bergman86]. A review of the early techniques may be found
in [Erikson96]. Two main approaches to the construction and use of such levels of detail (LOD), multi-resolution
models have been investigated by alarge number of researchers:
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*«  Pre-compute a series of static view-independent simplifications for each subset of the scene (solid, group)
which approximate the original model to decreasing levels of accuracy and select during navigation the
appropriate level of details for each subset, depending on the viewing conditions and on the desired
performance/accuracy trade-off.

¢ Pre-compute a unique adaptive model for the entire scene and during navigation adapt it to the current
viewing conditions to produce a graphics model which approximates features close to the viewer with higher
accuracy than distant features, which appear small on the screen.

A comparative discussion of some of the early techniques [Blake87] for computing static simplifications may be
found in [Erikson96, Heckbert94]. We summarize here several trends to provide the context for the rest of the
paper, which focuses on vertex clustering and edge collapsing techniques.

Polyhedral models are often constructed to approximate curved shapes through surface tessellation. Polyhedral
approximations with fewer vertices and faces can thus in principle be produced by using coarser tessellation
parameters. Emerging high-end graphic architectures support adaptive tessellation for trimmed NURBS surfaces
[Rockwood89], However, the simplification process should be made independent of the design history and should
be automatic [Crow82]. These surface tessellation techniques are of little help when trying to simplify complex
shapes that involve thousands of surface matches, because they can at best simplify each surface patch to a few
triangles, but cannot merge the triangulations of adjacent patches into much simpler models.

Surface fitting techniques to regularly spaced scanner data points [Schmitt86, Algorri96] may also be used for
producing levels of detail polyhedral approximations [DeHaemer9l]. These techniques have been recently
extended to unorganized data points [Hoppe92, DeRose92] and to new sparse points automatically distributed
over an existing triangulated surface (either evenly or according to curvature) [Turk92], These techniques suffer
from expensive preprocessing. but yield highly optimized results.

Techniques for constructing approximating inner and outer bounds (or offset surfaces) for polyhedra have been
extended to create simplified models that separate the inner and the outer offsets [Varshney94, Cohen96,
Mitchell95]. The creation of valid, intersection-free offset surfaces still poses some challenges, athough
techniques based on extended octree representations of the interior and of the boundary of the polyhedron provide
inner and outer bounds [Andujar96].

Therest of this paper focuses on polygon count reduction techniques that exploit an original triangular mesh
and derive simplified models by eliminating vertices or triangles, by collapsing edges, or by merging adjacent
faces.

Vertex clustering, the simplest to implement and most efficient approach, groups vertices into clusters by
coordinate quantization (round-off), computes a representative vertex for each cluster, and removes degenerate
triangles which have at least two of their vertices in the same cluster [Rossignac93]. All vertices whose
coordinates round-off to the same value are merged. The accuracy of the simplification is thus controlled by the
quantization parameters (see Figure 3).
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Figure 1: The vertices of the original triangular mesh (far left) are quantized, which amounts
to associating each vertex with a single cell of aregular subdivision of abox then encloses the
object. Cells which contain one or more vertices are marked with a circle (center left). All the
vertices that lie in a given cell form a cluster. A representative vertex is chosen for each
cluster. Itis indicated with a filled dot. The other vertices of each cluster are collapsed into
one and placed at the representative vertex for the cluster (far right). Triangles having more
than one vertex in a cluster collapse during this simplification process (shaded triangles
center right). They will be removed to accelerate the rendering of approximated versions of the
object while other neighboring triangles may expand. The resulting model (far right) has fewer
vertices and triangles, but has a different topology. Notice that a thin area collapsed into a
single line, while a gap was bridged by a different line segment.
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A different technique, edge collapsing, merges the two end points of the edges of the polyhedron one edge at a
time [Hoppe93, Ronfard96].. Each edge collapse operation removes two triangles (see Figure 2). The accuracy of
the resulting model is estimated as the error cumulated by the sequence of edge-collapses. This incremental
process permits to achieve the desired accuracy or the desired triangle count and is well suited for optimization
(selection of the sequence of edge collapsing operations which results in the lowest error). Early version of edge
collapsing techniques are more complex to implement than vertex clustering approaches (they require
maintaining a complete incidence graph), are significantly slower, and impose strong topological constraints an
the input polyhedra. Edge collapsing is in fact a restricted form of vertex clustering, since an edge collapse
operation merges two clusters that are linked by an edge of the polyhedron. Both techniques may be combined

[Hopped7].

WG N NN

Figure 2: From left to right: the original triangle mesh, a selected edge showing the direction
of collapse, the two triangles that will be eliminated during the collapse, and the resulting
simpler mesh.

The decimation of a nearly-flat vertex [Schroeder92] is equivalent to an edge collapsing operation, possibly
combined with edge-flips [Lawson72] (Fig. 3), and thus results in a hierarchical clustering of vertices. Its
generalization [Kalvin9l, Kalvin96] re-triangulates nearly flat regions constructed by incrementally merging
triangles. Re-triangulating a region amounts to clustering all the internal vertices into a single “star” vertex, the
apex of the new triangulation for the region.
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Figure 3: Decimating the highlighted vertex (far left) will affect the faces marked (center
left). The affected region will be retriangulated (far right). The transformation corresponds to
the edge collapse indicated by the arrow (center right).

