
Adding Implicit Invocation to Languages:

Three Approaches�

David Notkiny

David Garlanz

William G. Griswoldyy

Kevin Sullivany

yDepartment of Computer Science & Engineering, FR-35

University of Washington

Seattle WA 98195 USA

fnotkin,sullivang@cs.washington.edu

zSchool of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213 USA

garlan@cs.cmu.edu

yyDepartment of Computer Science & Engineering, 0114

University of California, San Diego

La Jolla, CA 92093-0114 USA

wgg@cs.ucsd.edu

Abstract

Implicit invocation based on event announcement is an increasingly impor-

tant technique for integrating systems. However, the use of this technique has

largely been con�ned to tool integration systems|in which tools exist as indepen-

dent processes|and special-purpose languages|in which specialized forms of event

broadcast are designed into the language from the start. This paper broadens the

class of systems that can bene�t from this approach by showing how to augment

general-purpose programming languages with facilities for implicit invocation. We

illustrate the approach in the context of three di�erent languages, Ada, C++, and

Common Lisp. The intent is to highlight the key design considerations that arise

in extending such languages with implicit invocation.

1 Introduction

Systems have traditionally been constructed out of components, usually modules, that
interact with each other by explicitly invoking procedures provided in their interfaces.

�This research was supported in part by the National Science Foundationunder Grant Numbers CCR-
9112880, CCR-9113367, CCR-8858804, and CCR-9211002, by DARPA Grant MDA 972-92-J-1002, by
Siemens Corporate Research, and by SRA (Tokyo Japan). The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the o�cial policies,
either expressed or implied, of the U.S. Government, of the Siemens Corporation, or of SRA.

There has recently been considerable interest in an alternative technique, variously re-
ferred to as implicit invocation, reactive integration, and selective broadcast. The idea
behind implicit invocation is that instead of invoking a procedure directly, a component
can announce (or broadcast) one or more events. Other components in the system can
register an interest in an event by associating a procedure with the event. When the
event is announced the system itself invokes the procedures that have registered interest
in the event. Thus an event announcement \implicitly" causes the invocation of pro-
cedures in other components without the announcing component needing to know the
name of those components.

The advantages of implicit invocation arise because of the separation of the invocation
relationship from the \knows about" relationship between components. This makes it
easier to add, modify, and integrate components without modifyingmany (if any) existing
components. For example, since components need not explicitly name other components
to invoke them it is possible to integrate a collection of components simply by registering
their interest in events. Thus, the function of the overall system may be modi�ed without
changing any existing components: the new components are invoked based on already-
existing event announcements. In contrast, in a system with only explicit invocation,
invoking a new component requires that at least one existing component be modi�ed.

Because of properties like these, many systems now use implicit invocation as a key
means of composition. Although applications of the technique span many domains, these
systems can be grouped into three categories.

The �rst category is tool integration frameworks. Systems in this category are typi-
cally con�gured as a collection of tools running as separate processes. Event broadcast
is handled by a separate dispatcher process that communicates with the tools through
communication channels provided by the host operating system (such as sockets in Unix).
Examples include Field [Reiss 90], Forest [Garlan & Ilias 91], Softbench [Gerety 89], and
several other commercial tool integration frameworks.

The second category is implicit invocation systems based on special-purpose lan-
guages and application frameworks. In these systems implicit invocation becomes acces-
sible through specialized notations and run-time support. For example, many database
systems now provide notations for de�ning active data triggers [Hewitt 69] to database
applications. Examples include APPL/A [Sutton, Heimbigner & Osterweil 90], Gan-
dalf's daemons [Habermann, Garlan & Notkin 91], AP5's relational constraints [Cohen
89], and \when-updated" methods of some object-oriented languages [Krasner & Pope
88]. Window systems like X [Scheier and Gettys 86] and Garnet [Myers et al. 90]
also exploit implicit invocation in a stylized manner. Other specialized applications that
can be viewed as exploiting the paradigm include incremental attribute reevaluation,
spreadsheet updating, and some blackboard systems [Garlan, Kaiser & Notkin 92].

Despite the successes of systems in these two categories, use of implicit invocation
has been relatively limited. In particular, few applications can a�ord the overhead of
separate processes used by tool integration frameworks, and special-purpose languages
are limited by their very nature.

This motivates the third category, in which implicit invocation is incorporated into
existing, general-purpose programming languages. A limited mechanism of this style
is based on wrapper methods in the Common Lisp Object System (CLOS) [Steele 91].
At least two more general mechanisms in this category have been reported on in some
depth, one for C++ [Sullivan & Notkin 92] and one for Ada [Garlan & Scott 93]. A third

approach has been developed for Common Lisp. In this paper, we compare and contrast
the mechanisms employed by these three designs.

In all three categories, implicit invocation is intended to supplement, rather than
supplant, explicit invocation. Components may interact either explicitly or implicitly,
depending on which mechanism is most appropriate. This property makes it possible
to view implicit invocation as a natural complement to an existing explicit invocation
system, such as one provided by a standard module-oriented programming language.

This paper has two primary goals. The �rst is to help make implicit invocation more
ubiquitous without further populating the world with special-purpose mechanisms. The
second is to identify a variety of design issues that arise when embedding implicit invo-
cation into modern programming languages: these issues are useful in clarifying various
approaches to implicit invocation, as well as adding some insights into programming
language design itself.

Implicit invocation mechanisms are based on two fundamental concepts. The �rst
is that, in addition to de�ning procedures that may be invoked in the usual way, a
component is permitted to announce events. The second is that a component may register
to receive announced events. This is done by associating a procedure of that component
with each event of interest. When one of those events is announced the implicit invocation
mechanism is responsible for calling the procedures that have been registered with the
event.

Although the basic mechanisms have substantial similarities, the details di�er signif-
icantly because of the nature of the underlying languages. The paper �rst introduces
the three mechanisms. Then we step back and consider what underlying design decisions
were made. We focus on why di�erent decisions were made in each language; in most
cases programming language issues or \cultural style" caused particular decisions. The
three languages|Ada, C++, and Common Lisp|have su�ciently di�erent characteris-
tics to highlight these issues. How the basic aspects of implicit invocation are achieved
in three diverse programming languages is the central theme in this paper.

