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Abstract

Increasingly, systems are composed from independently
developed parts, and mechanisms that allow those parts to
interact (connectors). In many situations, specialized forms
of interaction are needed to bridge component mismatches
or to achieve extra-functional properties (e.g., security, per-
formance, reliability), making the design and implementa-
tion of these interaction mechanisms a critical issue. Unfor-
tunately, system developers have few options: they must live
with available, but often inadequate, generic support for in-
teraction (such as RPC), or they must handcraft specialized
mechanisms at great cost. In this paper we describe a par-
tial solution to this problem, whereby interaction mecha-
nisms are constructed compositionally. Specifically, we de-
scribe a set of operators that can transform generic commu-
nication mechanisms (such as RPC and publish-subscribe)
to incrementally add new capabilities. We show how these
transformations can be used to realize complex interactions
(such as Kerberized RPC) and to generate implementations
of the new connector types at relatively low cost.

1. Introduction

Increasingly, complex software systems are being con-
structed from reusable, independently-written software
components. These components are connected by software
mechanisms which allow them to communicate. Consider
an n-tier client-server system; the server component and
the database component may each have been acquired sep-
arately, while the middleware enabling the two to interact
may have been written by yet a third party.

The design and implementation of a system’s interaction
mechanisms is a critical issue. Generic forms of compo-
nent interaction, such as RPC, are not always sufficient for
complex systems. Specialized forms of interaction are of-
ten needed simply to make the parts of the system work to-
gether, as well as to achieve desirable extra-functional prop-
erties such as performance, security, or reliability. For ex-

ample, the server component and database component con-
sidered above may not agree on the data format, necessi-
tating on-the-fly conversion. A different software system
might require compensation for different control mecha-
nisms (such as synchronous versus asynchronous), or sup-
port for system monitoring and debugging. Similarly, one
might need to enforce security mechanisms such as authen-
tication, or improve performance through caching.

Unfortunately, at present it is difficult to create the
semantically rich connectors that these software systems
need. Architects have two choices when selecting connec-
tor types for a system design: use an existing off-the-shelf
connector, or a new specialized connector for which no im-
plementation yet exists. Neither alternative is adequate. On
the one hand, it is not always possible to find an existing
connector that can meet the needs of the system. On the
other hand, creating a new connection mechanism is well
known to be difficult and costly, typically requiring low-
level knowledge of operating systems, communication pro-
tocols, and auxiliary mechanisms such as stub generators.
The situation is compounded by the need to combine multi-
ple interaction capabilities in a connector. For example, one
might want to use both caching and communication moni-
toring, or authenticated RPC and encryption. This leads to a
combinatorial explosion in the number of useful interaction
mechanisms. The cost of implementing each combination
as a monolithic, handcrafted form of connection quickly be-
comes prohibitive; a new approach is required.

What is needed is a way to produce new kinds of connec-
tors systematically and at low cost. This would be possible
if we could construct new connectors compositionally. An
architect desiring a new connector type would select a basic
connector type such as RPC (representing an existing in-
teraction mechanism implementation), which could then be
augmented with selected adaptations to produce more com-
plex connector types appropriate for the software system be-
ing designed. System generation tools would then compile
those enhancements into new run time mechanisms adapted
to the problem at hand.

In the remaining sections we describe steps towards re-



alizing such an approach. We begin by motivating the prob-
lem. Next we enumerate a set of operators that can in-
crementally add new capabilities to generic communica-
tion mechanisms (such as RPC and publish-subscribe). We
show how these operators can be used in combination to re-
alize complex interactions, giving examples in security and
dependability. The contributionsof this work are three-fold:
first, a different, compositional way to think about con-
nectors; second, techniques for translating the modification
of a connector from architectural concept into implemen-
tation; third, convenient encapsulation of a set of patterns
for changing extra-functional, quality-of-service aspects of
a software system.

2. Related work

There are four main areas of related work: software ar-
chitecture; protocols and their formal analysis; generating
implementations; and design patterns.