Static simplifications are effective for large and complex objects only when these objects are viewed from far.
Inspecting the details of alocal feature on such a large complex object requires using the highest resolution for
the entire object, which imposes that full resolution be used for the distant parts of the objects that could
otherwise be displayed at much lower resolution. It is not uncommon that the complexity of a single object
significantly exceeds what the graphics subsystem can render at interactive rates. An adaptive multi-resolution
model is better suited for such situations [Xia96]. In fact, an adaptive model may be computed for the entire
scene. An hierarchical version of the vertex clustering approach of [Rossignac93] is the basis of a new adaptive
scheme [Luebke96], where octree nodes [Samet90] correspond to the hierarchy of vertex clusters. The main
research challenges in the perfection of adaptive multiresolution models lie in: (1) the rapid generation of
triangle strips for each view dependent simplification., (2) a fast decision process updating the levels of
resolution at each new frame, and (3) the estimation of a tight error bound. Although it may be expensive to
convert arbitrary triangular meshes into subdivision surfaces, wavelet-based hierarchical models offer an
attractive and elegant solution to this problem [Eck95, Lounsbery94].

Adaptive level-of-detail for terrain models have been studied extensively [Garland95], because a terrain model

is typically a single complex surface that must be rendered with non-uniform resolution and partly because error
estimations for terrain models is simpler than for arbitrary 3D polyhedra. For example, hierarchical triangulated
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irregular network (HTIN), were proposed [DeFloriani92] as an adaptive resolution model for topographic surfaces.
Researchers at Georgia Tech’'s GVU center have developed an adaptive multi-resolution model for the realtime
visualization of complex terrain data over aregular grid [Lindstrom96]. Their approach uses a recursive decision
tree to indicate which edges may be collapsed and also to set preconditions. an edge may not be collapsed unless
its children have been collapsed.
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Figure 4. The hierarchica edge collapsing approach for aregular terrain model (left)
produces a similar lower-resolution models by a sequence of vertical and then diagonal edge
collapses (center). The process may be repeated iteratively (right). Not all edges at a given
level need to collapse.

Review of 3D compression techniques

In comparison to image and video compression, little attention has been devoted to the compression of 3D
shapes, both from the research community and from 3D data exchange standards committees. This situation is
likely to change rapidly for three reasons: (1) the exploding complexity of industriadl CAD models raises
significantly the cost of the memory and auxiliary storage required by these models, (2) the distribution of 2D
models over networks for collaborative design, gaming, rapid prototyping, or virtua interactions is seriously
limited by the available bandwidth, and (3) the graphics performance of high level hardware adapters is limited
by insufficient on-board memory to store the entire model or by a data transfer bottleneck.

We focus our study of 3D compression on triangular meshes which are shells of pairwise adjacent triangles. We
chose triangle-based representations, because more general polygonal faces may be efficiently triangulated
[Ronfard94], and because triangles provide a common denominator for most representation schemes. Furthermore,
the number of triangles is a convenient measure of a model’s complexity, which is important for comparing
various compression techniques. We will mostly focus here on simply connected manifold meshes, where
triangles are mutually digjoint (except at their edges and vertices), where each edge is adjacent to exactly two
incident triangles, and where each vertex is adjacent to exactly one cone of incident triangles. Furthermore, we
will assume for simplicity that the mesh is a connected surface with zero handles. These restrictions are made
purely for the sake of simplicity, and most of the compression schemes reviewed here work or may be expanded
to cope with more general meshes.

A triangular mesh is defined by the position of its vertices (geometry), by the association between each triangle
and its sustaining vertices (incidence), and by color, normal, and texture information (photometry), which does
not affect the 3D geometry, but influences the way the triangle is shaded.. What is the minimum number of bits
required to encode a triangle mesh of T triangles and V vertices? Because for our simple meshes there are
roughly twice more triangles than vertices, we will assume that T=2V and useV as a measure of the complexity
of the mesh. For uniformity, we will assume that a unique normal (photometry) is associated with each vertex
and that these normals are different for all vertices. To illustrate the storage requirement, we will pick V to be 2%
(i.e. 64K), which is a reasonable compromise between an average of about 500 vertices per solid in mechanical

assemblies and significantly larger vertex counts for large architectural  objects, terrain models, or medical

datasets.

We compare below the storage requirements for several representation schemes. Of course other general purpose

loss-less compression schemes [Pennebakerl93] may be applied to the bit stream resulting from these
approaches, they will not be considered in our comparison.
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Anarray of triangles is the smplest representation of a triangle mesh, It represents each triangle independently
by thelist of its vertex and norma coordinates, each represented by a 4 byte floating point number. Hence the
number of bits per vertex for this simple representation of atriangle mesh of V verticesis 1152, the product of the
following terms:

e 2 triangles per vertex

3 vertex uses per triangle

2 vectors (vertex location and normal) per vertex use

3 coordinates per vector

4 bytes per coordinate

» 8 hits per byte

Note that a vertex is on average adjacent to 6 triangles and therefore, there are 6 vertex uses (i.e., descriptions of
the same vertex (geometry and photometry) stored in the simple representation above, which does not need to
encode explicitly the triangle-vertex incidence relation, since it is dictated by the place of the vertices in the
data stream.

This redundancy can be eliminated by dissociating the representation of the vertices (location and normal) from
the representation of the incidence relation, which requires 3 vertex references per triangle. Because a vertex
reference often requires less bits than a vertex description, such schemes based on a vertex and normal table
are more compact than the simple representations. In our example, if we store vertices in a table and reference
them by an integer index, we need 16 bits for each vertex reference, since V=2"°. Consequently, the vertex and
normal table representation requires 288 bits per vertex. 192 bitsfor the geometry and photometry:

»  2vectors (vertex location and normal) per vertex

* 3 coordinates per vector

e 4 bytes per coordinate

e 8 hits per byte

and 96 bitsfor the incidence information:

e 2triangles per vertex

o 3 vertex references per triangle

* 16 bits per vertex reference

However, such a compression scheme requires random access to the vertices, which is acceptable in graphics
systems with software geometry processing, but not suitable for fully hardware graphics systems, where there is
limited register memory for a few vertices and associated normals.