2 Ada

Ada is a statically-typed, module-oriented, imperative programming language [Ada 83].
In Ada the basic unit of modularization is the package. Packages have interfaces, which
de�ne (among other things) a set of exported procedures. To provide implicit invocation
for Ada, we developed a small speci�cation language to augment package interfaces. This
language allows users to de�ne events they want the system to support, and to specify
which Ada procedures (in which package speci�cations) should be invoked on announc-
ing the event. This design was strongly inuenced both by typing and modularization
features of the language and also by the desire to reuse existing Ada compilers and tools
for language processing. The following code|which would be part of a complete Ada
program|illustrates the declaration of events and the binding of procedures to events.

for Package_1

declare Event_1

X: Integer; Y: Package_N.My_Type;

declare Event_2

when Event_3 => Method_1 B

end for Package_1

for Package_2

declare Event_3 A,B: Integer;

when Event_2 => Method_4

when Event_1 => Method_2 X

end for Package_2

for Package_3

when Event_2 => Method_3

when Event_1 => Method_4 Y

end for Package_3

In the speci�cation language, for clauses identify the package under discussion. The
declare clauses specify the events that this package will announce and the parameters
associated with each event (if any). Each parameter has a type: this may be any legal
Ada type. For example, Package_1 declares two events. The �rst event, Event_1, has
two parameters, X of type Integer and Y of type My_Type, as de�ned in Package_N.

The when clauses indicate which procedures in the package are to be invoked when an
event is announced, and what event parameters are to be passed to the procedure. Any
of the parameters may be listed and in any order. This list indicates which parameters
are to be passed to each procedure. For instance, in the above code fragment, Package_1
declares its interest in Event_3. When Event_3 is announced (by Package_2), Method_1
should be invoked, passing only the second parameter, B.

Before compiling the Ada program the user invokes a preprocessor that translates
the speci�cations into an Ada package called Event_Manager. This package provides the
run-time support for handling announced events; it is compiled and linked with the rest
of the system. Although not illustrated in the example, the preprocessor assumes that
the event speci�cation statements are delimited by the special comment mark \--!" so
that they can easily be separated from normal Ada code.

The generated interface of Event_Manager, illustrated next, provides the list of de-
clared events as an Ada enumerated type, along with a record with a variant part that
speci�es the parameters for each event. In addition, the generated speci�cation contains
the signature of the Announce_Event procedure, which allows components to announce
events.

with Package_N;

package Event_Manager is

type Event is

(Event_1,Event_2,Event_3);

type Argument (The_Event: Event) is

record

case The_Event is

when Event_1 =>

Event_1_X: Integer;

Event_1_Y: Package_N.My_Type;

when Event_2 =>

null;

when Event_3 =>

Event_3_A: Integer;

Event_3_B: Integer;

when others =>

null;

end case;

end record;

procedure Announce_Event(The_Data: Argument);

end Event_Manager;

When a component wishes to announce an event, it invokes Announce_Event, as
follows:

Announce_Event(Argument'(Event_1, X_Arg, Y_Arg));

The generated body of Event_Manager contains the implementation of this procedure,
which, as illustrated in the next code fragment, is structured as a case statement with
one case for every declared event:

with Package_1;

with Package_2;

with Package_3;

package body Event_Manager is

procedure Announce_Event(The_Data: Argument) is

begin

case The_Data.The_Event is

when Event_1 =>

Package_2.Method_2(The_Data.Event_1_X);

Package_3.Method_4(The_Data.Event_1_Y);

when Event_2 =>

Package_2.Method_4;

Package_3.Method_3;

when Event_3 =>

Package_1.Method_1(The_Data.Event_3_B);

when others =>

null;

end case;

end Announce_Event;

end Event_Manager;

3 C++

C++ [Stroustrup 87] is an object-oriented language based on extensions to C. The im-
plicit invocation mechanism added to C++ is statically-typed, with events as objects
and with dynamic registration of methods with events. The design of the mechanism
was inuenced by the object-oriented nature of the language, by the typing structure
of the language, and by the original objective of the mechanism, which was to support
behavioral entity-relation designs and implementations [Sullivan & Notkin 92].

In the C++ implicit invocation mechanism, events are associated with the interfaces
of classes, treating them as equivalents of methods. That is, in addition to exporting
methods, classes declare and export a set of events. For example, the interface (encoded
in a .h �le) for a set class is shown next; a few parts of the actual text are omitted and
slightly modi�ed to focus on the important aspects of the example.

class Set ...

{

public:

Boolean Insert(Object& v);

Boolean Remove(Object& v);

stream& PrintOn(ostream& s);

// PUBLIC EVENT INTERFACE

VoidEventObject Inserted;

VoidEventObject Removed;

};

This example exports three methods and two events, Inserted and Removed. As we
will show, this allows other classes to register interest in either of these events.1

The registration of methods with events|that is, de�ning the methods to be invoked
when an event is announced|is done separately from the event declarations. Suppose
that an instance, this (the \sending" object in a C++ method invocation), of a class
SetBijectionMediator, wants to register a method of a class, UponS1Insert, to be
invoked when an object s1 announces an event Inserted. This is done|usually by
the constructor of the object that wants to register with the event|by executing the
statement:

s1.Inserted.REGISTER(SetBijectionMediator,UponS1Insert);

Methods make event announcements by invoking an Announce method associated
with each event. For example, the implementation of the Insert method in the body of
the Set class includes the statement:

Inserted.Announce(v);

This causes the Inserted event on the set instance to be announced, which in turn
causes all methods registered with that event to be invoked. There is a corresponding

1The VoidEventObject type arises because events are implemented as instances of event classes.
VoidEventObject is an event class, and the Inserted and Deleted events are instances of that class. The
name of the type is chosen by convention: Void implies that this event has no return object, Event implies
that it is de�ning an event (all event classes have this piece), and Object implies that the parameter list
of the events of this type include a single element of type Object.

UNREGISTER macro that allows an association between a method and an event to be
broken.

The details of the C++ mechanism are a�ected by our desire to handle typing in C++
in a reasonably exible and uniform way. In the C++ implicit invocation mechanism this
is hard because the macros, events, and Announce methods have to be general-purpose
and because we want to allow run-time registration.

The heart of the problem is that our event registration method cannot treat pointers
to non-static member functions in a uniform manner, since they share no common type.
This is because in C++ every non-static member function has an implicit �rst parameter,
this, which is a pointer to its own object; thus non-static member functions from objects
of di�erent classes di�er in their type signatures. This interferes with our desire to
support static type checking.