The first area is software architecture, in which the
treatment of connectors as first-class entities was intro-
duced [12, 1]. When component interactions are embodied
at the level of architectural design asconnectors, this en-
ables the system designer to make interactions explicit and
easy to identify, to attach semantics, and to capture abstract
relations. Some work has been done toward a conceptual
framework for classifying connectors [9] to facilitate un-
derstanding of them. First-class treatment of connectors
also enables their formal specification and analysis, inde-
pendent of the components they connect [1]. For example,
formal analysis of the High Level Architecture (HLA) for
Distributed Simulation [2], a proposed connector, revealed
interesting flaws; the work on the HLA is additionally of
interest due to its concern for how specific connectors can
be built up in a traceable and modular way. Also related are
techniques for resolving architectural mismatch. When two
mismatched components are unable to communicate via ex-
isting connectors, one option is to construct or modify a
connector that will resolve the mismatch [13]. Sometimes
component wrappers are used. Another technique, Flexi-
ble Packaging [5], separates the component’s functionality
(ware) from its assumptions about the communication in-
frastructure (packaging).

Another related area, in protocol research, is the area of
protocol synthesis. Decompositional techniques for pro-
tocol synthesis break a complex task into subtasks, which
have simpler protocols that can be created more easily and
then combined, in a principled and sometimes automatic
way, to form the desired protocol [16]. Some properties of
safety and (given certain restrictions) liveness can be pre-
dicted in a similar incremental way using a finite state ma-
chine model [15]. Other recent work in the area of pro-
tocol synthesis includes Ensemble [17], which enables the

construction of an adaptive protocol composed of stacked
micro-protocol modules. Thex-Kernel [11] project has also
used micro-protocol composition to design and implement
a dynamic architecture for flexible protocols that take ad-
vantage of operating system support for efficient layering.
Conduits+ [8] also provides a framework for network pro-
tocol software, with a focus on reuse aided by design pat-
terns; layered protocols are composed from conduits (soft-
ware components with two distinct “sides”) and information
chunks (which flow through the conduits).

A third area of related work is in code generation as it re-
lates to generating connectors. UniCon [14] addresses im-
plementation issues in realizing specific connectors. The
UniCon compiler enables the construction of a system from
an architecture description including generation of the code
and other necessary constructs that implement the system’s
connectors. A specific set of connector abstractions are sup-
ported. Another related area of generation is in generating
variations on a single connector. For a specific type of con-
nector, such as RPC, work has been done in delaying the
binding of some design decisions (such as the level of re-
liability) to make the implemented connector more flexi-
ble and appropriate for a wider range of applications; the
decisions are not bound until the connector is integrated
into a system. One approach is to have a set of small
modules [7]. The options for behavior are classified into
categories, such as call semantics (synchronous or asyn-
chronous), and communication semantics (degree of reli-
ability); micro-protocols modules, selected from these cat-
egories, are composed as in decompositional protocol syn-
thesis. Another approach is to use object-oriented inheri-
tance to specialize communication class libraries [19]. Our
work differs from these in its focus on producing new con-
nector types that may be based on a variety of existing con-
nector types. A domain-specific compositional approach is
taken in GenVoca [3], which illustrates the leverage that can
be gained from restriction to a particular domain; connector
transformations are more generic (less domain specific) and
smaller.

The final area of related work is design patterns. A de-
sign pattern is an application-independent design fragment
that can be reused to solve a well-identified problem [6, 4].
For example, the problem of decoupling the producer of a
piece of data from observers of its value is solved by the
“Observer” pattern; the pattern allows one to change the
number and type of data observers without changing the
data producer. Connection transformations can be viewed
as a class of pattern for adapting component interaction
mechanisms; our work goes beyond pattern identification
and codification to develop tools for applying the transfor-
mation.



3. Motivation

Today, when an existing connector implementation must
be altered or replaced by a new hand-built mechanism,
someone must take on the implicit role of connector modi-
fier. At present this task is difficult, costly, can require guru-
level expertise, and has little available automated support.

Consider the following scenario. A software develop-
ment group is constructing a product using a set of compo-
nents written in Java with the assumption that Java RMI
(Remote Method Invocation) will be used to make them
work together. In order to improve the security of the sys-
tem, the system’s architect decides that some or all of the
component interactions should use authenticated communi-
cation. Further, the group decides to use Kerberos [10] to
provide authentication.

Currently two alternatives might be used. The first is to
retain the use of vanilla RMI, but have a team of imple-
mentors modify the affected components so that they make
appropriate Kerberos library calls before, during, and after
each communication with another component. This alter-
native is highly undesirable from an engineering point of
view. Modifications are distributed throughout the system,
and any future change (such as a new version of the Ker-
beros protocol) will require just as much work. It is not pos-
sible to reuse the modifications as a new connector type in
another Java-RMI-based system. There is also no guarantee
that the implementors will carry out the changes correctly.