A representation based on triangle strips, supported by popular graphics APIs, such as OpenGL [Neider93], is
used to provide agood compromise for graphics. It reduces the repeated use of vertices from an average of 6to an
average of 2.4 (assuming an average length 10 triangles per strip, which is not easily achieved) and is compatible
with the graphics hardware constraints. Basically, in a triangle strip, a triangle is formed by combining a new
vertex description with the descriptions of the two previously sent vertices, which are temporarily stored in two
buffers. The first two vertices are the overhead for each strip, so it is desirable to build long strips, but the
automation of this task remains a challenging problem [Evans96].With our assumptions, triangle strips require 461
bits, the product of the following terms:

e 2 triangles per vertex

1.2 vertex uses per triangle

2 vectors (vertex location and normal) per vertex use

3 coordinates per vector

4 bytes per coordinate

8 bits per byte

The absence of the swap operation in the OpenGL further increases this vertex-use redundancy, since the same
vertex may be sent several times in a triangle strip to overcome the left-right-left-right patterns of vertices
imposed by OpenGL. This latter constraint does not affect the suitability of triangle strips for data compression.

Because on average a vertex is used twice, either as part of the same triangle strip or of two different ones, the
use of triangle strips requires sending most vertices multiple times. Deering's generalized strips [Deering95]
extend the two registers used for OpenGL triangle stripsto a 16 registers stack-buffer where previous vertices may
be stored for later use. Deering generalizes the triangle strip syntax by providing more general control over how
the next vertex is used and by alowing the temporary inclusion of the current vertex in the stack-buffer and the
reuse of any one of the 16 vertices of the stack-buffer. One bit per vertex is used to indicate whether the vertex
should be pushed onto the stack-buffer. Two bits per triangle are used to indicate how to continue the current gtrip.
One hit per triangle indicates whether the next vertex should be read from the input stream or retrieved from the
stack. 4 bits of address are used for randomly selecting a vertex from the stack-buffer, each time an old vertex is
reused. Assuming that each vertex is reused only once, the total cost for encoding the connectivity information is:
1+4 bits per vertex plus 2+1 bits per triangle. Assuming 2 triangles per vertex, this amounts to 11 bits per vertex.
Algorithms for systematically creating good traversals of general meshes using Deering's generalized triangle
mesh syntax are not available and naive traversal of arbitrary meshes may result in many isolated triangles or
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small runs, implying that a significant portion (for example 20%) of the vertices will be sent more than once, and
hence increasing the number of incidence bits per vertex to 13. Deering also proposed to use coordinate and
normal quantization and entropy encoding on the vertex coordinates expressed in a local coordinate system and
on the normal coordinates to reduce the geometric and photometric storage costs. Basically, a minimax box
around the mesh is used to define an optimal resolution coordinate system for the desired number of bits.

This quantization (which results from the integer rounding of the vertex coordinates to the units of thelocal
coordinate system) is a lossy compression step. Deering then further compresses the coordinates by using an
optimal variable length coding for the most frequent values of the discrete vertex coordinates and normal
parameters. Because lossy compression schemes are difficult to compare, we will assume that a vertex-normal
pair can be encoded using 48 bits per vertex for the geometry and photometry. Deering reports about 36 bits for
the geometry alone. This yields a total of 61 bits per vertex.

Hoppe's Progressive Meshes [Hopped6] define each vertex the identification of 2 incident edges in the
previously constructed mesh, and a displacement vector for computing the location of the new vertex from the
location of the common vertex to these two edges The construction is illustrated in Figure 5. Given that there are
3 times more edges than vertices, an index for identifying the first edge takes 18 bits. Given that there are an
average 10 edges adjacent to an edge, we need 4 extra bits to identify the second edge The total connectivity
storage cost per vertex would then be 22 hits. An entropy coding could further reduce this cost. Hoppe actually
uses a vertex index to identify the shared vertex (which would require 16 bits in our example) and a combined 5
bit index identifying the two incident edges, resulting in 21 bits per vertex for the incidence.

Because Hoppe's corrective vectors are in general shorter than Deering's relative vectors, a Huffman coding
should further improve the geometric and photometric compression. For simplicity, we will use the same cost for
the geometry and photometry of 48 bits per vertex. The total reaches &8 bits per vertex, but the advantage of
Hoppe's scheme lies not in its compression benefits, but in its suitability for scaleable model transmission, where
arough model is sent first and then a sequence of vertex insertion operations is sent to progressively refine the
model. A progressive model is generated by storing in inverse order a sequence of simplifying edge collapses.

Figure 5: Two adjacent edges are identified (left). These edges are duplicated to produce a
cut. The replicated instance of their common vertex is displaced the specified displacement
vector (center). This creates a gap, which implicitly defines two new triangles.

Under the assumption that all vertex coordinates are available for random access during decompression, Taubin
and Rossignac’'s Topological Surgery method [Taubin96] yields results comparable to Hoppe's Progressive
Meshes for the geometric and photometric compression (48 bits per vertex) and improves on Deering’'s approach
for coding the incidence information by a factor of 4 (about between 2 and 4 bits, depending on the incidence
graph). Thisyields atotal of 52 bits. The approach is reviewed in more details in thisreport.

Estimating ssimplification errors

A simplification process takes a triangulated surface S and produces a simplified triangulated surface S. The
error that may be perceived whenusing S’ instead of Sin a scene depends on the shape of S and S and also n
the viewing conditions (size and orientation of the shape on the screen). It is vital to have a precise eror
evaluation or at least a tight and guaranteed upper bound on the error, otherwise, simplification schemes may
produce simplified models that are not suitable substitutes for the original shape. The error bound will guide our
selection of the appropriate level of detail that meets the desired graphics fidelity.