Our solution is to declare a function type with a �rst parameter of type void* (a
generic pointer), followed by the other parameters. Each client object declares a static
member function of this type, which it registers along with a pointer to itself. The
static member function is called with the self pointer, which it then type-casts to call the
corresponding virtual member function. Passing the object's pointer, in this case, serves
a function similar to passing a closure in Lisp.

The STATIC macro|typically used within class declarations in header �les|makes it
possible to register non-static member functions. The macro takes a non-static member
function and creates a corresponding static member function. Reconsidering the use of
the REGISTER macro above, we can see that the UponS1Insert method had to be static.
But in fact it is a non-static member function declared privately to the SetBijectionMedi-
ator class:

void* UponS1Insert(Object& o);

It is transformed into an \equivalent" static member function by the use of the STATIC
macro:

STATIC(SetBijectionMediator,void*,UponS1Insert,

(void* target,Object& o),(o));

The �rst argument indicates the class in which the method resides; that is, which class
has the method that may be invoked by the announcement of an event in another class.
The second argument indicates the return type of the method; the current mechanism
requires this to be void*. The third argument is the name of the non-static member
function. The fourth argument is the formal parameter list for the static method being
created by the macro. And the �nal argument is the actual parameter list for the non-
static method being transformed.

The STATICmacro creates a new name for the static member function. The REGISTER
and UNREGISTERmacros use the same name transformation to allow the user of the macros
to name the non-static member function while actually registering and unregistering with
the generated static member function.

4 Common Lisp/CLOS

Common Lisp, combined with the Common Lisp Object System (CLOS), is an object-
oriented dynamically-typed language with substantial run-time exibility. The implicit

invocation mechanism that extends these is a method-based mechanism with dynamic
registration. The mechanism was designed to support the construction of a meaning-
preserving tool for restructuring software systems [Griswold 91][Griswold & Notkin 93].

Like the Ada and C++ mechanisms, it has support for de�ning events, registering
methods with events, and for announcing events. Common Lisp's exible nature strongly
a�ected the design of the mechanism. In particular, its dynamic typing, �rst-class func-
tions, and simple extensible syntax led to a straightforward design and clean syntax.

A defevent declaration is used to extend a standard CLOS class de�nition to allow
an object to announce an event. For example, the declarations

(defclass world-element ()

((value :accessor value :initarg :value :initform nil)))

(defevent delete-object ((obj world-element) &optional reason))

create a class world-element with a single slot (instance variable) value, and then adds
an event delete-object, which takes a value obj of type world-element and an optional
argument reason that defaults to NIL. The �rst value of an event must be of the type of
the class to which the event belongs.2 The syntax of the defevent is similar to that of a
method de�nition, but without a body since the actions of the event are (dynamically)
de�ned by the registrant, not the event announcer. Subclasses of world-element inherit
the event delete-object, and the inherited event may be rede�ned as long as the event
interfaces are consistent according to the method de�nition rules of CLOS.

Registration for an event is performed using an upon expression (a macro) that creates
a structure to wait for a particular event from a particular object. When the object
announces the event, the body of the upon is executed. For example, executing the
expression

(upon ((delete-object the-obj reason) registering-object) ; 1

(remhash the-obj object-table) ; 2

(format t "object ~s deleted because ~s~%" the-obj reason)) ; 3

creates an obligation for the run-time system to execute the body (lines 2 and 3) of
the upon when the value of the-obj announces the delete-object event. Only the
�rst argument of the upon's event pattern is used in matching an announced event; the
remaining arguments of the event pattern are merely bound with the remaining values
of the event announcement to allow accessing them in the body of the upon.

An announce expression, when executed, announces that an event has occurred. The
expression

(announce (delete-object obj "no neighbors"))

announces the event delete-objectwith the argument, obj (the announcer of the event)
with the optional argument provided. If the value of obj here and the-obj in the upon
were the same, this announcement would cause the execution of the upon, causing the
value of the-obj to be removed from object-table and an explanatory message to be
printed.

2CLOS supports multimethod selection, which allows selecting a method to execute based on the
type (or value) of any or all the arguments passed to the call, rather than just the �rst argument, as in
C++. Consequently, the �rst-object convention of event announcement introduces a slight asymmetry
with respect to method call.

A registration performed with upon can be unregistered using downoff, indicating
the registrant (registering-object in following fragment):

(downoff the-obj 'delete-object registering-object)

The event mechanism is implemented in two parts. First, the defevent declaration
extends the class de�nition of the announcing object with a new slot (instance variable)
so it can keep a list of functions that are to be invoked when the event is announced.
This extension is performed using the CLOS metaobject protocol. At the same time,
a method with the same signature as the event is created for invoking the registered
functions. This method is called by the announce expression. For example, the def-
inition of the delete-object event causes a delete-object slot to be added to the
world-element class, and de�nes a method delete-object that calls all the functions
in the delete-object slot of the object announcing the delete-object event. Second,
the upon expression creates an anonymous function (lambda) for the registering object
and registers it with the (potentially) announcing object. The signature of the function
is the signature of the event it is waiting on, and its body is the body of the upon. For
example, the upon expression above creates a function that is put on the delete-object
list of the-obj. The function takes two arguments named the-obj and reason, and the
body contains the remhash and format expressions. Consequently, when delete-object

is later announced by the-obj, the delete-object method is called on it and it calls
the functions on the list|including the one registered by this upon|with the arguments
of the announcement.

5 Key Design Questions

These three implementations of implicit invocation in the context of existing program-
ming languages embody sets of design choices that are important to understand, both
to see how to use an implicit invocation system, and to observe the limitations of the
implementations. The design decisions can be grouped into the following six categories,

� event de�nition,

� event parameters,

� event bindings,

� event announcement,

� delivery policy, and

� concurrency,

which we now examine in turn.

5.1 Event De�nition

The �rst design issue concerns how events are to be de�ned. There are several related
issues. Is the vocabulary of events extensible? If so, are events explicitly declared?
If events are declared, where are they declared? There are four approaches to event
extensibility and declaration.

Fixed Event Vocabulary A �xed set of events is built into the implicit invocation
system: the user is not allowed to declare new events.

Static Event Declaration The user can introduce new events, but this set is �xed at
compile-time.

