To appear irProceedings of the Working | EEE/IFIP Conference on Software Architecture (WICSA 2001).

A Compositional Approach for Constructing Connectors

Bridget Spitznagel
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15217

Abstract

Increasingly, systems are composed from independently
developed parts, and mechanisms that allow those partsto
interact (connectors). In many situations, specialized forms
of interaction are needed to bridge component mismatches
or to achieve extra-functional properties (e.g., security, per-
formance, reliability), making the design and implementa-
tion of these interaction mechanisms a critical issue. Unfor-
tunately, system devel opers have few options: they must live
withavailable, but often inadequate, generic support for in-
teraction (such as RPC), or they must handcraft specialized
mechanisms at great cost. In this paper we describe a par-
tial solution to this problem, whereby interaction mecha-
nisms are constructed compositionally. Specifically, we de-
scribe a set of operatorsthat can transformgeneric commu-
nication mechanisms (such as RPC and publish-subscribe)
to incrementally add new capabilities. e show how these
transformations can be used to realize complex interactions
(such as Kerberized RPC) and to generate implementations
of the new connector types at relatively low cost.

1. Introduction

Increasingly, complex software systems are being con-
structed from reusable, independently-written software
components. These components are connected by softwa
mechanisms which allow them to communicate. Consider

David Garlan
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15217

ample, the server component and database component con-
sidered above may not agree on the data format, necessi-
tating on-the-fly conversion. A different software system
might require compensation for different control mecha-
nisms (such as synchronous versus asynchronous), or sup-
port for system monitoring and debugging. Similarly, one
might need to enforce security mechanisms such as authen-
tication, or improve performance through caching.

Unfortunately, at present it is difficult to create the
semantically rich connectors that these software systems
need. Architects have two choices when selecting connec-
tor types for a system design: use an existing off-the-shelf
connector, or a new specialized connector for which no im-
plementation yet exists. Neither alternative is adequate. On
the one hand, it is not always possible to find an existing
connector that can meet the needs of the system. On the
other hand, creating a new connection mechanism is well
known to be difficult and costly, typically requiring low-
level knowledge of operating systems, communication pro-
tocols, and auxiliary mechanisms such as stub generators.
The situation is compounded by the need to combine multi-
ple interaction capabilities in a connector. For example, one
might want to use both caching and communication moni-
toring, or authenticated RPC and encryption. This leads to a
combinatorial explosion in the number of useful interaction
mechanisms. The cost of implementing each combination
as a monolithic, handcrafted form of connection quickly be-

cpmes prohibitive; a new approach is required.

What is needed is a way to produce new kinds of connec-

an n-tier client-server system; the server component andtors systematically and at low cost. This would be possible
the database component may each have been acquired sefpwe could construct new connectors compositionally. An
arately, while the middleware enabling the two to interact architect desiring a new connector type would select a basic

may have been written by yet a third party.

connector type such as RPC (representing an existing in-

The design and implementation of a system’s interaction teraction mechanism implementation), which could then be

mechanisms is a critical issue. Generic forms of compo-augmented with selected adaptations to produce more com-
nent interaction, such as RPC, are not always sufficient forplex connector types appropriate for the software system be-
complex systems. Specialized forms of interaction are of-ing designed. System generation tools would then compile
ten needed simply to make the parts of the system work to-those enhancements into new run time mechanisms adapted
gether, as well as to achieve desirable extra-functional prop10 the problem at hand.

erties such as performance, security, or reliability. For ex- In the remaining sections we describe steps towards re-

alizing such an approach. We begin by motivating the prob- construction of an adaptive protocol composed of stacked
lem. Next we enumerate a set of operators that can in-micro-protocol modules. The-Kernel [11] project has also
crementally add new capabilities to generic communica- used micro-protocol composition to design and implement
tion mechanisms (such as RPC and publish-subscribe). Wex dynamic architecture for flexible protocols that take ad-
show how these operators can be used in combination to revantage of operating system support for efficient layering.
alize complex interactions, giving examples in security and Conduits+ [8] also provides a framework for network pro-
dependability. The contributions of this work are three-fold: tocol software, with a focus on reuse aided by design pat-
first, a different, compositional way to think about con- terns; layered protocols are composed from conduits (soft-
nectors; second, techniques for translating the modificationware components with two distinct “sides”) and information
of a connector from architectural concept into implemen- chunks (which flow through the conduits).

tation; third, convenient encapsulation of a set of patterns

for changing extra-functional, quality-of-service aspects of A third area of related work is in code generation as it re-

a software system. lates to generating connectors. UniCon [14] addresses im-
plementation issues in realizing specific connectors. The
2. Related work UniCon compiler enables the construction of a system from

an architecture description including generation of the code

There are four main areas of related work: software ar- @nd other necessary constructs that implement the system’s
chitecture; protocols and their formal analysis; generating COnnectors. A specific set of connector abstractions are sup-
implementations; and design patterns. ported. Another related area of generation is in generating