Although the image is defined only by the color components displayed at each pixel, it is useful to distinguish
two types of errors: geometric errors (how far are the pixels from where they should be) and color errors (how
do the pixels covered by the same feature of the shape differ in color), when evaluating the accuracy of a
simplification technique. These two errors are discussed below.

Since, in general, we cannot predict the viewing conditions, a view-independent error estimation is usualy
computed during simplification and used during rendering to guide the choice of level of detail. To make this
possible, one needs to compute an view-independent error representation that leads to a simple and efficient
estimation of the corresponding view-dependent error. For example, if the a point on the surface was displaced
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along the normal to that surface by a vector D, the perceived error will depend on the projected size of D on the
screen and on the resulting side effects (for instance the changes in the orientation of the surrounding faces).
Hence, the worst viewing conditions for the geometric error may occur when the vector D is orthogonal to the
viewing direction, while the worst viewing condition for the color error depends on the relative orientation of the
light sources, but will typically be proportional to the area occupied on the screen by the faces whose shape was
altered by the displacement of the point. Onaverage, this area is the largest when D is paralel to the viewing
direction. From this example, it should be clear that it is rather difficult to provide atight bound on the color error
and that it is useful to consider separately the tasks of estimating the two errors.

Hausdor ff estimate of the geometric error

Several simplification techniques reported in the literature fail to provide a proper error bound and use instead
heuristic estimates to guide the simplification process or the selection of the level of detail during rendering.
Such strategies often results in simpler algorithms and sometimes to faster processing, and lead to impressive
demonstrations. They may be well suited for many entertainment applications, but may not be appropriate for
professional applications, where unexpectedly high errors may mislead the users.

Severa techniques have been proposed for computing a provable upper bound on the geometric error.  They
cover a wide spectrum of compromises between the simplicity of the calculations, the performance of the
preprocessing steps, and the tightness of the bound.

The geometric error may be measured using theHausdorff distance between S and S, defined as
H(S,S')=max(dev(S,S'),dev(S'S)), where dev(A,B)=max(dist(a,B)) for &A, and dist(a,B)=min(|la=b]) for
b(IB. It measures the worst case distance that a point on one surfaces would have to travel to reach the other
surface. Note that H is a symmetric version (i.e, H(A,B)=H(B,A)) of the deviation, dev(A,B), of A from B, and
is not to be confused with the minimum distance, dist(A,B), between the two surfaces, as illustrated in Figure 6.

(A )

dev(A,B)

—— H(AB
<>

Figure 6: In this example, dist(A,B)=0 because the two sets intersect. The Hausdorff distance
H(A,B) between the two sets is equal to the deviation, dev(B,A), but not to the deviation
dev(A,B).

The Hausdorff distance provides a bound on the maximal geometric deviation between the two shapes and hence
provides the maximum distance between a point on the profile (i.e. visible silhouette) of one object and the
profile of another. We use the term profile to refer to visible edges that are adjacent to at least one front facing
and one back facing face. Note that although the profile is a notion that depends on the view, the Hausdorff
distance is not. The Hausdorff distance captures the worst case situation, where the line joining a point on one
surface and its closest counterpart on the other surface is orthogonal to the viewing direction.

Although the Hausdorff distance of zero between two sets indicates that the sets are identical, in general, the

Hausdorff distance is not a good measure of shape similarity, nor of proximity of surface orientation between two
shapes (see Fig. 7 for a counterexample).

5]

Figure 7: When translated for perfect alignment, these two shapes will have a relatively small
Hausdorff distance, yet they differ significantly in their shape and structure.
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The cost of computing the Hausdorff distance between two polyhedra is significant, because it does not suffice to
check the distances between all the vertices of one set and the other set. One must also beable to detect
configurations where the Hausdorff distance is realized at points that lie in the middle of faces. Figure 8
illustrates this concept in two dimensions. Consequently, simpler, although less precise bounds are often used.

N L

Figure 8 The Hausdorff distance between the two polygons is realized at a point on and edge,
not at a vertex.

A geometric error bound based on vertex displacement

Because triangles are linear convex combinations of vertices, if no vertex of a triangleT has moved by more
than a distance D then no interior point in T has either. Consequently, if we keep track of how much we move the
original vertices, we will have an upper bound on the total error. Both vertex clustering and edge collapses may
be viewed as atwo step process:

1 Move selected vertices without changing the incidence graph,

2. Change the incidence graph to remove degenerate triangles without changing the geometry.

Voxels or octrees that contain the boundary may also be used to define tolerance zones for safe simplification
steps within a prescribed tolerance [Airey90].

When the vertices of a cluster are collapsed into a single representative vertex, the maximum error is the
maximum distance between the original vertices of the cluster and their representative vertex. This computation
requires only one pass through the vertices of the cluster after the representative vertex was chosen. An even less
expensive although more pessimistic error bound may be obtained by using half the length of the diagona of a
cell used for vertex quantization.

Although the same approach may be used for the first round of edge collapses, as clusters of vertices resulting
from an previous edge collapses are merged into larger clusters, it becomes more expensive to keep track of all
the vertices and to check their distance from the representative vertex. A pessimistic, yet simple estimate would
be to use the maximum of the sum of all the length of the path from the representative vertex to the leaves of an
edge collapse hierarchy.

A geometric error bound based on distances to supporting planes

Vertex displacement provides a rather pessimistic error bound. Imagine for example a simplification of a dense
triangulation of aflat portion of aterrain. Although vertices may move during edge collapse or vertex clustering
operations, the represented geometry remains flat, and therefore the error is zero. Ronfard and Rossignac have
introduced an error estimator which measures the displacement of vertices in the direction orthogona to their
incident faces [Ronfard96]. Their estimator computes the maximum distance from the new location P of the
vertex to al the supporting planes of the vertices that have collapsed into P. This estimator works well for flat
and nearly flat regions, but may not provide an upper bound close to sharp vertices, as shown in Figure 9. In the
cases of sharp corners, the authors introduce an additional plane which suffices to guarantee a precise upper
bound on the error.