Dynamic Event Declaration New events can be declared dynamically at run-time,
and thus there is no �xed set of events.

No Event Declarations Events are not declared at all; any component can announce
arbitrary events.

An example of a system with a �xed event vocabulary is Smalltalk-80 [Goldberg
& Robson 83], which provides a small number of events including the changed event.3

Active databases often have a �xed event vocabulary, where events are associated with
primitive database operations, such as inserting, removing, or replacing an element in
the database. APPL/A is an example of this approach [Sutton, Heimbigner & Osterweil
90].

At the other extreme, tool integration frameworks, such as Field and Softbench,
have no explicit event declarations at all. A tool can announce an arbitrary string,
although tool builders typically describe the event vocabulary of each tool as externally
documented conventions.

For all three mechanisms, we rejected the �rst alternative as too restrictive. This
is because we are embedding largely general-purpose event mechanisms in programming
languages: in situations where an implicit invocation mechanism is specially designed
for a given task, using a �xed event vocabulary might be a more reasonable decision.
All three mechanisms also rejected the fourth alternative as too unpredictable. When it
came to selecting among the other approaches, there were arguments on each side. There
is no high-level reason that prohibits any of the approaches to be implemented in any of
the three mechanisms.

In the Ada mechanism, static event declaration can be implemented e�ciently as an
Ada enumerated type, also allowing compile-time type checking of event declarations
and uses. On the other hand, dynamic event declarations provide more exibility, since
they allow run-time recon�guration. Thus, a dynamic event system may have an added
bene�t of reducing recompilation overhead.

In the end, predictability through static checking won out for the Ada mechanism.
In particular, we felt that static interface declarations more naturally meshed with the
spirit of Ada, led to more comprehensible programs, and better supported large-scale
system development, which requires predictable behavior of the components.

In the C++ mechanism, we selected a combination of static and dynamic event
declaration. In particular, the event classes are de�ned statically but instances of the
event classes|that is, events themselves|can be de�ned dynamically. If a new set object
is instantiated, for example, it includes new instances of the associated event objects.

The Common Lisp mechanism, in the spirit of run-time exibility encouraged by the
language, allows for dynamic event declaration. That is, creating defevent forms at
run-time is a relatively straightforward activity.

3By convention, this \event" is announced by invoking the changedmethod on self. This causes the
updatemethod to be invoked on each dependent of the changed object. Other events could similarly be
introduced by new methods that had a similar e�ect, but this is generally not done.

Where should the declarations of events reside? In particular, since the events rep-
resent information shared between (at least) the announcing component and the event
system, it is unclear which component \owns" an event, and thus where events should
be declared. There are two obvious choices:

Central Declaration of Events Events are declared at a central point and then used
throughout the system.

Distributed Declaration of Events Events are declared by each module (or class),
where each module declares the events it expects to announce.

The Ada implementation is neutral on this issue. Since the declarations are embed-
ded within Ada comments, it is possible to declare events in the individual packages.
However, an implementor can also place event declarations in a separate �le. One draw-
back to this implementation, however, is that regardless of where the events are declared,
they are actually compiled into a central locus of control (the Event_Manager package
speci�cation). When changes are made to event declarations, all �les containing event
declarations must be recompiled to correctly rebuild the event manager.

The C++ mechanism requires that events be associated with classes. The primary
motivation was that methods and events were to be treated as equals and duals of one
another; thus, events should be declared in the interfaces of classes, as are methods. (The
equivalent of a centralized event declaration could be de�ned by convention, designating
a special class that holds all the event declarations.)

Note that the Common Lisp mechanism, even with dynamic event declarations, cre-
ates a bias with respect to the placement of declarations. In particular, events|like
methods in Common Lisp|can be placed anywhere, although they are most naturally
placed with their class de�nition. So, in the same sense as the Ada mechanism, the
Common Lisp mechanism is neutral with respect to where the event declarations go, but
the practical tendency has been to associate them with class de�nitions.

5.2 Event Parameters

The next design issue is how events should handle parameters. The question here is, what
forms of data passing using event announcements make them easy to use and understand?
The choices we considered were:

Simple Names Events are simple names without any parameter information. Data
associated with an event (if any) would have to be encoded in the name of the
event or passed in global variables.

Fixed Parameter Lists All events have a name and the same �xed list of parameters.

Parameters by Event Type Each event has a �xed list of parameters, but the type
and number of parameters can be di�erent for di�erent events.

Parameters by Announcement Whenever a component announces an event, it can
specify any list of parameters. For example, the same event name could be an-
nounced with no parameters one time and with ten parameters the next.

The use of simple names is found in systems that use events as a kind of interrupt
mechanism. In these systems there is typically only a small number of causes for events
to be raised. Fixed parameter lists are often used in combination with a �xed set of
system-de�ned events. For example, in an active database events might be required to
pass the identity of the data that is being modi�ed. At the other extreme, systems that
use strings as events often allow arbitrary parameters: it becomes the job of the receiver
to decode the string and extract parameters at run-time.

We considered the �rst two approaches as being unnecessarily restrictive. We also
felt that letting parameters vary for each announcement could lead to undisciplined and
unpredictable systems. This led to the decision that the Ada and C++ mechanisms
should allow parameters to vary by event type. Allowing parameters to vary by event
type over a static list of events also solves a problem of parameter passing in the Ada
mechanism: with static events and static parameter lists, a record with a variant part
becomes a natural way to represent parameters. The C++ mechanism handles this
through the STATIC macros.

Technically, the Common Lisp mechanism allows parameters to vary by announce-
ment, since source �les can be loaded during execution. However, the actual use of the
mechanism is more in the style of the Ada and C++ mechanisms, since an upon expres-
sion and an announcement that it is intended to match must agree on the parameter
list.

5.3 Event Bindings

Event bindings determine which procedures in which modules will be called when an
event is announced. There are two important questions to resolve. First, when are
events bound to the procedures? Second, how are the parameters of the event passed to
these procedures? Also central to this issue is the granularity of the bindings.

With respect to the �rst issue, we considered two approaches to event binding:

Static Event Bindings Events are bound to procedures statically when a program is
compiled.

Dynamic Event Bindings Event bindings can be created dynamically. Components
register for events at run-time when they wish to receive them, and unregister for
events when they are no longer interested.