The first area is software architecture, in which the variations on a single connector. For aspecifﬁctype qf con-
treatment of connectors as first-class entities was intro-Nector, such as RPC, work has been done in delaying the
duced [12, 1]. When component interactions are embodied®iNding of some design decisions (such as the level of re-
at the level of architectural design esnnectors, this en- liability) to make the implemented connector more flexi-
ables the system designer to make interactions explicit and?/€ and appropriate for a wider range of applications; the
easy to identify, to attach semantics, and to capture abstrac?ec's'ons are not bound until thg connector is integrated
relations. Some work has been done toward a conceptuallt© @ system. One approach is to have a set of small
framework for classifying connectors [9] to facilitate un- modules [7]. The options for behavior are classified into
derstanding of them. First-class treatment of connectorsCategories, such as call semantics (synchronous or asyn-
also enables their formal specification and analysis, inde-chronous), and communication semantics (degree of reli-
pendent of the components they connect [1]. For example,ab'“t_y); micro-protocols quules, selectgd from these cat-
formal analysis of the High Level Architecture (HLA) for €gories, are composed as in decompositional protocol syn-
Distributed Simulation [2], a proposed connector, revealed thesis. Another approach is to use object-oriented inheri-
interesting flaws; the work on the HLA is additionally of tance t'o specialize com.mt'mlcatlon class Ilbra}rles [19]. Our
interest due to its concern for how specific connectors canWork differs from these in its focus on prpducmg hew con-
be built up in a traceable and modular way. Also related are "€ctor types that may be based on a variety of existing con-
techniques for resolving architectural mismatch. When two Nector types. A domain-specific compositional approach is
mismatched components are unable to communicate via ext@ken in GenVoca [3], whichillustrates the leverage that can
isting connectors, one option is to construct or modify a be gained fr.om restrictionto a pgrtlculardomgln; con.n'ector
connector that will resolve the mismatch [13]. Sometimes transformations are more generic (less domain specific) and
component wrappers are used. Another technique, Flexi-Smaller.
ble Packaging [5], separates the component’s functionality
(ware) from its assumptions about the communication in- The final area of related work is design patterns. A de-
frastructure (packaging). sign pattern is an application-independent design fragment

Another related area, in protocol research, is the area otthat can be reused to solve a well-identified problem [6, 4].
protocol synthesis. Decompositional techniques for pro- For example, the problem of decoupling the producer of a
tocol synthesis break a complex task into subtasks, whichpiece of data from observers of its value is solved by the
have simpler protocols that can be created more easily andObserver” pattern; the pattern allows one to change the
then combined, in a principled and sometimes automaticnumber and type of data observers without changing the
way, to form the desired protocol [16]. Some properties of data producer. Connection transformations can be viewed
safety and (given certain restrictions) liveness can be pre-as a class of pattern for adapting component interaction
dicted in a similar incremental way using a finite state ma- mechanisms; our work goes beyond pattern identification
chine model [15]. Other recent work in the area of pro- and codification to develop tools for applying the transfor-
tocol synthesis includes Ensemble [17], which enables themation.

3. Motivation tor or set of run time communication libraries — can then
be used freely as a new interaction mechanism throughout

Today, when an existing connector implementation must 1€ System, as with the modified stub generator.
be altered or replaced by a new hand-built mechanism, !N this example, we would produce the Kerberizing-Java-
someone must take on the implicit role of connector modi- RM! (stub) generator by using a transforming-Java-RMI
fier. At present this task is difficult, costly, can require guru- 100! that accepts parameterized transformations to adapt
level expertise, and has little available automated support. RM!- Specifically, we would determine the transformations
Consider the following scenario. A software develop- required, and then give them code fragments that apply to

ment group is constructing a product using a set of Compo_this situation, Kerberos authentication; these fragments are
nents written in Java with the assumption that Java RMI used to instantiate the new Kerberized RMI stub generator.

What have we gained by doing this? First, we have

(Remote Method Invocation) will be used to make them) -
work together. In order to improve the security of the sys- '€duced the costs in developing the new connector type,
since it is no longer necessary to know the details of the

tem, the system’s architect decides that some or all of the

component interactions should use authenticated communidava RMlrun time mechanisms or stub generation. Second,

cation. Further, the group decides to use Kerberos [10] toPY breaking down the overall connector modifications into
provide authentication. smaller, easily understood steps, connector transformations
Currently two alternatives might be used. The first is to make the resulting connector easier to understand, reason
retain the use of vanilla RMI, but have a team of imple- abqut, and maiqtain. For gxample, changing the encryption
mentors modify the affected components so that they makepOIICy only requires tweaking the code fragment of one of
appropriate Kerberos library calls before, during, and after ﬂ:e translfgrhmatlc:nsb, Whr? reas deyen tr;t? rlnoldlfle,:[q stub gener-
each communication with another component. This alter-ac’\;\/\’r\:.ﬁ’u th ave 1o ehcdanggb Hgimtl; ple focations. i
native is highly undesirable from an engineering point of . i€ the approach described above 1s a nice vision, |
view. Modifications are distributed throughout the system raises critical questions. First, what is the set of connector
and any future change (such as a new version of the Ke’r_transformations, and whatkinds of connectors can the trans-
beros protocol) will require just as much work. Itis not pos- formations be applleql to? These transformaﬂons must be
sible to reuse the modifications as a new connector type inchosen at an approprlgte level .O.f complexny, to enable easy
another Java-RMI-based system. There is also no guarante%ecompos't'on of desired modifications and a broad range

that the implementors will carry out the changes correctly. of appllcablllty. Sepond, how would one qctually build the
The second alternative is to develop a new Kerberos-9€Nerc tool described above? The remainder of the paper