The second alternative is to develop a new Kerberos-
Java-RMI connector. In practice this would be done by
modifying the RMI stub generator so that it produces run
time code for Kerberized RMI: it would insert appropriate
Kerberos library calls within the RPC stack, so that they
occur at the beginning and end of all remote method invo-
cations. This approach has the advantage that changes are
localized (kept within the stub generator), and that they are
more likely to be correctly applied since programmers need
only make sure to invoke the appropriate stub generator.

However, the task of modifying the stub generator will
not be easy; it must be done by someone who is experi-
enced both in Java RMI and in Kerberos. Moreover, adding
additional modifications to the stub generator will require,
at best, the same level of effort and expertise as before. In
fact, it may beincreasingly difficult to add a second modi-
fication to the ad-hoc changes that have already been made.

Connector transformation tools would make a superior
approach possible, achieving the desired result (a new con-
nector type) with less work and many long-term engineering
benefits. In this alternative, we would apply a sequence of
parameterized genericconnector transformations to an ex-
isting connector type (such as RMI) to produce one that sup-
ports additional capabilities (such as authentication). That
new connector type — typically realized as a code genera-

tor or set of run time communication libraries — can then
be used freely as a new interaction mechanism throughout
the system, as with the modified stub generator.

In this example, we would produce the Kerberizing-Java-
RMI (stub) generator by using a transforming-Java-RMI
tool that accepts parameterized transformations to adapt
RMI. Specifically, we would determine the transformations
required, and then give them code fragments that apply to
this situation, Kerberos authentication; these fragments are
used to instantiate the new Kerberized RMI stub generator.

What have we gained by doing this? First, we have
reduced the costs in developing the new connector type,
since it is no longer necessary to know the details of the
Java RMI run time mechanisms or stub generation. Second,
by breaking down the overall connector modifications into
smaller, easily understood steps, connector transformations
make the resulting connector easier to understand, reason
about, and maintain. For example, changing the encryption
policy only requires tweaking the code fragment of one of
the transformations, whereas even the modified stub gener-
ator would have to be changed in multiple locations.

While the approach described above is a nice vision, it
raises critical questions. First, what is the set of connector
transformations, and what kinds of connectors can the trans-
formations be applied to? These transformations must be
chosen at an appropriate level of complexity, to enable easy
decomposition of desired modifications and a broad range
of applicability. Second, how would one actually build the
generic tool described above? The remainder of the paper
will provide one set of answers to these questions.

4. Conceptual framework

In order to talk about connector transformations, it is
necessary first to to be clear what we mean by a connec-
tor. Abstractly, a connector is a discrete architectural el-
ement, representing a set of mechanisms that mediate in-
teractions. The boundary between its interfaces (or roles),
and the component interfaces (or ports) to which these roles
are attached, is distinct. Concretely, the connector can be
thought of as a six-tuplefc; l; s; t; p; wg (described below
and shown in Figure 1). It is not possible to point to one
concrete entity and identify that as a connector. Even the
parts we identify here may be spread across several files (or
other concrete units), and mingled with other parts of the
system; as a result, generation or modification of connector
mechanisms is not an easy or localized task.

c: Application-level code that appears within a compo-
nent or compilation unit. This may be code at the point
of communicating with another component (calling sites);
also, there may be code necessary for the initialization and
finalization of the connector, in “main()” or the equivalent
part of this compilation unit.



main() {

}

}

g();
b = stub.foo();

qux() {

c

}

main() {

}

foo() {
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...
"call f before g"
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t w
Connector c =
    Role r1 = ...
    Role r2 = ...
    Glue = ...

l
[stub] foo() ...

[lib]

g()...

f()...

s

code artifact

non-code artifact

notional location of
abstract connector

Figure 1. Concrete parts of a connector

l: Communication libraries, generated stubs, etc., below
the application level.

s: Low level infrastructure services provided by, e.g., the
operating system.

Other parts of the connector are non-code artifacts.
t: Data/tables, e.g., locations of communicating parties.
p: A policy documenting the proper use of these parts.

For example, there may be a rule that library call x must be
made before library call y.

w: Formal specification describing the connector’s
proper behavior.

A connector transformation modifies one or more parts
of an existing connector C = fc; l; s; t; p; wg, resulting in
a new connector C0. For example, the transformation may
add, remove, or modify lines of code in c (at the call sites or
initialization/finalization). It may modify a library or stub
in l, or replace the library or stub with a different one that
presents the same interface to the application-level code.
The transformation may add a service in s, or replace one
service with another (as in l). It may add, modify, or remove
entries in t. A transformation can affect the policy p, per-
haps by adding new restrictions as a result of changing the
assumptions needed to use the connector. A transformation
also modifies the connector’s formal specification w.