Figure 9: The thfee successive edge collapses bring 2 other vertices into the same location as
athird vertex (marked left). The error is estimated by computing the maximum deviation of
these three to the set of lines that support their incident edges. However, in sharp corners, the
lines are almost parallel and the vertex could move far before the distance to the supporting
lines for the incident edges in its initia position exceed the alowed threshold (right).
Therefore, an additional line is introduced to limit this excursion.

Minimizing color errors
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The color error is somewhat more subjective, because it requires computing distances in color space, and also
harder to control, because slight variation in face orientations may result in considerable variation in specular
reflections. Such color errors are best addressed by using photometric properties that are not affected by surface
orientation, such as texture maps.

Note that using for the simplified model the normals of the original model may produce excellent results for faces
that are roughly orthogonal to the viewing directions, but may produced undesirable black spots in situations
where the face is till facing the viewer, but the normal inherited from the original model is not, end hence leads
to ablack color for the corresponding vertex.

Rossignac and Borrd’svertex quantization

The geometric simplification introduced in [Rossignac93] is aimed at very complex and fairly irregular CAD
models of mechanical parts. It operates on boundary representations of an arbitrary polyhedron and generates a
series of simplified models with a decreasing number of faces and vertices. The resulting models do not
necessarily form valid boundaries of 3D regions-for example, an elongated solid may be approximated by a curve
segment. However, the error introduced by the simplification is bounded (in the Hausdorff distance sense) by a
user-controlled accuracy factor and the resulting shapes exhibit a remarkable visual fidelity considering the data-
reduction ratios, the simplicity of the approach, and the performance and robustness of the implementation.

The original model of each object is represented by a vertex table containing vertex coordinates and a face table
containing references to the vertex table, sorted and organized according to the edge-loops bounding the face.
The simplification involves the following processing steps:

1 grading of vertices (assigning weights) as to their visual importance

2. triangulation of faces

3. clustering of vertices

4. synthesis of the representative vertex for each cluster

5. elimination of degenerate triangles and of redundant edges and vertices
6. adjustment of normals

7. construction of new triangle strips for faster graphics performance
Grading

A weight is computed for each vertex. The weight defines the subjective perceptual importance of the vertex. We
favor vertices that have a higher probability of lying on the object's silhouettes from an arbitrary viewing direction
and vertices that bound large faces that should not be affected by the removal of small details. The first factor
may be efficiently estimated using the inverse of the maximum angle between all pairs of incident edges on the
candidate vertex. The second factor may be estimated using the face area.

Note that in both cases, these inexpensive estimations are dependent on the particular tessellation. For example,
subdividing the faces incident upon a vertex will ater its weight although the actual shape remains constant.
Similarly, replacing a sharp vertex with avery small rounded sphere will reduce the weight of the corresponding
vertices, although the global shape has not changed. A better approach would be to consider the local morphology
of the model (estimate of the curvature near the vertex and estimate of the area of flat faces incident upon the
vertex (see [Gross95] for recent progress in this direction).

Triangulation

Each face is decomposed into triangles supported by its original vertices. Because CAD models typically contain
faces bounded by a large number of edges, a very efficient, yet simple triangulation technique is used
[Ronfard94]. The resulting table of triangles contains 3 vertex-indices per triangle.

Note that attempting to simplify non-triangulated faces will most probably result in non-flat polygons. On the
other hand, it may be beneficial to remove very small internal edge loops from large faces prior to triangulation.
This approach will significantly reduce the triangle count in mechanica CAD models, where holes for fasteners
are responsible for amajor part of the model’s complexity. Simplifying triangulated models without removing
holes will not create cracks in the surface of the solid and will not separate connected components, Removing
holes prior to simplification may result in separation of connected components or in the creation of visible cracks.

Clustering

The vertices are grouped into clusters, based on geometric proximity. With each vertex, we associate the
corresponding cluster'sid. Although a variety of clustering techniques was envisioned, we have opted for a simple
clustering process based on the truncation (quantization) of vertex coordinates. A box, or other bound, containing
the object is uniformly subdivided into cells. After truncation of coordinates, the vertices falling within a cell will
have equal coordinates. A cell, and hence its cluster is uniquely identified by its three coordinates. The clustering
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procedure takes as parameters the box in which the clustering should occur and the maximum number of cells
along each dimension. The solid's bounding box or acommon box for the entire scene may be used. Thenumber
of cells in each dimension is computed so as to achieve the desired level of simplification. A particular choice
may take into account the geometric complexity of the object, its size relative size and importance in the scene,
and the desired reduction in triangle count. The result of this computation is a table (paralel to the vertex table)
which associates vertices with cluster indices (computed by concatenating cluster integer coordinates).

This approach does not permit to select the precise triangle reduction ratio. Instead, we use a non-linear estimator
and an adaptive approach to achieve the desired complexity reduction ratios. For instance, given the size and
complexity of a particular solid relative to the entire scene, we estimate the cell size that would yield the desired
number of triangles, we run the simplification, and if the result is far from our estimate, we use it for adifferent
level of detail and adjust the cell size appropriately for the next simplification level.