The Ada mechanism uses static event bindings, while the C++ and Common Lisp
mechanisms use dynamic event bindings.

The decision to use static event bindings for Ada was largely forced by the language
itself. In particular, Ada provides no convenient mechanism for keeping a \pointer" or
other reference to a subprogram. It would have been possible to provide an enumerated
type representing all procedures that might be bound to any event. Events could be
bound to elements of this enumerated type dynamically. Procedures would then be
invoked through a large case statement. However, this conicted with the desire to have
a exible parameter passing mechanism (as described earlier), since the parameters would
either have had to be �xed or encoded in the enumerated type.

The C++ and Common Lisp mechanisms allow REGISTER and upon statements, re-
spectively, to be executed as part of the basic execution ow, thus adding event-method
pairs on-the-y. In the C++ mechanism we used this feature quite extensively.

For example, in one situation we wanted to keep two sets consistent. To do this we
de�ned a separate component, called a \mediator," which managed consistency of the
sets by listening to insert and delete events announced by each set. If an element in
one of the sets is modi�ed (rather than inserted or deleted) then modi�cation on its
associated element in the other set must be performed. To handle these modi�cations,
whenever we created a new pair of associated elements, one in each set, we also deployed
a \submediator" between the elements. The submediator constructor and destructor
methods automatically register and unregister with the events of the corresponding ele-
ments (which are passed as parameters to the submediator constructor), making it easy
for the associated elements to modify one another. With static event binding, this would
be impossible since the elements themselves were not even in existence at compile-time.

Despite this use of dynamic event binding, the jury is still out on which approach is
better. It may be that the increased exibility of dynamic event binding is outweighed by
the decrease in the predictability of the resulting system. In particular, the behavior of
a system is less apparent from its static representation (that is, from the program text)
if dynamic event binding is used. Moreover, dynamic event bindings may, depending on
how they are realized, introduce race conditions at run-time (see the later subsection on
Concurrency).

The three mechanisms represent two di�erent binding granularities. In the Ada mech-
anism, bindings are between packages (modules); in the C++ and the Common Lisp
mechanisms, the bindings are between objects. These decisions are consistent with the
nature of the languages (for instance, Ada does not have procedure pointers but C++
and Common Lisp do).

Another design decision is how the parameters from the event are translated into the
parameters for the invocation. The choices we considered were:

All Parameters An invocation of a method due to an event announcement passes ex-
actly the same parameters (in number, type and order) as are speci�ed for the
event.

Selectable Parameters As part of the event binding, the implementor can specify
which parameters of the event are passed in the invocation, and in which order.

Parameter Expressions The invocation passes the results of expressions computed
over the parameters of the announced event.

The transmission of all parameters to each procedure bound to an event requires some
conspiracy between the designer of the procedure to be invoked and the designer of the
events. (Just as is needed between a procedure invocation and a procedure de�nition
for explicit invocation.) We can easily imagine situations in which only some of the
information in an event announcement would be useful to a component. It seemed
unnecessary to require the component to accept a dummy parameter just for that reason,
or, conversely, to require two events to be announced|one with and one without the
unneeded data.

In the Ada mechanism, we opted to provide selectable parameters, as this provided
a balance between exibility and ease of implementation. Selectable parameters allows
more freedom in matching events to procedures, thereby promoting reusability. Moreover,
it is straightforward to build the argument list from the event binding declaration.

We believe that allowing non-side-a�ecting expressions as parameters to an event
system could provide a signi�cant and useful amount of increased exibility. Sometimes
a procedure's parameters do not match those of an event, but some of the procedure's
parameters can be made constant to \customize" the procedure invocation to the context
of the event. With the ability to construct expressions as part of an event binding, it
becomes easier to tailor a procedure to an event without modifying either the announcer
or the recipient. The implementation becomes considerably more complex, however. In
particular, it is necessary to make sure that operators used in parameter expressions are
in scope and have the right type.

In the C++ mechanism, we used the \all parameters" approach. Intermediary compo-
nents can be interposed to get the same e�ect as selectable parameters. This simpli�es
the event mechanism itself, but may complicate the resulting systems built using the
mechanism, since there may be more components.

The Common Lisp mechanism technically falls into the \all parameters" category as
well. However, since a function gets created each time an upon is executed, it has the
exibility of \parameter expressions."

These descriptions point out the central question, which is still open: how should the
potential proliferation of components and component interfaces be handled? In explicit
invocation, the calling component is usually responsible for understanding all the param-
eters that the callee component requires; if some are not important to the caller, defaults
must be provided. (Some languages, like Ada, allow defaults to be handled by language
mechanisms rather than by programming conventions.) In implicit invocation, the same
approach can be taken (as we did for C++), with the pressure on the receivers of events
rather than on the announcers of events. The Common Lisp mechanism approaches the
proliferation problem in a di�erent way. By creating an anonymous function each time
an upon is executed, the mechanism helps keep the name space trim.

Intermediate approaches, such as selectable parameters, show great potential. Field's
mechanism includes a relatively powerful selectable parameter mechanism based on the
string scanning functions common to Unix.

5.4 Event Announcement

Although announcing an event is a straightforward concept, there are several ways in
which it can be incorporated.

Single Announcement Procedure Provide a single procedure for announcing any
event. A closely related variant of this approach is a \language extension" in which
an announce statement is introduced as a new kind of primitive, with a language
preprocessor used to conceal the actual implementation.

Multiple Announcement Procedures Provide one procedure for announcing each
event name. For example, a component might call Announce_Changed to announce
the Changed event. The procedure accepts exactly the same parameters (in number,
type, order, and name) as the event.

Implicit Announcement Permit events to be announced as a side e�ect of calling a
given procedure. For example, each time procedure Proc is invoked, announce
event Event.

The Ada and CommonLisp mechanisms selected the \single announcement" approach
for a number of reasons. First, in comparison to the multiple procedure approach, it
is transparent: all event announcements look similar. Second, our users were fairly
pro�cient with the language at hand, and we wanted to stay as close to \pure" Ada and
Common Lisp as possible. This discouraged us from modifying the language. We also
wanted to avoid the extra complexity of a preprocessor that would have to process the
full Ada or Common Lisp language (and not just specially delimited annotations).

In the Common Lisp mechanism, event announcements are implemented as simple
method calls. The announce syntax was added because it is confusing to read Common
Lisp code with no knowledge of what is a method call and what is an event announcement.