Java-RMI connector. In practice this would be done by will provide one set of answers to these questions.
modifying the RMI stub generator so that it produces run
time code for Kerberized RMI: it would insert appropriate 4. Conceptual framework
Kerberos library calls within the RPC stack, so that they
occur at the beginning and end of all remote method invo- In order to talk about connector transformations, it is
cations. This approach has the advantage that changes argecessary first to to be clear what we mean by a connec-
localized (kept within the stub generator), and that they aretor. Abstractly, a connector is a discrete architectural el-
more likely to be correctly applied since programmers needement, representing a set of mechanisms that mediate in-
only make sure to invoke the appropriate stub generator. teractions. The boundary between its interfaces (or roles),
However, the task of modifying the stub generator will and the component interfaces (or ports) to which these roles
not be easy; it must be done by someone who is experi-are attached, is distinct. Concretely, the connector can be
enced both in Java RMI and in Kerberos. Moreover, addingthought of as a six-tupléc, , s, ¢, p, w} (described below
additional modifications to the stub generator will require, and shown in Figure 1). It is not possible to point to one
at best, the same level of effort and expertise as before. Irconcrete entity and identify that as a connector. Even the
fact, it may beincreasingly difficult to add a second modi- parts we identify here may be spread across several files (or
fication to the ad-hoc changes that have already been madether concrete units), and mingled with other parts of the
Connector transformation tools would make a superior system; as a result, generation or modification of connector
approach possible, achieving the desired result (a new conmechanisms is not an easy or localized task.
nector type) with less work and many long-term engineering ¢: Application-level code that appears within a compo-
benefits. In this alternative, we would apply a sequence ofnent or compilation unit. This may be code at the point
parameterized generaonnector transformationsto an ex- of communicating with another component (calling sites);
isting connector type (such as RMI) to produce one that sup-also, there may be code necessary for the initialization and
ports additional capabilities (such as authentication). Thatfinalization of the connector, in “main()” or the equivalent
new connector type — typically realized as a code genera-part of this compilation unit.

main() { main() {
}
}
qux() {
- I — f
b = stub.foo(); [] LO{
90;
} C } C

| [stub] foo() ...

| bl ...
0. S

t W

Connector ¢ =
Rolerl = ...
Roler2 = ...
Glue = ...

P

name address

"call f beforeg"

— notional location of
abstract connector

|:| code artifact
@ non-code artifact

Figure 1. Concrete parts of a connector

: Communication libraries, generated stubs, etc., below
the application level.

s: Low level infrastructure services provided by, e.g., the
operating system.

Other parts of the connector are non-code artifacts.

t: Dataltables, e.g., locations of communicating parties.

p: A policy documenting the proper use of these parts.
For example, there may be arulethat library call must be
made before library call y.

w: Forma specification describing the connector’'s
proper behavior.

A connector transformation modifies one or more parts
of an existing connector C' = {¢,l, s,¢,p, w}, resulting in
a new connector C’. For example, the transformation may
add, remove, or modify lines of codein ¢ (at the call sitesor
initialization/finalization). It may modify a library or stub
in{, or replace the library or stub with a different one that
presents the same interface to the application-level code.
The transformation may add a service in s, or replace one
service with another (asin?). It may add, modify, or remove
entriesin¢. A transformation can affect the policy p, per-
haps by adding new restrictions as a result of changing the
assumptions needed to use the connector. A transformation
also modifies the connector’sformal specification w.

5. A set of transformations

There are many approaches that one might use in choos-
ing aset of transformations. At one extreme one mightiden-
tify aminimal set of simple transformationswith an eye to-
ward formal simplicity and elegance. This hasthe attraction
of providing a good basis from which to reason, but it may
leave alarge gap between the transformational calculusand
complex connectorsthat are needed in practice. At the other
extreme, one could enumerate a large number of powerful,
specialized transformations that have direct applicability to
certain areas, such as security or performance. This has the
advantage of being directly usable within certain areas, but
harder to reason about or to guarantee adequate coverage of
the space of connectors.

We have attempted to find a middle ground. Specifically,
we have identified a small number of moderately complex
transformations, that have direct applicability to realistic
applications, that are simple enough to reason about for-
mally, and that are generic enough to ensure broad cover-
age. (These transformations have been derived from a sur-
vey of systems papers in which one or more modifications
to a software connector are described.) We'll describe these
transformations informally in this section. For each trans-
formation we summarize its purpose, examples of its use,
and sketch its dimensions of variability.

5.1. Datatransform

Data Transform changes the format of the data being ex-
changed in an interaction. Format changes may occur at
either end of a communication, or at both ends. It does not
alter the protocol of interaction, although it may require ad-
ditional information to be transmitted.