Synthesis

The vertex/cluster association is used to compute a vertex representative for each cluster. A good choice is the
vertex closest to the weighted the average of the vertices of the cluster, where the results of grading are used as
weights. Less ambitious choices, permits to compute the cluster's representative vertices without reading the
input data twice, which leads to important performance improvements when the input vertex table is too large to
fit in memory. Vertex/cluster correspondence yields a correspondence between the origina vertices and the
representative vertices of the simplified object. Thus, each triangle of the original object references three original
vertices, which in turn reference three representative vertices. (Note that representative vertices are a subset of
the original vertices, although a simple variation of this approach will support an optimization step that would
compute new locations of the representative vertices.) The representative vertices define the geometry of the
triangle in the simplified object.

The explicit association between the original vertices and the simplified ones permits to smoothly interpolate

between the original model and the simplified one. The levels of detail may be computed in sequence, starting

from the original and generating the first simplification, then starting with this simplified model and generating

the next (more simplified) model and so on. This process will produce a hierarchy of vertex clusters, which may

be used to smoothly interpolate between the transitions from one level to the next, and hence to avoid a
distracting popping effect. We have experimented with such smooth transitions and concluded that, although

visualy pleasant, they benefit did not justify the additional interpol ation and book-keeping costs. Indeed, during

transition phases, the faces of a more detailed simplification must be used when the lower level of detail may

suffice to meet the desired accuracy. For example, consider that simplification 2 contains 1000 triangles and

corresponds to an error of 0.020, and that simplification 3 contains 100 triangles and corresponds to an error of

0.100. If the viewing conditions impose an error cap of 0.081, we could use simplification 2 alone and display

only 100 triangles. If however we chose to use a smooth interpolation between consecutive levels in the transition

zone for errors between 0.080 and 1.020, we would have not only to compute a new position for 500 vertices as a
linear combination of two vertices, but we will have to display 1000 triangles. Consequently, the smooth

interpolation will result in significant runtime processing costs and in an order of magnitude performance drop for

this solid. Assuming uniform distribution, this penalty will be averaged amongst the various instances (only 40%

of instances would be penalized at a given time). The total performance is degraded by afactor of 4.6.

Also note that in order to prevent the accumulation of errors, when a level of detail is computed by simplifying
another level of details, the cells for the two simplification processes should be aligned and the finer cells should
be proper subdivisions of the coarser cells.

Elimination

Many triangles may have collapsed as the result of using representative vertices rather than the original ones.
When, for agiven triangle, all three representative vertices are equal, the triangle degenerates (collapses) into a
point. When exactly two representative vertices are equal the triangle degenerates into an edge. Such edges and
points, when they bound a triangle in the simplified object are eliminated. Otherwise, they are added to the
geometry associated with the simplified model. Duplicated, triangles, edges, and vertices are eliminated during
that process. Efficient techniques may be invoked, which use the best compromise between space and
performance. When the number of vertices in the simplified model is small, a simple hashing scheme
[Rossignac93] will yield an almost linear performance. When the number of vertices in the simplified model is
large, duplicated geometries may be eliminated at the cost of sorting the various elements. The approach of
[Rossignac93] has been re-engineered at IBM Research by Josh Mittleman and included in IBM's 3D Interaction
Accelerator system [3DIX]. The implementation uses a few simple data-structures and sorting to achieve O(V)
space and O(V log V) time complexities for a solid containing V' vertices.

Adjustment of normals

This step computes new normalsfor all the triangles coordinates. It uses a heuristic to establish which edges are
smooth. The process also computes triangle meshes. We use a face clustering heuristics which builds clusters of
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adjacent and nearly coplanar faces amongst al the incident faces of each vertex. An average norma is
associated with the vertex-use for all the faces of a cluster.

Generation of new triangle strips
Because each simplification reduces the model significantly, it is not practical to exploit triangle strips computed
on the original model. Instead, we re-compute new triangle strips for each simplified model.

Runtimelevel selection

Several levels of detail may be pre-computed for each object and used whenever appropriate to speed W
graphics. In selecting the particular simplification level for agiven object, it is important to take into accounts
the architecture of the rendering subsystem so as not to oversimplify in situations where the rendering process is
pixel bound. For example, the cost of rendering in software and in a large window an object that has a relatively
low complexity but fills most of the screen is dominated by R. Consequently, simplification will have very little
performance impact, and may reduce the image fidelity without benefit. On the other hand, displaying a scene
with small, yet complex objects, via a software geometric processing on a fast hardware rasterizer will be
significantly improved by simplification before the effects of using simplified models become noticeable.

Isolated edges, that result from the collapsing of some triangles may be displayed as simple edges whose width is
adjusted taking into account their distance to the viewer.

Advantages and implementation
The process described above has several advantages over other simplification methods:

e The computation of the simplification does not require the construction of a topological adjacency graph
between faces, edges, and vertices. It works of a simple array of vertices and of an array of triangles, each
defined in terms of three vertex-indices.

«  The algorithm for computing the simplification is very time efficient. In its simplest form, it needs to traverse
the input data (vertex and triangle tables) only once.

e The tolerance (i.e. bound on the Hausdorff distance between the origina and simplified model) may be
arbitrarily increased reducing the triangle count by several ordersof magnitude.

e To further reduce the triangle count, the simplification algorithm may produce non-regularized models.
Particularly, when using the appropriate tolerance, thin plates may be simplified to danglingfaces, long
objects to isolated edges, and (groups of) small solids into isolated points.

«  The approach is not restricted by topological adjacency constraints and may merge features that are
geometrically close, but are not topologically adjacent. Particularly, an arbitrary number of small
neighboring isolated objects may be merged and simplified into a single point.

e The simplification algorithm was combined with the data importmodules of IBM's 3D Interaction
Accelerator and exercised on hundreds of thousands of models of various complexity. It exhibits a
remarkable performance characteristics, making it faster to re-compute simplifications than to read the
equivalent ASCII files from disk. The agorithm pre-computes several levels of detail, which are then used at
run time to accelerate graphics during interaction with models comprising millions of triangles. The
particular simplification level of a given object is computed so as to match a user specified performance or
quality target while allocating more geometric complexity (and thus more rendering cost) to objects which a
higher visual importance.