5. A set of transformations

There are many approaches that one might use in choos-
ing a set of transformations. At one extreme one might iden-
tify a minimal set of simple transformations with an eye to-
ward formal simplicity and elegance. This has the attraction
of providing a good basis from which to reason, but it may
leave a large gap between the transformational calculus and
complex connectors that are needed in practice. At the other
extreme, one could enumerate a large number of powerful,
specialized transformations that have direct applicability to
certain areas, such as security or performance. This has the
advantage of being directly usable within certain areas, but
harder to reason about or to guarantee adequate coverage of
the space of connectors.

We have attempted to find a middle ground. Specifically,
we have identified a small number of moderately complex
transformations, that have direct applicability to realistic
applications, that are simple enough to reason about for-
mally, and that are generic enough to ensure broad cover-
age. (These transformations have been derived from a sur-
vey of systems papers in which one or more modifications
to a software connector are described.) We’ ll describe these
transformations informally in this section. For each trans-
formation we summarize its purpose, examples of its use,
and sketch its dimensions of variability.

5.1. Data transform

Data Transform changes the format of the data being ex-
changed in an interaction. Format changes may occur at
either end of a communication, or at both ends. It does not
alter the protocol of interaction, although it may require ad-
ditional information to be transmitted.

A simple example of Data Transform is conversion from
little- to big-endian. Another example, in which data is
transformed at both ends, is data compression: data is com-
pressed at the sender and decompressed at the receiver. A
more complex example, in which additional information is
transmitted, would be to include checksums for error detec-
tion. As a final example, consider a connector that handles
the situation in which a sender produces data more quickly
than the receiver is able to consume it; the connector could
be modified to present the receiver with the average of every
n values.

Aspects of this transformation that can be varied include:
Where the operation occurs (at the receiver, sender, both);
How many data transforms occur (one, two, n); What is the
operation on the data? Does it preserve the number of mes-
sages, decrease, or increase? Is it reversible or irreversible
(lossy)?



5.2. Splice

Splice combines two binary connectors c and d into a
new binary connector. The new connector has one interface
from c and one from d. Unlike a Data Transform, Splice
changes the protocol being used to exchange the data. This
transformation will be possible for some but not all pairs of
connectors. For example, c may not have access to some
information required by d. This transformation is chiefly
used to enable two mismatched components to interact.

Software adaptors [18], which can overcome some kinds
of component mismatch, are one specific example of splic-
ing technology. The Java Bean Box also incorporates a
splice between event-based and procedure-call connectors.

5.3. Add a role

This transformation adds a new interface (or “ role” ) to
an interaction to enable a new party to be involved. Two
kinds of roles can be added: observers, and participants.
Observers listen to the communication between the con-
nected components, but do not affect it. Participants may
take an active part in the communication.

A simple example of an observer is an eavesdropper that
logs all communication. Another example is an auditor that
requires some information to be supplied in addition to what
was originally being communicated. These would be of use
for providing logs and audit trails, or for collecting data
such as performance measurements.

Examples of participants are a local component that
acts as a cache, a confirmer or authorizer that determines
whether a request should proceed, and a “ trusted third
party” that supplies information such as encryption keys to
be used by another transformation.

Choices that must be made during instantiation include
the following: Whether the role is an observer or partici-
pant; What communication events are accessible to the new
role; What is the effect of a participant (e.g., does it swal-
low some messages sent to another component and produce
different responses to the sender?).

5.4. Sessionize

Sessionize makes a connectionless protocol session-
oriented, or vice versa. The resulting connector will main-
tain state, i.e., cache some piece of information, in some
way that the original connector didn’t.

Examples of this transformation’s use are database query
refinement, and caching a proof of identity such as a session
key: in the context of encryption, a session key is agreed
upon by the participants at the beginning of a session, and
used to encrypt their communication during that session.

This transformation can vary along the following dimen-
sions: What “state” the connector is maintaining; Where
state comes from come from, when and how it is updated,
and how long is it kept; The effect that the state has on the
communication.

5.5. Aggregate

The Aggregate transformation combines two or more
connectors with a controller. One connector is active at a
time. The controller determines how the connectors inter-
operate, i.e. which connector is active at what point in time,
but does not change their basic protocols.

Two examples of this transformation’s use are to create a
connector that negotiates, and a connector that adapts dur-
ing execution. A negotiating connector supports a set of
protocols and attempts to determine initially what proto-
col(s) are acceptable to the components it connects; then
it will operate using the protocol held in common. This is
similar to two modems determining the fastest speed com-
mon to both.