In the Ada mechanism, we realized that instead of requiring the user to construct an
Event_Manager.Argument record as a local variable and pass the variable to the proce-
dure, the user could simply pass a record aggregate containing the desired information.
This brought the syntax close enough to an announce statement to satisfy our desire for
promoting events as �rst-class, without requiring any modi�cation to Ada syntax.

In the C++ mechanism, multiple announcement procedures are used. Speci�cally,
one announcement procedure is de�ned for each event class. The \similar look" is still
achieved by de�ning special template macros to de�ne these event classes. Thus, this
mechanism makes event announcements look di�erent from, but not too di�erent from,
method invocations. In C++, the language extension approach was even less attrac-
tive, since adding another preprocessor stage would complicate language processing and
debugging.

The fourth approach, implicit announcement, has been used as a triggering mecha-
nism for databases [Dayal, Hsu & Ladin 90], for some programming environments [Haber-
mann, Garlan & Notkin 91], and for some language extensions (in particular CLOS's
wrapper methods). It is attractive because it permits events to be announced without
changing the module that is causing the announcement to happen. Although we could
have additionally supported this form of announcement, we chose not to, largely be-
cause it would require a preprocessor to transform procedures so that they announce the
relevant events.

5.5 Delivery Policy

In most implicit invocation mechanisms, when an event is announced all procedures
bound to it are invoked. However, in some mechanisms this is not guaranteed. The
design options include:

Full Delivery An announced event causes invocation of all procedures bound to it.

Single Delivery An event is handled by only one of a set of event handlers. For exam-
ple, this allows such events as \File Ready for Printing" to be announced, with the
�rst free print server receiving the event.

Parameter-Based Selection This approach uses the event announcement's parame-
ters to decide whether a speci�c invocation should be performed. This is similar
to the pattern matching features of Field in that a single event can cause di�ering
sets of subprograms to be invoked depending upon exactly what data is transferred
with the event.

State-based Policy Some systems (notably Forest [Garlan & Ilias 91]), associate a
\policy" with each event binding. Given an event of interest, the policy determines
the actual e�ect of it. In particular, the policy can choose to ignore the event,
generate new events, or call an appropriate procedure. Policies can provide much
of the power of a dynamic system without incurring the complexities of a dynamic
system.

The single delivery model did not match our general interest in supporting implicit
invocation as opposed to indirect explicit invocation,4 and so was not used in any of the
mechanisms. In fact, all three mechanisms use variations of the full delivery model. The
only \twist" is that in the C++ and in the Common Lisp mechanisms, which both permit
dynamic registration, a given method can be associated with a given event multiple times:
that is, the event-method \relation" isn't really a relation because it can have duplicate
entries. The implication is that when an event is announced, all instances of the methods
registered with the event are invoked in these two mechanisms.

It is still unclear what are the bene�ts of each delivery mechanism. We are beginning
to believe that there is a tension between the delivery policy and the independence
of the methods that are registered in the same event. In particular, if the methods
are independent (that is, whether they are executed in a particular order, or are even
executed sequentially is immaterial to the resulting system state), then a full delivery
policy seems to lead to the most straightforward analysis by the users. In the face of
increasing dependence among the registered methods, it may be that alternative policies
or variations on policies are more appropriate. Further, if there is extensive dependence
among the registered methods, it is likely that using implicit invocation is inappropriate,
and that explicit invocation is more appropriate.

A central question yet to be settled in its entirety is where the desired delivery policies
can and should be speci�ed. In language-based approaches, such as the ones described
here, placing them in the mechanism itself is important. But more complicated policies
may be more e�ectively placed in the receiving components or in intermediaries situated
between the announcing and receiving components.

5.6 Concurrency

The only one of our three languages that has built-in support for concurrency is Ada.
(Most Common Lisp implementations have a concurrency mechanism, but there is ap-
parently no standard as yet.) Thus, for Ada's mechanism, we had to consider further
whether to or how to handle concurrency. In the Ada design we considered three options.

Package A component is a package, and an invocation is a call on a procedure in the
package interface.

Packaged Task A component is a statically-de�ned task with an interface in a package
speci�cation, and an invocation is a call on an entry in the task interface.

Free Task A component is a dynamic task (created, for example, by a task manager).
An invocation is a call on an entry in the task interface. However, rather than
providing an enclosing package, the task is built inside the Event_Manager package.

4Indirect explicit invocation occurs when passing procedures as parameters or when calling virtual
methods in object-oriented languages. In these cases, the speci�c procedure body that is to be invoked
is not known by the invoking procedure, but the fact that such a procedure exists is known.

The �rst choice leads to a non-concurrent system: events are executed using a single
thread of control. The second and third choices would permit concurrent handling of
events. Although we do not forbid tasks inside of packages, our implementation adopts
the �rst approach. That is, events are used at the module level, not the task level, and
thus the programmer|not the mechanism|is responsible for handling any interactions
between the event mechanism and tasks.

Our decision was based primarily on the fact that, given the current understanding
of systems built with implicit invocation, it is much easier to develop correct systems
using a single thread of control. The central problem is that when you add concurrency,
events may return before the actions they initiate are completed, which requires more
complex reasoning about the system.

In addition, there are a set of problems in implementing concurrent implicit invocation
mechanisms that we could avoid addressing due to this decision. For example, if we
had adopted a concurrent approach, it would have either been necessary to require all
recipients of an event to be re-entrant, or for the Event_Manager task to provide its own
internal synchronizing task to ensure that invocations occurred only one at a time. Should
a receiving task have attempted to announce another event while in its rendezvous, this
could cause a deadlock. Another question might be whether each event spawns a task
and returns immediately, or whether they run to completion before returning the thread.

APPL/A is a system that uses an Ada-based event mechanism along with concur-
rency. Event announcement methods are queued at the recipient. We do not fully
understand the consequences of this decision with respect to the use of such an event
mechanism.

6 Evaluation

Each of these implicit invocation mechanisms have been fully implemented and have been
used in varying degrees.5

6.1 Ada

The Ada mechanism was initially developed for use in a masters-level software engineer-
ing course [Garlan et al. 92]. The students had an average of �ve years of industrial
experience. Most were familiar with Ada. This early use of the system has resulted in
both praise and criticism.