¢ Our experience shows that typical CAD models of mechanical assemblies comprise dozens of thousands of
objects. The relative size and complexity of the objects may vary greatly. A typica object may have a
thousand triangles in its original boundary. The simplification process described here may be used to
automatically reduce the triangle count by an average factor of 5 without impacting the overall shape and
without hindering the users ability to identify the important features. Further simplifications lead to further
reduction of the triangle count, all theway downto a single digit, while still preserving the overall shape of
the object and making it recognizable in the scene. This simplification process has been further improved to
yield a better fidelity/complexity ratio by incorporating topological and curvature considerations in the
clustering process. However, these improvements only lead to additional computational costs and more
complex code.

ThIS approach was recently improved by Low and Tan [Low97], who suggest:
a better grading of vertices (use cos(a/2) rather than 1/a, where a is maximum angle between all pairs of
incident edges),

« afloating-cell clustering where the highest weight vertex in a cell attracts vertices in its vicinity from
immediately adjacent cells,

e shading edges that approximate elongated objects.
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Ronfard and Rossignac’s edge collapsing

The principle of the edge-collapsing approaches is to iteratively collapse pairs of vertices that are connected by
an edge of the polyhedron into a single new vertex that may be positioned at one of the original two vertices or in
anew position, so as to minimize the error resulting from the transformation. The main differences between the
various approaches lie in the techniques for estimating an error bound associated with each candidate edge and
the optimization criteria for positioning the new vertex.

The technique developed by Ronfard and Rossignac at IBM Research [Ronfard96] associates with each vertex a
compact description of the planes that support each of the incident triangles and possibly additional planes
through sharp incident edges. These are used to define and evaluate approximation constraints. The user may wish
for example to ensure that no vertex moves further away from each one of these planes than a prescribed
distance. The maximum distance between a point and these planes is used as an error bound estimator. The
advantage of this criteria for error estimation lies in the fact that it enables vertices to travel far away from their
original location along nearly planar regions.

Initially, an error estimate is computed for each edge collapsing operation and the edges are sorted in a priority
queue. At each step, the best edge is chosen, so as to minimize the total error estimate. When two vertex clusters
are merged, their constraints (lists of planes) are merged and possibly pruned to keep the lists short.

Each collapsing operation only alters immediate neighbors and therefore, the a new error bound for each one of
the neighboring edges may be quickly estimated and the priority queue updated.

Advantages and drawbacks

The method guarantees a tight error bound and permits to move vertices further away from their original location
as long as they move along nearly parallel faces. Consequently, it produces much lower triangle counts than the
vertex clustering method for the same error bound.

However, this method requires maintaining a face-edge-vertex incidence graph and special treatment to alow
topological changes, such as the elimination of collapsed holes (see also [He96)).

Gueziec's volume preserving smplification

Gueziec's agorithm, developed at IBM Research, preserves the volume of the origina polyhedron during
simplification [Gueziec96], It favors the creation of near-equilateral triangles. Gueziec computes an upper bound
to the approximation error and reports this bound using a novel tool, the error volume, which is constructed by
taking the union of balls centered on the surface, whose radii, the error values vary linearly between surface
vertices. Gueziec guarantees that the error will be less than user specified tolerances, which can vary across the
surface, as opposed to a single tolerance. An originality of his method is that errors and tolerances are defined
with respect to the simplified surface, as opposed to the original surface.

Following the approach of [Ronfard96], the algorithm uses a greedy strategy based upon the edge collapsing
operation. Edges are weighted and sorted in a priority queue. Before collapsing the edge with the lowest weight
into a simplified vertex, tests determine whether the simplification is appropriate. The simplified vertex is
positioned such that the volume enclosed by a closed surface will stay the same. Gueziec shows that the
simplified vertex must lie on a specific plane. On that plane, the vertex position minimizes the sum of squared
distances to the planes of the edge star, which corresponds to minimizing a sum of distances to lines in the plane.
Once the optimum position of the simplified vertex is found, Gueziec verifies that the triangle orientations are not
perturbed by a rotation exceeding a user specification. Also, he verifies that the minimum value for the triangle
aspect ratios, as measured with the triangle compactness or ratio between area and perimeter, is not degraded in
excess of a pre-specified factor.

Gueziec also determines the effect of the edge collapse on the overall approximation error, and tests whether it is
tolerable. Theerror volume is initialized with error values equal to zero, or with positive error values reported by
a previous simplification process. As the simplification progresses, the error values at the remaining vertices are
gradually updated. In a manner similar to Russian Doalls, a hierarchy of nested error volumes is built such that
each new volume is guaranteed to enclose the previous error volume. A linear optimization is performed to
compute error estimates that minimize their overall error volume. The simplification stops in a particular region
when the width of the error volume reaches the tolerance. Assuming that a bound to the maximum valence at a
vertex is respected, Gueziec shows that the overall computational complexity of his method is sub-quadratic in
the number of edges of the surface.
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The agorithm has the following limitations: Since it deals with the problem of finding a suboptimal
approximation with a given error bound, it cannot guarantee that a given triangle reduction can be obtained, nor
can it guarantee that a it reaches the minimum number of triangles. The current implementation is
computationally intensive, mainly due to a linear programming step used for maintaining dynamically the error
volume. Finally, although a pre-processing step could assign vertex tolerances that would prevent surface self-
intersections, the current program allows them where tolerance volumes overlap. The algorithm assumes that the
topology of the input surface is that of a manifold; this property is then also verified for the output surface.