An adaptive connector’s controller monitors some as-
pect of a changing environment, and dynamically changes
the protocol based on this information. For example, the
controller might monitor communication faults and switch
to/from a more fault tolerant, but less efficient, protocol.

Aspects of this transformation that can be varied include:
When the controller is allowed to change active connectors
(statically at the beginning, or dynamically); How the con-
troller decides when a change should occur; How many con-
nectors, of what types, are combined.

6. Example

To illustrate how these transformations are used, let’s re-
turn to the Kerberos example and see what the system ar-
chitect would do.

Kerberos is an authentication protocol in which clients
and servers are able to prove their identity to one another
with the help of credentials obtained from the Kerberos
server; when a client requests a service, it presents a cre-
dential to the server. The first step the system architect
takes is to determine which transformations are necessary
to achieve this protocol, by consulting a taxonomy of basic
transformations and typical patterns of use, and comparing
them to the tasks appearing in the protocol. In this case we
end up with three transformations.

Add A Role - We add a trusted third party whose knowl-
edge will enable a check that the messages exchanged
by the original parties are ok.

This is a common occurrence in security and we would
expect to see this pattern in some other security-related



Calling side Remote side
Initialization sessionize sessionize
Before each call sessionize /

add role
Alter arguments data transform data transform

on sending on receipt
Alter result data transform data transform

on receipt on sending
After each call sessionize /

add role

Table 1. Locations requiring modification

modifications.

Data Transform - We add new information that is used to
prove the sender’s identity.

Using a Data Transform to add data to a communi-
cation (such as message checksums that incorporate a
“secret” ) is another transformation that we would ex-
pect to see frequently in the context of identifying a
communicating party.

Sessionize - This transformation is needed to store the cre-
dentials that the other transformations use.

Security protocols in which a third party is contacted
will often mitigate the overhead of doing so by caching
the information obtained. When such information is
obtained, cached, and re-used, we would expect to use
the Sessionize transformation.

The next step is to write or obtain the code fragments
that are needed by these transformations. These fragments
may make use of standard libraries1.

Using traditional techniques these fragments would have
to be inserted by hand, in the component implementation
or the stub generator. This would be a time consuming and
error prone process because the fragment destinations are
not localized: to be specific, Table 1 illustrates some loca-
tions where code fragments must be inserted, in the case of
adding Kerberos to Java RMI.

In contrast, using our tool this insertion is performed
automatically. The transformations, fragments, and the
component implementations are provided as inputs and the
tool generates the implementation of the new connector,
by creating wrappers, modifying component implementa-
tions, and/or producing non-code artifacts such as make-
files. (Referring back to the parts of a connector imple-
mentation, we produce a new connector C0 = ffc(c); l [

1As an implementation note, since the example is in Java, and the Ker-
beros libraries are in C, they are used through the JGSS package (provided
by the University of Illinois Systems Software Research Group), a Java
implementation of the Generic Security Service API; it provides access to
the Kerberos V5 libraries for Java programs.

// 1. New data members for server class
private security.GSS.Context ctx;
private security.GSS.Name svc name;
...
// 2. New method for server class;
// sessionize inserts method call in initialization
protected void kerbinit() f

...
ctx = new security.GSS.Context();
svc name = new security.GSS.Name();
int major = svc name.import name (service,

svc name.SERVICE);
...

g

Figure 2. Two fragments for Sessionize

l0; s; t; fp(p); fw(w)g with modified code, additional stubs
and/or libraries, and changes affecting the policy and formal
specification.)

For example, Sessionize requires code fragments that de-
clare storage for the cached information, and a method for
initially obtaining this information. The Sessionize trans-
formation has no independent knowledge of what new data
members are required or what initialization library calls
should be made (hence the need to supply fragments such as
Figure 2), but instead has a non-domain-specific knowledge
of appropriate places to insert these kinds of code.

7. Implementation

The current implementation of our tool handles the spe-
cial case of RMI.

When no transformations are used, the tool naively gen-
erates a Java-RMI connector; this is the base connector2.
The tool has knowledge of what initialization steps to add,
etc., to prepare for and perform a remote method invocation.
Each transformation that is used will insert code fragments
at places that are specific to that transformation; these frag-
ments are supplied by the person using the tool.