A simple example of Data Transform is conversion from
little- to big-endian. Another example, in which data is
transformed at both ends, is data compression: datais com-
pressed at the sender and decompressed at the receiver. A
more complex example, in which additional information is
transmitted, would be to include checksums for error detec-
tion. As afina example, consider a connector that handles
the situation in which a sender produces data more quickly
than the receiver is able to consume it; the connector could
be modified to present the receiver with the average of every
n values.

Aspects of thistransformation that can be varied include:
Where the operation occurs (at the receiver, sender, both);
How many data transforms occur (one, two, n); What isthe
operation on the data? Does it preserve the number of mes-
sages, decrease, or increase? Is it reversible or irreversible

(lossy)?

5.2. Splice

Splice combines two binary connectors ¢ and d into a
new binary connector. The new connector has oneinterface
from ¢ and one from d. Unlike a Data Transform, Splice
changes the protocol being used to exchange the data. This
transformation will be possible for some but not all pairs of
connectors. For example, ¢ may not have access to some
information required by d. This transformation is chiefly
used to enable two mismatched componentsto interact.

Software adaptors [18], which can overcome some kinds
of component mismatch, are one specific example of splic-
ing technology. The Java Bean Box aso incorporates a
splice between event-based and procedure-call connectors.

5.3. Add arole

This transformation adds a new interface (or “role”) to
an interaction to enable a new party to be involved. Two
kinds of roles can be added: observers, and participants.
Observers listen to the communication between the con-
nected components, but do not affect it. Participants may
take an active part in the communication.

A simple example of an observer isan eavesdropper that
logs al communication. Another example isan auditor that
requires someinformation to be suppliedin addition to what
was originally being communicated. These would be of use
for providing logs and audit trails, or for collecting data
such as performance measurements.

Examples of participants are a local component that
acts as a cache, a confirmer or authorizer that determines
whether a request should proceed, and a “trusted third
party” that supplies information such as encryption keys to
be used by another transformation.

Choices that must be made during instantiation include
the following: Whether the role is an observer or partici-
pant; What communi cation events are accessible to the new
role; What is the effect of a participant (e.g., does it swal-
low some messages sent to another component and produce
different responses to the sender?).

5.4. Sessionize

Sessionize makes a connectionless protocol session-
oriented, or vice versa. The resulting connector will main-
tain state, i.e., cache some piece of information, in some
way that the original connector didn’t.

Examples of thistransformation’suse are database query
refinement, and caching a proof of identity such asasession
key: in the context of encryption, a session key is agreed
upon by the participants at the beginning of a session, and
used to encrypt their communication during that session.

Thistransformation can vary along the following dimen-
sions: What “state” the connector is maintaining; Where
state comes from come from, when and how it is updated,
and how long isit kept; The effect that the state has on the
communication.

5.5. Aggregate

The Aggregate transformation combines two or more
connectors with a controller. One connector is active at a
time. The controller determines how the connectors inter-
operate, i.e. which connector is active at what pointin time,
but does not change their basic protocols.

Two examples of thistransformation’suse are to create a
connector that negotiates, and a connector that adapts dur-
ing execution. A negotiating connector supports a set of
protocols and attempts to determine initially what proto-
col(s) are acceptable to the components it connects; then
it will operate using the protocol held in common. Thisis
similar to two modems determining the fastest speed com-
mon to both.

An adaptive connector’s controller monitors some as-
pect of a changing environment, and dynamically changes
the protocol based on this information. For example, the
controller might monitor communication faults and switch
to/from a more fault tolerant, but less efficient, protocol.

Aspects of thistransformation that can be varied include:
When the controller is allowed to change active connectors
(statically at the beginning, or dynamically); How the con-
troller decides when a change should occur; How many con-
nectors, of what types, are combined.

6. Example

Toillustrate how these transformations are used, let'sre-
turn to the Kerberos example and see what the system ar-
chitect would do.

Kerberos is an authentication protocol in which clients
and servers are able to prove their identity to one another
with the help of credentials obtained from the Kerberos
server; when a client requests a service, it presents a cre-
dentia to the server. The first step the system architect
takes is to determine which transformations are necessary
to achieve this protocol, by consulting a taxonomy of basic
transformations and typical patterns of use, and comparing
them to the tasks appearing in the protocol. In this case we
end up with three transformations.

Add A Role - We add a trusted third party whose knowl-
edge will enable a check that the messages exchanged
by the original parties are ok.

Thisisacommon occurrence in security and we would
expect to see this pattern in some other security-related

Cdlling side Remote side
Initialization sessionize sessionize
Before each call sessionize/

add role

Alter arguments | datatransform | datatransform

on sending on receipt
Alter result datatransform | datatransform

on receipt on sending
After each call sessionize /
add role

Table 1. Locations requiring modification

modifications.

Data Transform - We add new information that is used to
prove the sender’ s identity.

Using a Data Transform to add data to a communi-
cation (such as message checksums that incorporate a
“secret”) is another transformation that we would ex-
pect to see frequently in the context of identifying a
communicating party.

Sessionize - Thistransformation is needed to store the cre-
dentialsthat the other transformations use.