On the positive side, users of the system have had virtually no conceptual problems
transferring their abstract understanding of implicit invocation to the use of our im-
plementation. The declarative nature of events apparently �t well with their abstract
model. In addition, experienced Ada users found little di�culty adapting their programs
to an implicit invocation style. Our attempts to remain close to Ada syntax certainly
contributed to this.

On the negative side, there appeared to be two limitations. The �rst was the common
problem of debugging preprocessed source code. Since compiler errors are produced with
respect to the preprocessed source, users have to translate between the output of the
preprocessor and their initial source input. However, this problem was mitigated by

5Each of the implementations is available by sending electronic mail to the authors.

the relative orthogonality of the language extensions since the event-oriented extensions
are largely isolated from normal code. The second was the absence of dynamic event
declaration and binding. Although Ada programmers are used to strongly typed, static
system designs, our users were also aware that other implicit invocation systems are more
dynamic. (For example, some of them had used Softbench.)

To these drawbacks we would add our own concern with the lack of concurrency
supported by our design. As indicated earlier, we believe that it should be possible to
exploit the tasking model of Ada, and see this as an opportunity for future work.

6.2 C++

The C++ mechanism was initially developed to support our work in tool integration,
with a speci�c interest in reducing the cost of evolution for integrated environments.
We have used the mechanism (and its predecessor) extensively, for e�orts in constructing
parallel programming environments, computer-aided geometric design environments, etc.

On the whole, programmers seem relatively happy using the mechanism. There are
two high-level issues that arise. The �rst is that the particular style of use that we
encourage is non-trivial to learn. We have anecdotal feedback from outside our group,
however, that once the approach is learned people tend to produce \cleaner" designs.
The second issue is that the typing structure takes some time to learn and understand.
This is not a fundamental problem, but it does imply that further work is needed in
understanding the relationship between implicit invocation and static typing.

The C++ mechanism has not been used in concurrent applications. Thus we have
been able to avoid a collection of issues that will, at some point, be critical. The same is
true for issues related to distribution.

6.3 Common Lisp

The Common Lisp mechanism has been used more narrowly than the other two mech-
anisms. In particular, it has been used almost exclusively to aid in the design and
implementation of a program restructuring tool. (One other use has been to implement
a facility for tracing events.)

In the restructuring tool, the event mechanism integrates three independently de-
veloped subsystems|the core restructuring component, the underlying CFG/PDG rep-
resentations [Larus 89], and the window system [Rowe et al. 91]. To integrate their
behavior, intermediary \mediator" components are created and receive events from one
subsystem and translate them to direct invocations on another [Sullivan & Notkin 92].
For example, when a program restructuring transformation completes, an announcement
of the change is made and all registered restructuring-window mediators are noti�ed of
the change, which in turn will update windows containing text or graphics of the pro-
gram. The separation of these components aids evolution of the system and maintains
independence.

Based on this experience, we have noted that programmerswho have never used events
before usually have some trouble understanding how an upon declaration interacts with
event announcements. However, we perceive this as part of the natural learning curve
associated with implicit invocation, not with this particular mechanism. Another prob-
lem is that programmers do not immediately understand that registered objects that are

otherwise unreferenceable will continue to receive event announcements unless a downoff
is executed or the announcing objects themselves become unreferenceable. This problem
is a consequence of the fact that Common Lisp supports automatic garbage collection,
but event registration references prevent garbage collection of otherwise dead objects.
Although this problem can be solved, it is non-trivial. An event tracing mechanism
built into the event mechanism has successfully countered these problems by assisting
the programmers in understanding the links between components and the consequent
behavior.

7 Related work

A large number of systems have adopted implicit invocation as an integration mechanism.
As discussed earlier, most of these tend to fall into the categories of process-oriented
tool invocation mechanisms and special-purpose languages. Here we have attempted to
broaden the base of applicability by showing how to provide similar functions for standard
programming languages.

This work is strongly motivated by others' research, which has demonstrated that
implicit invocation is an important new integration mechanism. In particular, Field
showed how implicit invocation could be applied to tool integration. Follow-on systems,
such as Softbench, have elaborated this style of broadcast-based integration in commercial
environments.

Another use of implicit invocation is in the context of some object-oriented systems.
One of these is the change propagation mechanism used to support the Model/View/Con-
troller paradigm in Smalltalk-80 [Krasner & Pope 88]. In this system, any object can
register as a dependent of another object. When an object \announces" a changed event,
an update method is called on each of the dependent objects. While this use of implicit
invocation is limited by the �xed nature of the mechanism (i.e. the events and methods
are wired into the Smalltalk environment design), the approach creates problems in
conjunction with class inheritance.

We see two signi�cant disadvantages to that approach. First, it forces the event an-
nouncer to be aware of the mechanism by which events are being handled. For example,
change announcement is actually done by the procedure call \self changed". An alterna-
tive would be to perform the announcement on some external entity, as in \dispatcher
announce ...": both su�er from the same problem that the announcer must think of the
announcement as a procedure call on a speci�c entity. But a second, and more serious
problem, is that one might prefer to think of the events that are to be announced by
an object as being part of its interface. Just as procedures determine the functionality
of a module (or class) in traditional systems, so, too, are events an integral part of that
module's functionality.

CLOS has its own language features for implicit invocation. Speci�cally, it has a
wrapper method mechanism that can be used as an event mechanism. However, it is
not as exible as the mechanism introduced here, which is what led us to introduce the
new Common Lisp mechanism. In CLOS, one or more wrapper methods can be de�ned
to augment the behavior of a normal method by executing before, after, or \around" it.
When a method is executed, some of its wrapper methods may also be executed, which
can be interpreted as the wrapper methods \receiving" the announcement of the call of
the main method. Whether one is executed is based on how the types of the arguments

match the type signature of the wrapper method, which can deviate from that of the
main method by being a sub- or super-class type. However, the selection mechanism can
be overridden.

CLOS's mechanism can be characterized as module-based, with implicit declaration
of events when methods are de�ned, and with static event bindings (i.e., declaration of
an wrapper method). The delivery policy is based on a match of the wrapper method's
type signature with that of the call's arguments (roughly). Event structure is synony-
mous with method structure, which could be interpreted as \parameters by event type."
The parameter passing mode is a combination of passing all parameters and computing
parameter expressions.