Kalvin and Taylor’s face-merging

Although it is domain independent, the Superfaces algorithm has been originally developed by Alan Kalvin and
Russ Taylor a IBM Research for simplifying polyhedral meshes [Kalvin96] that result from building iso-surfaces
of medical data-sets. The simplification is based on a bounded approximation criterion and produces a simplified
mesh that approximates the original one to within a pre-specified tolerance. The vertices in the simplified mesh
are a proper subset of the original vertices, so the algorithm is well-suited for creating hierarchical representations
of polyhedra.

The algorithm simplifies amesh in three phases:

e Superface creation: A “greedy”, bottom-up face-merging procedure partitions the origina faces into
superface patches.

e« Border Straightening: The borders of the superfaces are simplified, by merging boundary edges into
superedges,

e Superface Triangulation: Triangulation points for the superfaces are defined. In this phase, a single superface
may be decomposed into many superfaces, each with its own boundary and triangulation point.

Advantages and drawbacks

The Superfaces algorithm has the following advantages:

e Ituses abounded approximation approach which guarantees that a simplified mesh approximates the original
mesh to within a pre-specified tolerance. That is, every vertex v in the original mesh is guaranteed to lie
within a user-specified distance of the simplified mesh. Also, the verticesin the simplified mesh are a subset
of the original vertices, so there is zero error distance between the simplified vertices and the original
surface.

e ltis fast. The face-merging procedure is efficient and greedy-- that is, it does not backtrack or undo any
merging once completed. Thus the algorithm is practical for simplifying very large meshes.

e |tis agenera-purpose, domain-independent method.

Disadvantages of the Superfaces algorithm are:

e It can produce simplified surfaces that self-intersect.

e Thecurrent triangulation procedure (that uses no Steiner points) can produce skinny triangles, that are not
desirable for rendering.

Taubin and Rossignac's 3D compression by topological surgery

The Topological surgery method for compressing the incidence relation is based on the following observations:

*  Giventhe simply connected polygon that bounds a triangle strip and the selection of a starting seed edge,
the internal triangulation of the strip may be encoded using one bit per triangle. This bit simply states
whether one should advance the left or the right vertex of a progressing edge that sweeps the entire strip
starting at the seed edge and moving its vertices one at atime along the boundary of the strip. (Note that if
the strip was aregular alternations of left and right moves, we would need zero bits.)

e Given a set of non-overlapping triangle strips that cover the surface of a polyhedron and union of their
boundaries identifies a set of “cut” edges. Each cut edge is used exactly twice in the boundary of the same
or of different strips.

e A vertex spanning tree formed by selecting the minimum number of edges of the polyhedron that connect all
the vertices but do not create loops cuts the boundary a single shell, genus zero, manifold polyhedron into a
simply connected topological polygon that may be decomposed into the union of triangle strips. These strips
and their adjacency may be encoded as a binary spanning tree of the triangles of the mesh.

e  Cutting strategies that produce vertex and triangle spanning trees with few nodes that have more than one
child lead to very efficient schemes for compressing the trees. Although encoding general trees and graphs is
much more expensive [Jacobson89], the expected cost of our encoding is less than a bit per vertex. One
basically needsto encode the length of a run of consecutive nodes that have a single child and the overall
structure of the tree (which requires 2 bits for each node with more than one child.)
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¢« The handling of non-manifold polyhedra and of meshes with higher genus is possible through simple
extensions of this approach.

e The order imposed on the vertices by the vertex spanning tree may be exploited for computing good
estimates for the location of the next vertex from the location of its 3 or 4 ancestors in the tree. Entropy
coding the differences between the actual location and the estimate results in better compression for the
geometric information than coding the absolute coordinates, because the coordinates of the difference vector
are smaller on average.

The details of this approach may be found in [Taubin96].

Turan has shown that the incidence of a simple mesh can be encoded using 12 bits per vertex [Turan84].
However, Turan's study focused on the problem of triangulating a labeled graph. Taubin and Rossignac use the
order of the vertices (i.e. a permutation on the vertex labels) to capture some of the incidence relation, and hence
are able to reduce further improve the compression by afactor of 3.

Scaleable models

In order to support remote viewing of highly complex models, the user must be able to download a low resolution
model and start using it while more detailed model description is still being transferred. Hoppe's progressive
meshes [Hoppe96], discussed earlier, are suitable for such an adaptive scheme.

Furthermore, to accelerate graphics, it is important to transfer the different parts of the scene at different
resolutions (models close to the viewer should receive more details early on, while distant models may never
need to be displayed | full detail. Although the progressive mesh representation supports multi-resolution adaptive
simplification, the constraints imposed on the order in which vertices may be inserted make it ill suited for
adaptive LOD generation. Indeed, the system may often be forced to expand distant edges simply to create
vertices whose descendants are needed to expand nearby edges. A more localized approach may be more
effective.

Conclusion

Although the performance of state of the art hardware graphics and the internet bandwidth are growing rapidly,
price constraints and the growing needs of industrial customers call for algorithmic solutions that improve the
speed of visualizing and transmitting complex 3D scenes. We have presented severa techniques, which
automatically computes one or several simplified graphics representations of each object. These representations
may be used selectively in lieu of the original model to accelerate the display process while preserving the
overall perceptual information content of the scene. The described methods clusters vertices of the model and
produces an approximate model where original faces are approximated with fewer faces defined in terms of
selected vertices. Several simplified representations with different simplification factors may be stored in addition
to the original model. Actual viewing conditions are used to establish automatically for each object which
representation should be used for graphics. We have aso reviewed several techniques for compressing the
geometry, the incidence, and the photometry of a triangulated model. The best results yield a 20:1 compression
ratio over naive representation schemes.
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