Security protocols in which a third party is contacted
will often mitigatethe overhead of doing so by caching
the information obtained. When such information is
obtained, cached, and re-used, we would expect to use
the Sessionize transformation.

The next step is to write or obtain the code fragments
that are needed by these transformations. These fragments
may make use of standard librariest.

Using traditional techniques these fragments would have
to be inserted by hand, in the component implementation
or the stub generator. Thiswould be atime consuming and
error prone process because the fragment destinations are
not localized: to be specific, Table 1 illustrates some loca-
tionswhere code fragments must be inserted, in the case of
adding Kerberos to Java RMI.

In contrast, using our tool this insertion is performed
automatically. The transformations, fragments, and the
component implementations are provided as inputs and the
tool generates the implementation of the new connector,
by creating wrappers, modifying component implementa-
tions, and/or producing non-code artifacts such as make-
files. (Referring back to the parts of a connector imple-
mentation, we produce a new connector ¢’ = {f.(c),l U

1As animplementation note, since the exampleisin Java, and the Ker-
beroslibrariesarein C, they are used through the JGSS package (provided
by the University of Illinois Systems Software Research Group), a Java
implementation of the Generic Security Service API; it provides accessto
the Kerberos V5 libraries for Java programs.

// 1. New data membersfor server class
private security. GSS.Context ctx;
private security. GSS.Name svc_name;

// 2. New method for server class;
// sessionizeinserts method call in initialization
protected void kerbinit() {

ctx = new security.GSS.Context();

svc_name = new security.GSS.Name();

int major = svc_name.import_.name (service,
svc_name.SERVICE);

Figure 2. Two fragments for Sessionize

U, s,t, fo(p), fuw(w)} with modified code, additional stubs
and/or libraries, and changes affecting the policy and formal
specification.)

For example, Sessionize requires code fragments that de-
clare storage for the cached information, and a method for
initially obtaining this information. The Sessionize trans-
formation has no independent knowledge of what new data
members are required or what initialization library calls
should be made (hence the need to supply fragments such as
Figure 2), but instead has a non-domain-specific knowledge
of appropriate places to insert these kinds of code.

7. Implementation

The current implementation of our tool handles the spe-
cial case of RMI.

When no transformations are used, the tool naively gen-
erates a Java-RM| connector; this is the base connector?.
The tool has knowledge of what initialization steps to add,
etc., toprepare for and perform aremote method invocation.
Each transformation that is used will insert code fragments
at places that are specific to that transformation; these frag-
ments are supplied by the person using the tool.

Given a desired transformation and associated code frag-
ments as input, along with the source files for the compo-
nentsthat are to communicate, thetool generates anew con-
nector derived from the Java-RM1 base connector; complex
connectors can be produced by applying a series of transfor-
mations to the base connector. The prototypetool produces

2Though we describe no restrictions on the selection of a base con-
nector or the set of possible base connectors, they will be best taken from
a middle ground; tool implementation is more difficult for an extremely
complex connector, while some time and effort may be saved by select-
ing an existing connector of sufficient complexity to be in common usage,
rather than building up from extremely low level interaction mechanisms.

composable wrappers for the RMI stub, which are created
from the interface specified for the remote object. The tool
also makes some modifications to the existing source code,
for example, in the client implementation, the call to the
constructor method for the remote object is replaced with a
call to afactory method for the appropriate wrapper object.
For some transformations the wrapper objects present the
same interface to the connected components as the origi-
nal connector did, minimizing theimpact on the component
implementations; for transformationsin general, thisis not
always the case. While the prototype tool generates only
Java source files, a future version will also generate non-
code artifacts such as system configuration and makefiles to
simplify deployment of the generated code files.

7.1. The Kerberos example

We investigated a “real world” modification, described
earlier in section 3: adding Kerberos authentication to a
JavaRMI connector. Recall that in order to realize thismod-
ification as a composition of simple connector transforma-
tions, the first step was to determine what transformations
should be used (and in what order). These were sessionize,
datatransform, and adding arole.

The next step was to determine the code fragments that
should be inserted by each transformation. Existing code
can be utilized for this; in the case of Kerberos, some code
fragments were taken from sample code distributed with
JGSS. The code fragments and sequence of transformations
to apply are given as inputs to the general tool; to creste
a specific Kerberizing-Java-RMI tool they could be hard-
wired in. In either case the tool operates on components
source code and produces a connector implementation.

With such atool the connector transformation approach
results in a significant savings in effort as compared to the
alternatives seen in section 3. It took about two days to
perform the decomposition and write the code fragments.
Some additional time (about a week) was spent in learning
about Kerberos. Had the stub-generator approach been used
instead, in addition to the time spent learning Kerberos,
some time would have been spent learning about the inter-
nals of the stub generator. Examination of the sun.rmi.rmic
package suggests that the additions required would affect
four (of nine) classes, and would require modification of
ten or more existing methods. The connector transforma-
tion approach saves thistime; in the actual implementation
of the connector, new code may be distributed in several
locations, but thisinsertion is done automatically. The con-
nector transformation approach also requires fewer lines of
code to be written than the first alternative of cutting and
pasting from an example or template. For example a code
fragment, associated with a data transformation, that alters
the arguments of a method call, can be written once and au-

Total lines | Reused lines
Initialization
(Kerberos) 33 18
(Java RMI) 12 0
Client makes call
(Marshalling request) 15 0
(Transforming) 18 11
(Untransforming) 13 6
(Unmarshalling result) 6 0

Table 2. Adapting existing code for use with
the tool

tomatically applied to all methods exported by the remote
object, providing a multiplicative benefit in the number of
methods (or, in some cases, the number of calls), aform of
commonality not easily exploited by naive cut and paste.