Given a desired transformation and associated code frag-
ments as input, along with the source files for the compo-
nents that are to communicate, the tool generates a new con-
nector derived from the Java-RMI base connector; complex
connectors can be produced by applying a series of transfor-
mations to the base connector. The prototype tool produces

2Though we describe no restrictions on the selection of a base con-
nector or the set of possible base connectors, they will be best taken from
a middle ground; tool implementation is more difficult for an extremely
complex connector, while some time and effort may be saved by select-
ing an existing connector of sufficient complexity to be in common usage,
rather than building up from extremely low level interaction mechanisms.



composable wrappers for the RMI stub, which are created
from the interface specified for the remote object. The tool
also makes some modifications to the existing source code,
for example, in the client implementation, the call to the
constructor method for the remote object is replaced with a
call to a factory method for the appropriate wrapper object.
For some transformations the wrapper objects present the
same interface to the connected components as the origi-
nal connector did, minimizing the impact on the component
implementations; for transformations in general, this is not
always the case. While the prototype tool generates only
Java source files, a future version will also generate non-
code artifacts such as system configuration and makefiles to
simplify deployment of the generated code files.

7.1. The Kerberos example

We investigated a “ real world” modification, described
earlier in section 3: adding Kerberos authentication to a
Java RMI connector. Recall that in order to realize this mod-
ification as a composition of simple connector transforma-
tions, the first step was to determine what transformations
should be used (and in what order). These were sessionize,
data transform, and adding a role.

The next step was to determine the code fragments that
should be inserted by each transformation. Existing code
can be utilized for this; in the case of Kerberos, some code
fragments were taken from sample code distributed with
JGSS. The code fragments and sequence of transformations
to apply are given as inputs to the general tool; to create
a specific Kerberizing-Java-RMI tool they could be hard-
wired in. In either case the tool operates on components’
source code and produces a connector implementation.

With such a tool the connector transformation approach
results in a significant savings in effort as compared to the
alternatives seen in section 3. It took about two days to
perform the decomposition and write the code fragments.
Some additional time (about a week) was spent in learning
about Kerberos. Had the stub-generator approach been used
instead, in addition to the time spent learning Kerberos,
some time would have been spent learning about the inter-
nals of the stub generator. Examination of the sun.rmi.rmic
package suggests that the additions required would affect
four (of nine) classes, and would require modification of
ten or more existing methods. The connector transforma-
tion approach saves this time; in the actual implementation
of the connector, new code may be distributed in several
locations, but this insertion is done automatically. The con-
nector transformation approach also requires fewer lines of
code to be written than the first alternative of cutting and
pasting from an example or template. For example a code
fragment, associated with a data transformation, that alters
the arguments of a method call, can be written once and au-

Total lines Reused lines
Initialization
(Kerberos) 33 18
(Java RMI) 12 0
Client makes call
(Marshalling request) 15 0
(Transforming) 18 11
(Untransforming) 13 6
(Unmarshalling result) 6 0

Table 2. Adapting existing code for use with
the tool

tomatically applied to all methods exported by the remote
object, providing a multiplicative benefit in the number of
methods (or, in some cases, the number of calls), a form of
commonality not easily exploited by naive cut and paste.

Furthermore in the Kerberos example it was possible to
reuse existing chunks of code, which indicates that the code
fragments needed by the tool resemble what one would nor-
mally have written, and therefore do not require a additional
learning curve beyond the basic understanding of Kerberos.
Table 2 illustrates some places where code fragments are
inserted, in the example of adding Kerberos to Java RMI;
the last column shows what portion of the Kerberos-specific
code was reused from an existing demo program.

7.2. Dependability patterns

Security is not the only domain to which connector trans-
formations are applicable. We have begun application of
this technique in the domain of dependability, to produce
compositions of connector transformations that can be used
to incorporate common dependability enhancing techniques
into a connector.

A composition of transformations.

Our initial exploration in this domain was to compose a
transformation that enables replication of a server compo-
nent. The replication is essentially transparent from the
point of view of a client component: when the client makes
a request of what it perceives as “ the server” , the request
is actually relayed to the replicated server components, the
results they issue are tabulated, and finally the requesting
client receives the best or most popular result.

Server-role replication is a modification that is composed
from a single kind of transformation: the “add a role” trans-
formation is used to add an array of similar roles r0 : : : rn
which will be attached to the n replicated components, and
to add a distinct role rv which the tool will attach to a voting
mechanism. The replicant roles all listen to client requests.