A primary focus of this paper is better understanding of the design space associated
with implicit invocation mechanisms. In that regard it is related to work in formalizing
implicit invocation models [Garlan & Notkin 91]. Such e�orts are complementary: a
formal model makes clear what are the fundamental abstractions necessary to under-
stand implicit invocation, while our concrete application relates these abstractions to the
constraints imposed by the real world.

Finally, this work is related to other uses of language extension as a means for en-
hancing the expressiveness of existing programming languages. One example of language
extension is Anna, which augments Ada with speci�cations [Luckham and won Henke
85]. The primary di�erence between that kind of work and ours is that we are attempt-
ing to change the fundamental mechanisms of interaction in module-oriented languages.
That is to say, events are not just additional annotations to permit some tool to per-
form additional checks, but become an essential part of the computational model for the
modules that use them.

8 Conclusion

The contributions of this work are twofold. First, we have shown by example how to add
implicit invocation to three quite di�erent programming languages. Some of the design
decisions were constrained by the speci�cs of the languages themselves; but most are
more general, based on constraints that are similar to those found in other programming
languages (for example, static typing). Therefore, many of our lessons could directly ap-
ply to the de�nition of implicit invocation mechanisms in other programming languages.
Second, we have elaborated the design space for this approach and shown how the deci-
sions in this space are a�ected by the constraints of the programming language that is
being enhanced. Ultimately this is the most important thing, since it serves as a checklist
for those attempting to apply these techniques to other languages.

References

[Ada 83] Reference Manual for the Ada Programming Language. United States Depart-
ment of Defense (January 1983).

[Cohen 89] D. Cohen. Compiling Complex Transition Database Triggers. Proceedings of
the 1989 ACM SIGMOD (1989).

[Dayal, Hsu & Ladin 90] U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running
Activities with Triggers and Transactions. In Proceedings of the 1990 ACM SIGMOD

(June 1990).

[Garlan & Ilias 91] D. Garlan and E. Ilias. Low-cost, Adaptable Tool Integration Policies
for Integrated Environments. Proceedings of SIGSOFT `90: Fourth Symposium on

Software Development Environments. Irvine, CA (December 1990).

[Garlan, Kaiser & Notkin 92] D. Garlan, G.E. Kaiser, and D. Notkin. Using Tool Ab-
straction to Compose Systems. IEEE Computer (June 1992).

[Garlan & Notkin 91] D. Garlan and D. Notkin. Formalizing Design Spaces: Implicit In-
vocation Mechanisms. Proceedings of VDM'91: Formal Software Development Meth-

ods. Springer-Verlag, LNCS 551 (October, 1991).

[Garlan & Scott 93] D. Garlan and C. Scott. Adding Implicit Invocation to Traditional
Programming Languages Proceedings of the 15th International Conference on Software

Engineering. IEEE Computer Society Press, pp. 447{455 (May 1993).

[Garlan et al. 92] D. Garlan, M. Shaw, C. Okasaki, C. Scott, and R. Swonger. Expe-
rience with a Course on Architectures for Software Systems. Proceedings of the SEI

Conference on Software Engineering Education (October 1992).

[Gerety 89] C. Gerety. HP SoftBench: A New Generation of Software Development Tools.
Technical Report SESD-89-25, Hewlett-Packard Software Engineering Systems Divi-
sion, Fort Collins, Colorado (November 1989).

[Goldberg & Robson 83] A. Goldberg and D. Robson. Smalltalk-80: The Language and

its Implementation. Addison-Wesley (1983).

[Griswold 91] W.G. Griswold. Program Restructuring as an Aid to Software Mainte-

nance. Department of Computer Science & Engineering, University of Washington
(1991).

[Griswold & Notkin 93] W.G. Griswold and D. Notkin. Automated Assistance for Pro-
gram Restructuring. To appear, ACM Transactions on Software Engineering and

Methodology (July 1993).

[Habermann, Garlan & Notkin 91] A.N. Habermann, D. Garlan and D. Notkin. Gener-
ation of Integrated Task-Speci�c Software Environments. In CMU Computer Science:

A 25th Commemorative. ACM Press (1990).

[Hewitt 69] C. Hewitt. PLANNER: A Language for Proving Theorems in Robots. Pro-
ceedings of the First International Joint Conference in Arti�cial Intelligence., Wash-
ington DC (1969).

[Krasner & Pope 88] G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80. Journal of Object Oriented
Programming 1,3 (August/September 1988), pp. 26{49.

[Larus 89] J.R. Larus. Restructuring Symbolic Programs for Concurrent Execution on

Multiprocessors. UC Berkeley Computer Science (May 1989).

[Luckham and won Henke 85] D. Luckham and F.W. von Henke. An Overview of Anna,
a Speci�cation Language for Ada. IEEE Software (March 1985).

[Myers et al. 90] B.A. Myers, D.A. Giuse, R.B. Dannenberg, B. Vander Zanden, D.S.
Kosbie. E. Pervin, A. Mickish, and P. Marchal. Garnet: Comprehensive Support
for Graphical, Highly-Interactive User Interfaces. IEEE Computer 23 ,11, pp. 71{85
(November 1990).

[Reiss 90] S.P. Reiss. Connecting Tools using Message Passing in the Field Environment.
IEEE Software 7,4 (July 1990).

[Rowe et al. 91] L.A. Rowe, J.A. Konstan, B.C. Smith, S. Seitz, and C. Li. The PICASSO
Application Framework. Proceedings of the 14th ACM Symposium on User Interface

Software and Technology (1991).

[Scheier and Gettys 86] R.W. Scheier and J. Gettys. The X Window System. ACM
Transactions on Graphics 5,2, pp. 79{109 (April 1986).

[Steele 91] G.L. Steele. COMMON LISP, the Language, 2nd edition. Digital Press,
Burlington MA (1991).

[Stroustrup 87] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, MA (1987).

[Sullivan & Notkin 92] K.J. Sullivan and D. Notkin. Reconciling Environment Integra-
tion and Software Evolution.ACM Transactions on Software Engineering and Method-

ology 1,3 (July 1992).

[Sutton, Heimbigner & Osterweil 90] S.M. Sutton, Jr., D. Heimbigner, & L.J. Osterweil.
Language Constructs for Managing Change in Process-Centered Environments. Pro-
ceedings of ACM SIGSOFT90: Fourth Symposium on Software Development Environ-

ments, pp. 206{217 (December 1990).