Furthermore in the Kerberos example it was possible to
reuse existing chunks of code, which indicates that the code
fragments needed by the tool resemble what one would nor-
mally have written, and therefore do not require a additional
learning curve beyond the basic understanding of Kerberos.
Table 2 illustrates some places where code fragments are
inserted, in the example of adding Kerberos to Java RMI;
thelast column shows what portion of the Kerberos-specific
code was reused from an existing demo program.

7.2. Dependability patterns

Security isnot the only domain to which connector trans-
formations are applicable. We have begun application of
this technique in the domain of dependability, to produce
compositions of connector transformationsthat can be used
to incorporate common dependability enhancing techniques
into a connector.

A composition of transformations.

Our initial exploration in this domain was to compose a
transformation that enables replication of a server compo-
nent. The replication is essentialy transparent from the
point of view of a client component: when the client makes
a request of what it perceives as “the server”, the request
is actually relayed to the replicated server components, the
results they issue are tabulated, and finaly the requesting
client receives the best or most popular result.
Server-rolereplicationisamodification that is composed
from asinglekind of transformation: the“add arole” trans-
formation is used to add an array of similar roles r . . .7,
which will be attached to the » replicated components, and
to add adistinct role r,, which thetool will attach to avoting
mechanism. The replicant roles all listen to client requests.

Replicants’ repliesare intercepted and sent to the voter role.
The voting mechanism must be provided by the user of our
tool; in this respect the replication modificationis similar to
the Aggregate transformation which uses a provided con-
troller to determine the best action. Upon receiving and
tabulating the replies, the voting mechanism may make a
simple decision such as mgjority vote, or it may exercise
some understanding of the requested task which enables it
to detect and disregard someincorrect results. We do not ad-
dressthetask of producing the actual replicated components
(given the original component) because, though potentially
an interesting problem itself, it has no direct relation to the
interaction mechanism.

This particular modification introduces a form of redun-
dancy to address particular kinds of failure (such as aserver
failing), in order to increase the probability of obtaining a
correct result. There are other possible modifications fol-
lowing the same pattern to achieve dightly different goals.
For example, one may increase the probability of obtaining
atimely result by enabling the voter to terminate the results
collection early and make a decision based on the results
that have been gathered so far, in order to meet a deadline.

A composition of modifications.

As argued in the introduction, often it is desirable to make
several modificationsto a single connector. These modifica
tions are not always independent. We constructed a pair of
cooperating dependability modifications, in which the first
connector modification adds a simple form of error detec-
tion such as a CRC, and the second modification re-issues
the last request once when an error is believed to have oc-
curred. Composition of this pair required care because of
the need to predicate the action of the second connector
modification upon the outcome of thefirst.

One might expect to achieve the first modification with
only a Data Transform (adding checksum bits at the sender
and stripping them at the receiver). From a semantic
standpoint, however, it is evident that such an approach
is inappropriate. The purpose of the Data Transform is
to transform the data carried (e.g. by applying a func-
tion such as unit conversion) without altering the kind of
communication-event (in this case “method x returned this
result’). In contrast, the purpose of the first modification
is actually to conditionally alter the kind of event (from
“successful result” to “error”) with the expectation that the
recipient’s behavior may be very different as a result; this
modification follows a pattern that one might describe as
“confirmation”. The Add Role transformation is more ap-
propriate for confirmation modifications than Data Trans-
form, because it permitstheintroductionand/or substitution
of different communication-event types. In implementation
terms, the Data Transformation expects a piece of code re-

// 1. In addition to fragments, we must provide
// an implementation of this new “checker” object.
// Its interface might look like this.
public interface ErrorDetector {
// Return anew copy of b, with checksum appended
public byte[] appendCRC(byte[] b);
// Return bAndCRC with checksum confirmed and
// removed, or raise an exception
public byte[] removeCRC(byte[] bAndCRC) throws ...;
}

// 2. We supply fragments, used to build the method calls
// of the stub wrappers. A caller side fragment:
ErrorDetector chk = new ErrorDetector();
// In this case we've no interest in the individual
// arguments of the wrapper’'s method calls...
MARSHAL
// That tells the tool to placethis part after the
// arguments are marshalled in byte array b:
b = chk.appendCRC(b);
// Finished intercepting arguments. Tell the tool
// to proceed with the call to the wrapped stub:
SEND
// 3. The second caller-side fragment intercepts
// the result of stub methods.
b = RESULT
b = chk.removeCRC(b);
UNMARSHAL
// In this case we've no further interest in the
// result; the tool will just arrange to return it.
// The callee-side fragments are similar.