Replicants’ replies are intercepted and sent to the voter role.
The voting mechanism must be provided by the user of our
tool; in this respect the replication modification is similar to
the Aggregate transformation which uses a provided con-
troller to determine the best action. Upon receiving and
tabulating the replies, the voting mechanism may make a
simple decision such as majority vote, or it may exercise
some understanding of the requested task which enables it
to detect and disregard some incorrect results. We do not ad-
dress the task of producing the actual replicated components
(given the original component) because, though potentially
an interesting problem itself, it has no direct relation to the
interaction mechanism.

This particular modification introduces a form of redun-
dancy to address particular kinds of failure (such as a server
failing), in order to increase the probability of obtaining a
correct result. There are other possible modifications fol-
lowing the same pattern to achieve slightly different goals.
For example, one may increase the probability of obtaining
a timely result by enabling the voter to terminate the results
collection early and make a decision based on the results
that have been gathered so far, in order to meet a deadline.

A composition of modifications.

As argued in the introduction, often it is desirable to make
several modifications to a single connector. These modifica-
tions are not always independent. We constructed a pair of
cooperating dependability modifications, in which the first
connector modification adds a simple form of error detec-
tion such as a CRC, and the second modification re-issues
the last request once when an error is believed to have oc-
curred. Composition of this pair required care because of
the need to predicate the action of the second connector
modification upon the outcome of the first.

One might expect to achieve the first modification with
only a Data Transform (adding checksum bits at the sender
and stripping them at the receiver). From a semantic
standpoint, however, it is evident that such an approach
is inappropriate. The purpose of the Data Transform is
to transform the data carried (e.g. by applying a func-
tion such as unit conversion) without altering the kind of
communication-event (in this case “method x returned this
result” ). In contrast, the purpose of the first modification
is actually to conditionally alter the kind of event (from
“successful result” to “error” ) with the expectation that the
recipient’s behavior may be very different as a result; this
modification follows a pattern that one might describe as
“confirmation” . The Add Role transformation is more ap-
propriate for confirmation modifications than Data Trans-
form, because it permits the introduction and/or substitution
of different communication-event types. In implementation
terms, the Data Transformation expects a piece of code re-

// 1. In addition to fragments, we must provide
// an implementation of this new “checker” object.
// Its interface might look like this.
public interface ErrorDetector f

// Return a new copy of b, with checksum appended
public byte[] appendCRC(byte[] b);
// Return bAndCRC with checksum confirmed and
// removed, or raise an exception
public byte[] removeCRC(byte[] bAndCRC) throws ...;
... g

// 2. We supply fragments, used to build the method calls
// of the stub wrappers. A caller side fragment:

ErrorDetector chk = new ErrorDetector();
// In this case we’ve no interest in the individual
// arguments of the wrapper’s method calls...
MARSHAL
// That tells the tool to place this part after the
// arguments are marshalled in byte array b:
b = chk.appendCRC(b);
// Finished intercepting arguments. Tell the tool
// to proceed with the call to the wrapped stub:
SEND

// 3. The second caller-side fragment intercepts
// the result of stub methods.

b = RESULT
b = chk.removeCRC(b);
UNMARSHAL
// In this case we’ve no further interest in the
// result; the tool will just arrange to return it.

// The callee-side fragments are similar.

Figure 3. Fragments for Add Role

alizing some function which is to be applied to the com-
municated data. The Add Role transformation, in contrast,
allows us to supply a “checker” object to which we for-
ward the received data and which is permitted a range of
possible responses. The checker that we would supply for
this modification may return the data (perhaps modified), or
may raise an exception indicating an error it cannot correct.

Code fragments for an Add Role transformation will
chiefly appear within the method implementations that are
generated as part of the stub wrappers. Figure 3 shows
how such code fragments can request to be interleaved be-
fore and after marshalling, sending the request, and unmar-
shalling; the callee side fragments would be similar.

The second modification makes use of the Sessionize
transformation to store and reuse information within a com-
munication session; in the simplest variation of the “ retry”
technique, the information is the request itself, and a ses-
sion is comprised of one successful request or one request
and one resend.

In summary we have built a tool to perform some of the



composable connector transformations described in this pa-
per. It produces implementations of a variety of complex
connectors derived from a single basic connector, Java RMI;
the tool enabled us to create and apply complex modifica-
tions such as Kerberization with less effort than would have
been required using a more traditional approach.