Figure 3. Fragments for Add Role

alizing some function which is to be applied to the com-
municated data. The Add Role transformation, in contrast,
allows us to supply a “checker” object to which we for-
ward the received data and which is permitted a range of
possible responses. The checker that we would supply for
this modification may return the data (perhaps modified), or
may raise an exception indicating an error it cannot correct.

Code fragments for an Add Role transformation will
chiefly appear within the method implementations that are
generated as part of the stub wrappers. Figure 3 shows
how such code fragments can request to be interleaved be-
fore and after marshalling, sending the request, and unmar-
shalling; the callee side fragments would be similar.

The second modification makes use of the Sessionize
transformation to store and reuse information withina com-
munication session; in the simplest variation of the “retry”
technique, the information is the request itself, and a ses-
sion is comprised of one successful request or one request
and one resend.

In summary we have built a tool to perform some of the

composable connector transformations described in thispa-
per. It produces implementations of a variety of complex
connectors derived from asingle basic connector, Java RMI;
the tool enabled us to create and apply complex modifica-
tions such as Kerberization with less effort than would have
been required using a more traditional approach.

8. Discussion

By describing a set of connector transformations, and
implementing a tool to apply transformations to a partic-
ular connector type, we have taken a crucia first step to-
ward realizing the vision outlined in section 3. One of the
interesting questions that arises is whether we have picked
an appropriate level for defining transformations. As in-
dicated earlier, we have sought a middle ground, whereby
the transformations would be semantically rich, but simple
enough to combine in many ways and for many domains.
(Further, applicability of the approach to a useful range
both of base connectors and of domains is a hot unreason-
able expectation since the transformations were derived by
examining similarities between examples of modifications
made to different kinds of base connectorsin several differ-
ent domains.) While more work will be needed to decide
this question, our experience in the domains of security and
reliability suggests that the transformations can be easily
applied to awide variety of connectors.

A second important issue is the construction of tools to
aid in the application of the transformations. without such
tools, the approach is largely an academic exercise. While
the abstract transformations should be independent of any
particular connector, the implementation of a transforma-
tion tool is dependent on knowledge of the base connec-
tor type. Our initia efforts have focused on being able to
perform multiple transformations for one connector type,
where we might instead have worked to implement onekind
of transformation for multiple connector types, because this
enables investigating compositionality in practice as well as
more interesting and complex examples of new connectors.
The ability to apply thisapproach to a range of base connec-
torsisalsoimportant. Such extension of theimplementation
will be addressed in future work.

The context of the work discussed in this paper has been
code generation (though the design-time versus run-time
distinctionis not intrinsic to the notion of connector trans-
formations, and one could instead contemplate taking a dy-
namic approach that makes use of reflection). A formal
semantics for connector transformations is an orthogonal
problem, out of the scope of this paper, butisequally impor-
tant and is being addressed in ongoing work. In the future
we expect formal analysis of these transformations to aid
in determining a number of important properties, particu-
larly those related to compositionality of individual trans-

formations. For example, formalism can be used to show
that the ordering of a composition matters or doesn’t mat-
ter, and that a particular composition would result in a dead-
locked connector (and thus should be avoided). Some find-
ings are generally applicable in nature, e.g. if composition
of two particular transformationsis always contraindicated,
whereas others are specific to the goals that a sequence of
transformationsis intended to achieve, e.g. when compos-
ing encryption and a new role in a particular order, the in-
terpretation as a “good” or “bad” composition depends on
whether the component attached to the new role isintended
to receive encrypted or unencrypted data.

Some transformations change the original connector’s
roles. If the components that will be communicating were
written to this original interface, the components will have
to change. Formal semantics of transformations can demon-
strate whether a transformation must necessarily result in
changes to components, athough ease of tool implementa-
tion might present a reason for a tool to require access to
component source code even if it is not strictly necessary in
terms of the formal model. In short the full range of trans-
formations may not be available when some source code is
not available, but we do not think this sufficient reason to
restrict the set of transformationsto what can be done with-
out access to source. First, when source is available, that
additional leverage is desirable. Second, transformations
that change roles can be used to resolve mismatch, when
one or more components do not match the original interface
and the connector is being transformed to match the com-
ponents’ expectations.

Finally, section 2 mentions work such as [7] which
strives to produce a highly customizable connector: Why,
then, are connector transformations needed? The prob-
lem is that the usefulness of a connector which has been
designed with a set of options and aternative modules is
till limited by the foresight of its designer. A fixed set of
choices may not address the issues or extra-functional prop-
ertiesthat are relevant to a particular system architect of the
future, and the customizable connector itself, though care-
fully designed to be flexible in ways that its designer con-
sidered important, may be no more amenable to actualy
being atered than any other connector. In contrast, though
“stock” connector transformations (such as “add Kerberos”
or “replicate and vote”) may be available, the intent of con-
nector transformations is rather to enable the composition
of new modifications.