8. Discussion

By describing a set of connector transformations, and
implementing a tool to apply transformations to a partic-
ular connector type, we have taken a crucial first step to-
ward realizing the vision outlined in section 3. One of the
interesting questions that arises is whether we have picked
an appropriate level for defining transformations. As in-
dicated earlier, we have sought a middle ground, whereby
the transformations would be semantically rich, but simple
enough to combine in many ways and for many domains.
(Further, applicability of the approach to a useful range
both of base connectors and of domains is a not unreason-
able expectation since the transformations were derived by
examining similarities between examples of modifications
made to different kinds of base connectors in several differ-
ent domains.) While more work will be needed to decide
this question, our experience in the domains of security and
reliability suggests that the transformations can be easily
applied to a wide variety of connectors.

A second important issue is the construction of tools to
aid in the application of the transformations: without such
tools, the approach is largely an academic exercise. While
the abstract transformations should be independent of any
particular connector, the implementation of a transforma-
tion tool is dependent on knowledge of the base connec-
tor type. Our initial efforts have focused on being able to
perform multiple transformations for one connector type,
where we might instead have worked to implement one kind
of transformation for multiple connector types, because this
enables investigating compositionality in practice as well as
more interesting and complex examples of new connectors.
The ability to apply this approach to a range of base connec-
tors is also important. Such extension of the implementation
will be addressed in future work.

The context of the work discussed in this paper has been
code generation (though the design-time versus run-time
distinction is not intrinsic to the notion of connector trans-
formations, and one could instead contemplate taking a dy-
namic approach that makes use of reflection). A formal
semantics for connector transformations is an orthogonal
problem, out of the scope of this paper, but is equally impor-
tant and is being addressed in ongoing work. In the future
we expect formal analysis of these transformations to aid
in determining a number of important properties, particu-
larly those related to compositionality of individual trans-

formations. For example, formalism can be used to show
that the ordering of a composition matters or doesn’t mat-
ter, and that a particular composition would result in a dead-
locked connector (and thus should be avoided). Some find-
ings are generally applicable in nature, e.g. if composition
of two particular transformations is always contraindicated,
whereas others are specific to the goals that a sequence of
transformations is intended to achieve, e.g. when compos-
ing encryption and a new role in a particular order, the in-
terpretation as a “good” or “bad” composition depends on
whether the component attached to the new role is intended
to receive encrypted or unencrypted data.

Some transformations change the original connector’s
roles. If the components that will be communicating were
written to this original interface, the components will have
to change. Formal semantics of transformations can demon-
strate whether a transformation must necessarily result in
changes to components, although ease of tool implementa-
tion might present a reason for a tool to require access to
component source code even if it is not strictly necessary in
terms of the formal model. In short the full range of trans-
formations may not be available when some source code is
not available, but we do not think this sufficient reason to
restrict the set of transformations to what can be done with-
out access to source. First, when source is available, that
additional leverage is desirable. Second, transformations
that change roles can be used to resolve mismatch, when
one or more components do not match the original interface
and the connector is being transformed to match the com-
ponents’ expectations.

Finally, section 2 mentions work such as [7] which
strives to produce a highly customizable connector: Why,
then, are connector transformations needed? The prob-
lem is that the usefulness of a connector which has been
designed with a set of options and alternative modules is
still limited by the foresight of its designer. A fixed set of
choices may not address the issues or extra-functional prop-
erties that are relevant to a particular system architect of the
future, and the customizable connector itself, though care-
fully designed to be flexible in ways that its designer con-
sidered important, may be no more amenable to actually
being altered than any other connector. In contrast, though
“stock” connector transformations (such as “add Kerberos”
or “ replicate and vote” ) may be available, the intent of con-
nector transformations is rather to enable the composition
of new modifications.

9. Conclusions and future work

In this paper we have argued for an approach to connec-
tor construction based on incremental transformation. To
support this notion we have identified a set of basic transfor-
mations and illustrated how they can be used to create com-



plex forms of interaction, such as Kerberized RMI. We also
described a prototype tool that can be used to apply these
transformations in the case of Java RMI-based interactions,
generating implementations of new connector types.

As indicated earlier, we view this work as a step towards
a more comprehensive engineering basis for component in-
tegration. In particular, as indicated above, more research
is needed to extend the initial set of transformations that we
have identified. They need to be demonstrated in the case
of other base interaction mechanisms (beyond RMI), and
for other development platforms (beyond Java). Ongoing
work addresses the application of these ideas to event-style
connectors such as Java Message Service. In addition, pre-
liminary work toward a formal semantics for transforma-
tions suggests considerable opportunities for exploiting for-
mal theory to carry out detailed analyses about transforma-
tion composition and compatibility, and to better express the
transformations’ dimensions of variability. Finally, more
case studies are needed.
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