9. Conclusions and future work

In this paper we have argued for an approach to connec-
tor construction based on incremental transformation. To
support thisnotion we have identified a set of basic transfor-
mations and illustrated how they can be used to create com-

plex forms of interaction, such as Kerberized RMI. We also
described a prototype tool that can be used to apply these
transformationsin the case of Java RMI-based interactions,
generating implementations of new connector types.

Asindicated earlier, we view thiswork as a step towards
amore comprehensive engineering basis for component in-
tegration. In particular, as indicated above, more research
isneeded to extend theinitial set of transformationsthat we
have identified. They need to be demonstrated in the case
of other base interaction mechanisms (beyond RMI), and
for other development platforms (beyond Java). Ongoing
work addresses the application of these ideas to event-style
connectors such as Java Message Service. In addition, pre-
liminary work toward a formal semantics for transforma-
tions suggests considerabl e opportunitiesfor exploiting for-
mal theory to carry out detailed analyses about transforma-
tion composition and compatibility, and to better expressthe
transformations’ dimensions of variability. Finally, more
case studies are needed.

Acknowledgements

This research was supported by the Defense Advanced
Research Projects Agency and Rome Laboratory, USAF,
under Cooperative Agreement F30602-00-2-0616, by DoD
Space and Naval Warfare Systems Center under N66001-
99-2-8918, by the National Science Foundation under Grant
CCR-9357792, and by a grant from HP Labs. Views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of Rome Labo-
ratory, the US Department of Defense, or the National Sci-
ence Foundation. The US Government is authorized to re-
produce and distribute reprints for Government purposes,
notwithstanding any copyright notation thereon. This re-
search was aso facilitated in part by a National Physi-
cal Science Consortium Fellowship and by stipend support
from Xerox. We would like to thank Mary Shaw, Jean-
nette Wing, and the members of the ABLE group Bradley
Schmerl, Joao Sousa, Jichuan Chang, and Owen Cheng.

References

[1] R.AllenandD. Garlan. A formal basisfor architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, July 1997.

[2] R. Allen, D. Garlan, and J. Ivers. Forma modeling and
analysis of the HLA component integration standard. In
Proceedings of of the Sixth International Symposiumon the
Foundations of Software Engineering (FSE-6), Lake Buena
Vista, Florida, November 1998. ACM.

[3] D.Batory andS. O'Malley. Thedesign and implementation
of hierarchical software systemswith reusable components.

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

ACM Transactions of Software Engineering and Methodol-
ogy, pages 355-398, October 1992.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern Oriented Software Architecture: A System
of Patterns. John Wiley and Sons, 1996.

R. DeLine. Resolving Packaging Mismatch. PhD thesis,
CarnegieMellon, School of Computer Science, 1999. | ssued
as CMU Technical Report CMU-CS-99-141.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented De-
sign. Addison-Wesley, 1995.

M. A. Hiltunen and R. D. Schlichting. Constructing a con-
figurable group RPC service. In Proceedings of the 15th In-
ternational Conference on Distributed Computing Systems
(ICDCS15), May 1995.

H. Hueni, R. E. Johnson, and R. Engel. A framework for net-
work protocol software. Proceedingsof OOPSLA' 95, pages
358-369, 1995.

N. R. Mehta, N. Medvidovic, and S. Phadke. Towards atax-
onomy of software connectors. In Proceedings of the 22nd
International Conference on Software Engineering (ICSE
2000), pages 295-304, Limerick, Ireland, June 2000.

B. C. Neuman and T. TSo. Kerberos: an authentication
service for computer networks. IEEE Communications,
32(9):33-38, Sept. 1994.

S. W. O'Malley and L. L. Peterson. A dynamic network
architecture. ACM Transactions on Computer Systems,
10(2):110-143, May 1992.

M. Shaw. Procedure calls are the assembly language of sys-
tem interconnection: Connectors deserve first-class status.
In Proceedings of the Workshop on Sudies of Software De-
sign, May 1993.

M. Shaw. Architectural issuesin software reuse: It's not just
the functionality, it's the packaging. In Proceedings of the
Symposiumon Software Reuse (SSR'95), April 1995.

M. Shaw, R. DeLine, and G. Zelesnik. Abstractionsandim-
plementations for architectural connections. In Third Inter-
national Conference on Configurable Distributed Systems,
May 1996.

G. Singh and Z. Mao. Structured design of communication
protocols. In |EEE International Conferenceon Distributed
Computing Systems, May 1996.

F. Stomp and W. de Roever. Designing distributed algo-
rithms by means of formal sequentially phased reasoning.
In Proceedings of the 3rd International Workshop on Dis-
tributed Algorithms, 1989.

R. van Renessg, K. Birman, M. Hayden, A. Vaysburd, and
D. Karr. Building adaptive systems using ensemble. Tech-
nical report, Cornell/TR97-1638, 1997.

D. M. Yellin and R. E. Strom. Interfaces, protocols, and the
semi-automatic construction of software adaptors. Proceed-
ings of OOPSLA 94, October 1994.

M. J. Zelesko and D. R. Cheriton. Specializing object-
oriented RPC for functionality and performance. In Pro-
ceedings of the 16th International Conference on Dis-
tributed Computing Systems (ICDCS-16), Hong Kong, May
1996.

